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FITTED NON-POLYNOMIAL SPLINE METHOD FOR SINGULARLY

PERTURBED DIFFERENTIAL DIFFERENCE EQUATIONS WITH

INTEGRAL BOUNDARY CONDITION

H. G. DEBELA1, G. F. DURESSA1∗, §

Abstract. The aim of this paper is to present fitted non-polynomial spline method for
singularly perturbed differential-difference equations with integral boundary condition.
The stability and uniform convergence of the proposed method are proved. To validate
the applicability of the scheme, two model problems are considered for numerical experi-
mentation and solved for different values of the perturbation parameter, ε and mesh size,
h. The numerical results are tabulated in terms of maximum absolute errors and rate of
convergence and it is observed that the present method is more accurate and uniformly
convergent for h ≥ ε where the classical numerical methods fails to give good result and
it also improves the results of the methods existing in the literature.
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1. Introduction

A differential equation in which the highest order derivative is multiplied by a small
positive parameter ε is called singular perturbed problem and the parameter ε is known
as the perturbation parameter [24]. Such type of problems are numerically treated by
different researchers, to mention in point one can refer [4],[5][23], and [6].

A differential equation is said to be singularly perturbed delay differential equation, if
it includes at least one delay term, involving unknown functions occurring with different
arguments, and also, the highest derivative term is multiplied by a small parameter. Such
type of delay, differential equations play a very important role in the mathematical models
of science and engineering, such as, the human pupil light reflex with mixed delay type
[19], variational problems in control theory with small state problem [14], models of HIV
infection [7], and signal transition [12].
Any system involving a feedback control almost involves time delay. The delay occurs
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because a finite time is required to sense the information and then react to it. Finding
the solution of singularly perturbed delay differential equations, whose application men-
tioned above, is a challenging problem. In response to these, in recent years, there has
been a growing interest in numerical methods on singularly perturbed delay differential
equations. The authors of [1],[8],[9] have developed various numerical schemes on uniform
meshes for singularly perturbed differential equations with integral boundary conditions.
The authors of [2],[13],[18] have proved that the problem of differential equations with
integral boundary conditions is well posed. Cubic spline in compression approximations
for singularly perturbed delay differential equation with large delay has been presented by
[3]. Similarly, the authors of [15] developed fitted non-polynomial cubic spline method for
singularly perturbed delay convection-diffusion equations.

The standard numerical methods used for solving singularly perturbed differential equa-
tion are sometime ill posed and fail to give analytical solution when the perturbation pa-
rameter ε is small. Therefore, it is necessary to develop suitable numerical methods which
are uniformly convergent to solve this type of differential equations. In [20],[21],[26],[29]
finite difference and finite element methods are proposed to solve this kind of equations
with large and small shifts. Recently, the problem under consideration was done by
[25],[10],[11],[17] using fitted mesh and fitted operator methods.

As far as the researchers knowledge is concerned, numerical solution of singularly per-
turbed boundary value problem containing integral boundary condition via fitted non-
polynomial spline method is first being considered.
Thus, the purpose of this study is to develop stable, convergent and more accurate numer-
ical method for solving singularly perturbed differential-difference equations with Integral
boundary condition. Throughout our analysis C is generic positive constant that are
independent of the number of mesh points N . We assume that Ω̄ = [0, 2], Ω = (0, 2),
Ω1 = (0, 1), Ω2 = (1, 2), Ω∗ = Ω1 ∪ Ω2.

2. Statement of the problem

Consider the following singularly perturbed problem

Ly(x) = −εy′′(x) + a(x)y′(x) + b(x)y(x) + c(x)y(x− 1) = f(x), x ∈ (0, 2), (1)

y(x) = φ(x), x ∈ [−1, 0], (2)

Ky(2) = y(2)− ε
∫ 2

0
g(x)y(x)dx = l, (3)

where φ(x) is sufficiently smooth on [−1, 0]. For all x ∈ Ω, it is assumed that the sufficient
smooth functions a(x), b(x) and c(x) satisfy at a(x) > a > 0, b(x) > b ≥ 0, c(x) ≤ c < 0,

and a+ b+ c > 0. Furthermore, g(x) is non-negative and monotonic with
∫ 2

0 g(x)dx < 1.

The above assumptions ensure that y ∈ X = C0(Ω̄) ∩ C1(Ω) ∩ C2(Ω1 ∪ Ω2).
Eqs. (1)–(3) exhibits strong boundary layer at x = 2 due to the small perturbation

parameter, ε and interior layer at x = 1 due to the delay parameter [11].
As we observed from Eqs. (1)-(3), the value of y(x− 1) is known for the domain Ω1 and
unknown for the domain Ω2 due to the large delay at x = 1. So, it is impossible to treat
the problem throughout the domain Ω̄. Therefore, we have to treat the problem at Ω1

and Ω2 separately.
So, Eqs. (1)-(3) is equivalent to

Ly(x) = R(x), (4)
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where

Ly(x) =

 L1y(x) = −εy′′(x) + a(x)y′(x) + b(x)y(x), x ∈ Ω1,
L2y(x) = −εy′′(x) + a(x)y′(x) + b(x)y(x) + c(x)y(x− 1),
x ∈ Ω2.

