
TWMS J. App. and Eng. Math. V.12, N.4, 2022, pp. 1160-1165

QUENCHING FOR A REACTION-DIFFUSION EQUATION WITH

WEAK SINGULARITIES

B. SELCUK1, §

Abstract. This paper studies the following reaction-diffusion equation with a weak
singular boundary condition. The primary objective for this problem is to analyze the
quenching properties. It is obtained that finite time quenching occurs on the left bound-
ary, the time derivative of the solution blows up at the same time and also quench-
ing rate estimates of the solution of the eqaution kt(x, t) = kxx(x, t) + lnαk(x, t),
(x, t) ∈ (0, 1) × (0, T ) with kx (0, t) = − lnβk(0, t), kx (1, t) = 0, t ∈ (0, T ) and ini-
tial function k (x, 0) = k0 (x) with [0, 1] → (0, 1) where 0 < α, β < 1 and T is a finite
time.

Keywords: Reaction-diffusion equation, Singular boundary condition, Quenching, Max-
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1. Introduction

This paper studies quenching of solutions in a reaction-diffusion equation with weak sin-
gularities:  kt = kxx + ln (αk) , x ∈ (0, 1), t ∈ (0, T ),

kx (0, t) = − ln (βk(0, t)) , kx (1, t) = 0, t ∈ (0, T ),
k (x, 0) = k0 (x) , x ∈ [0, 1],

(1)

where 0 < α, β < 1 and T ∈ (0,∞). The initial function k0 : [0, 1] → (0, 1) satisfies the
compatibility conditions

k′0 (0) = − ln (βk0) , k
′
0 (1) = 0.

The problem (1) arises in this paper of the Micro-Electro Mechanical System devices
coming out of a thin dielectric elastic membrane. The dynamic solution characterizes the
dynamic deflection of the elastic membrane in these models (see [1],[5],[14]). The primary
objective of this paper is to analyze the quenching properties of (1). Now, we define
quenching phenomena.
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Definition 1.1 The solution of the problem (1) is said to quench if there exists a finite
time T = T (k0) <∞ such that

lim
t→T−

min{k(x, t) : 0 ≤ x ≤ 1} → 0.

Lately, the authors considered to get quenching properties of various reaction-diffusion
equations with two singular boundary conditions ([3],[4],[8],[9],[10],[11],[14]). In literature,
quenching problem with weak singularities of logarithmic type is less studied ([2],[6],[7],[12],
[13]). In [6], the author studied the following diffusion problem kt = kxx + log (αk) , in (−l, l)× (0, T ),

k (±l, t) = 1, t ∈ [0, T ),
k (x, 0) = k0 (x) , x ∈ [−l, l].

(2)

He showed that quenching points are finite under specific conditions on the initial function.
Also, he derived quenching rate

lim
t→T

(
1 +

1

T − t

∫ k(x,t)

0

ds

log (αs)

)
uniformly for |x| < C

√
T − t. In [12], the authors considered a parabolic system with

Neumann boundary conditions:
kt = kxx + log(αj), jt = jxx + log(βk), x ∈ (0, 1), t ∈ (0, T ),
kx(0, t) = 0 = kx(1, t), t ∈ (0, T ),
jx(0, t) = 0 = jx(1, t), t ∈ (0, T ),
0 < k(x, 0) = u0(x) ≤ 1, x ∈ [0, 1],
0 < j(x, 0) = v0(x) ≤ 1, x ∈ [0, 1],

(3)

where 0 < α, β < 1. They showed that quenching is always non-simultaneous. Further,
they also gave the quenching rate estimate for this non-simultaneous quenching.

Until now in literature, the quenching problem with two weak singularities of logarithmic
type have not been studied. Here, we deal with the quenching character of the problem
(1) motivated by problems (2) and (3). Here, we suppose initial function k0 satisfies

kxx(x, 0) + ln (αk(x, 0)) ≤ 0, (4)

kx(x, 0) ≥ 0. (5)

This paper is organized as follows. In Section 2, we obtain that single quenching point
is x = 0 in finite time and kt blows up at the same time by using the certain assumptions
in (1). Also, we obtain quenching rate estimates.

2. Quenching Properties

Firstly, We can easily prove the existence of positive local solution of the problem (1)
for some T > 0 in [9]. This problem have two nonlinear sources which are emissions.
Therefore, it can be predicted that the solution of the problem goes to zero for positive
initial functions that do not take too large value. The conditions on the initial functions
determine at what point and at what time (finite or infinite) the quenching event will
occur.

Also, we can easily show that k0(x) providing (4), (5) and compatibility conditions.
Indeed, we assume that the conditions (4), (5) are proper.

Remark 2.1. k0(x) = 1.1 − (1 − x)3.912 satisfies compatibility conditions, (4) and (5)
where any value α ∈ (0, 1) and β = 0.2. (ln 0.02 = −3.912)
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Lemma 2.1. If k0 satisfies (4) and (5), then we get kt < 0 and kx > 0 in (0, 1)× (0, T ),
respectively.
Proof. Let G = kt, H = kx, we have

Gt −Gxx −G/k = 0, x ∈ (0, 1), t ∈ (0, T ),

Gx(0, t) +G(0, t)/k(0, t) = 0, t ∈ (0, T ),

Gx(1, t) = 0, t ∈ (0, T ),

G(x, 0) = kxx(x, 0) + ln (αk(x, 0)) ≤ 0, x ∈ [0, 1],

and

Ht −Hxx −H/k = 0, x ∈ (0, 1), t ∈ (0, T ),

H(0, t) = − ln (βk(0, t)) , t ∈ (0, T ),

H(1, t) = 0, t ∈ (0, T ),

H(x, 0) = kx(x, 0) ≥ 0, x ∈ [0, 1].

where 0 < β < 1 and 0 < k(0, t) < e. From the maximum principle, it is obtained that
G = kt ≤ 0 and H = kx ≥ 0 in [0, 1] × [0, T ). From the strong maximum principle, it is
also obtained that G = kt < 0 and H = kx > 0 in (0, 1)× (0, T ).

Theorem 2.1. k quenches in a finite time Tβ if k0(x) satisfies (4).
Proof. Suppose that k0(x) satisfies (4). Thus, it is obtained by integration that

Z = ln (βk(0, 0)) +

∫ 1

0
ln (αk(x, 0)) dx < 0.

Let’s define an auxliary function; Θ (t) =
∫ 1
0 k (x, t) dx, 0 < t < T . In that case, it is

obtained that

Θ′ (t) = ln (βk(0, t)) +

∫ 1

0
ln (αk(x, t)) dx ≤ ln (βk(0, 0)) +

∫ 1

0
ln (αk(x, 0)) dx = Z

from kt < 0 by the previous lemma. Thus, Θ (t) ≤ Θ(0) + Zt. Namely, Θ (Tβ) = 0 for
some Tβ = −Θ(0)/Z, which means quenching occurs in finite time Tβ for 0 < T ≤ Tβ.

The proof of Corollary 2.1 is a trivial modification of Lemma 2.1.

Corollary 2.1. Let ρ ∈ (0, T ), ε > 0 and k0 ≥ ε. If we define H = kx − ε for (x, t) ∈
[0, 1]× [ρ, T ), then we have kx ≥ ε for (x, t) ∈ [0, 1]× [ρ, T ).

Theorem 2.2. x = 0 is the single quenching point if k0 satisfies (4) and (5).
Proof. Let ρ ∈ (0, T ), M = ||k0(x)||∞ ≤ 1 and δ > 0. Define

Φ(x, t) = kx + δ(1− x) ln (αM)

where (x, t) ∈ [0, 1]× [ρ, T ). Θ(x, t) supplies

Φt − Φxx −
1

k
Φ = −δ(1− x) ln (αM)

k
> 0 in (0, 1)× [ρ, T ),

in (0, 1)× (ρ, T ). From the maximum principle, it is obtained that Θ(x, t) can’t acquire a
negative interior minimum. Let δ be a sufficiently small constant. It is obtained Θ(x, ρ) >
0 from Corollary 2.1. On the other hand, it is achieved that

Φ(0, t) = − ln (βk(0, t)) + δ ln (αM) > 0,

Φ(1, t) = 0,
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where δ be a sufficiently small constant for t ∈ (ρ, T ). From the maximum principle, it
is achieved that Φ(x, t) ≥ 0, namely kx ≥ −δ(1− x) ln (αM) where (x, t) ∈ [0, 1]× [ρ, T ).
Taking integral with respect to x from 0 to x, it is achieve that

k(x, t) ≥ k(0, t)− δ2x− x2

2
ln (αM)

So k does not quench in (0, 1].

Theorem 2.3. If k0 satisfies (4) and (5), then time derivative of k blows up at the finite
time.
Proof. Let δ > 0 and ρ ∈ (0, T ). Define

χ(x, t) = kt + δkx

where (x, t) ∈ [0, 1]× [ρ, T ). Thus, χ(x, t) supplies

χt − χxx −
1

k
χ = 0

in (0, 1)× (ρ, T ). χ(x, ρ) ≤ 0 if δ is small enough and by Lemma 2.1. Further, if δ is small
enough,

χ(0, t) = kt(0, t) + δkx(0, t) < 0,

χ(1, t) = kt(1, t) < 0

for t ∈ (ρ, T ). From the maximum principle, we obtain that χ(x, t) ≤ 0 for (x, t) ∈
[0, 1]× [ρ, T ). Namely, kt ≤ −δkx for (x, t) ∈ [0, 1]× [ρ, T ). For x = 0, we infer that

kt(0, t) ≤ δ ln (βk(0, t)) , (6)

and
lim
t→T−

kt(0, t) ≤ lim
t→T−

δ ln (βk(0, t)) = −∞.

The theorem is proved.

Remark 2.2. By integrating (6), we infer that a quenching rate is∫ 0

k(0,t)

dη

ln(βη)
≥ δ(T − t). (7)

Theorem 2.4. If k0 satisfies (4)-(5) and α ≥ β, then there exists a positive constant c
such that ∫ 0

k(0,t)

dη

ln(βη)
≤ c(T − t).

for t sufficiently close to T .
Proof. Define Ω(x, t) = kx+Ψ(x) ln(βk) in [0, 1]×[0, T ), where the function Ψ is defined in
[13] and is nonnegative, nonincreasing, convex, C2 function such that Ψ(0) = 1, Ψ(1) = 0,

Ψ(x) ≤ − k′0(x)
ln(βk0(x))

.

Let Ω(x, t) = kx + Ψ(x) ln(βk). It is achieved that

Ωt − Ωxx −
1

k
Ω = Ψ(x)

ln(α/β)

k
−Ψ′′(x) ln(βk)− 2Ψ′(x)

kx
k

+ Ψ(x)
k2x
k2

> 0

since α ≥ β and kx > 0, J(x, t) cannot acquire a negative interior minimum. On the other
hand, Ω(x, 0) ≥ 0 from definition of Ψ(x) and

Ω(0, t) = 0, Ω(1, t) = 0,
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for t ∈ (0, T ). From the maximum principle, it is achieved that Ω(x, t) ≥ 0 for (x, t) ∈
[0, 1]× [0, T ). Therefore

Ωx(0, t) = lim
h→0+

Ω(h, t)− Ω(0, t)

h
= lim

h→0+

Ω(h, t)

h
≥ 0.

It is infered that

Ωx(0, t) = kxx(0, t) + Ψ′(0) ln(βk(0, t)) + Ψ(0)
kx(0, t)

k(0, t)

= kxx(0, t) + Ψ′(0) ln(βk(0, t)) +
kx(0, t)

k(0, t)

= kt(0, t)− ln(αk(0, t)) + Ψ′(0) ln(βk(0, t))− ln(βk(0, t))

k(0, t)
≥ 0

and

kt(0, t) ≥ ln(αk(0, t))−Ψ′(0) ln(βk(0, t)) +
ln(βk(0, t))

k(0, t)
≥ c ln(βk(0, t)).

from α ≥ β and definition of function Ψ . Namely, kt(0, t) ≥ c ln(βk(0, t)). Integrating for
t from 0 to T , it is obtained that∫ 0

k(0,t)

dη

ln(βη)
≤ c(T − t). (8)

The theorem is proved.

Corollary 2.2. From (7) and (8), it is obtained that∫ 0

k(0,t)

dη

ln(βη)
∼ (T − t).

since k0 satisfies (4)-(5) and α ≥ β.

3. Conclusion

The main results in (1) are the following;
(i) the single quenching point is x = 0 and time derivative of k blows up at the finite
quenching time since k0 satisfies (4) and (5).
(ii) the quenching rate is ∫ 0

k(0,t)

dη

ln(βη)
∼ (T − t),

since k0 satisfies (4)-(5) and α ≥ β..
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