(5)

R(x) =

{
f(x)− c(x)φ(x− 1), x ∈ Ω1,
f(x), x ∈ Ω2,

(6)

with boundary conditions
y(x) = φ(x), x ∈ [−1, 0],
y(1−) = y(1+), y′(1−) = y′(1+),

Ky(2) = y(2)− ε
∫ 2

0 g(x)y(x)dx = l.

(7)

3. Properties of Continuous solution

Lemma 3.1. (Maximum Principle) Let ψ(x) be any function in X such that ψ(0) ≥
0,Kψ(2) ≥ 0, L1ψ(x) ≥ 0, ∀x ∈ Ω1, L2ψ(x) ≥ 0, ∀x ∈ Ω2 and [ψ′](1) ≤ 0 then ψ(x) ≥
0,∀x ∈ Ω̄.

Proof. Refer [11] �

Lemma 3.2. (Stability Result) The solution y(x) of the problem (1)-(3), satisfies the
bound

|y(x)| ≤ C max{|y(0)|, |Ky(2)|, sup
x∈Ω∗

|Ly(x)|}, x ∈ Ω

Proof. Refer [11] �

Lemma 3.3. Let y(x) be the solution of (1)-(3). Then we have the following bounds:

|y(k)(x)|Ω∗ ≤ Cε−k, for k = 1, 2, 3.

Proof. Refer [11] �

4. Numerical Scheme Formulation

The linear ordinary differential equation in Eq.(1) cannot, in general, be solved analyt-
ically because of the dependence of a(x), b(x) and c(x) on the spatial coordinate x.
We divide the interval [0, 2] into 2N equal parts with constant mesh length h. Let
0 = x0, x1, ..., xN = 1, xN+1, xN+2, ..., x2N = 2 be the mesh points. Then, we have
xi = ih, i = 0, 1, 2, ..., 2N .

From Eqs.(4)–(6), we have{
−εy′′(x) + a(x)y′(x) + b(x)y(x) = f(x)− c(x)φ(x− 1), x ∈ Ω1,

y0 = φ0, y(1) = θ.
(8)

Now, the domain [0, 1] is discretized into N equal number of subintervals, each of length
h. Let 0 = x0 < x1 < ... < xN = 1 be the points such that xi = ih, i = 0, 1, 2, ..., N .

We can rewrite Eq. (8) as

εy′′(x) + p(x)y′(x) + q(x)y(x) = R(x), x ∈ Ω1, (9)

where p(x) = −a(x), q(x) = −b(x), R(x) = c(x)φ(x− 1)− f(x).
Consider a uniform mesh with interval [0, 1] in which 0 = x0 < x1 < ... < xN = 1 where
h = 1

N and xi = ih, i = 0, 1, 2, ..., N .
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For each segment [xi, xi+1], i = 1, 2, ..., N − 1 the non-polynomial cubic spline S(x) has
the following form

S(x) = ai + bi(x− xi) + ci(e
w(x−xi) + e−w(x−xi)) + di(e

w(x−xi) − e−w(x−xi)), (10)

where ai, bi, ci and di are unknown coefficients, and w 6= 0 arbitrary parameter which will
be used to increase the accuracy of the method.
To determine the unknown coefficients in Eq. (10) in terms of yi, yi+1,Mi and Mi+1, first
we define {

S(xi) = yi, S(xi+1) = yi+1,

S′′(xi) = Mi, S′′(xi+1) = Mi+1.
(11)

The coefficients in Eq. (10) are determined as
ai = yi − Mi

w2 ,

bi = yi+1−yi
h + Mi−Mi+1

wθ ,

ci = Mi+1

w2(eθ−e−θ)
− Mi(e

θ+e−θ)
2w2(eθ−e−θ)

,

di = Mi
2w2 ,

(12)

where θ = wh.
Using the continuity condition of the first derivative at xi, S

′
i−1(xi) = S′(xi), we have

bi−1 + wci−1(eθ + e−θ) + wdi−1(eθ − e−θ) = bi + 2wci. (13)

Reducing indices of Eq. (12) by one and substituting into Eq. (13), we obtain

yi−yi−1

h +Mi−Mi+1

wθ +w

(
2Mi−(eθ+e−θ)Mi−1

2w2(eθ+e−θ)

)
= yi+1−yi

h +Mi−Mi+1

wθ +2w

(
Mi+1

w2(eθ−e−θ)
− Mi(e

θ+e−θ)
2w2(eθ−e−θ)

)
.

=⇒ yi−1 − 2yi + yi+1

h2
= αMi−1 + 2βMi + αMi+1, (14)

where

α = 1
θ2

(
1− 2θ

(eθ−e−θ)

)
, β = 1

θ2

(
θ(eθ+e−θ)
(eθ−e−θ)

− 1

)
.

If h→ 0, then θ = wh→ 0. Thus, using L’Hopitals rule we have

lim
θ→0

α =
1

6
and lim

θ→0
β =

1

3
.

Using S′′(xi) = y′′i = Mi in to Eq. (9), we get
εMi = Ri − piy′i − qiyi,
εMi−1 = Ri−1 − pi−1y

′
i−1 − qi−1yi−1,

εMi+1 = Ri+1 − pi+1y
′
i+1 − qi+1yi+1.

(15)

Using Taylor’s series expansions of yi−1, yi+1, y
′
i−1 and y′i+1 simplifying, we have

y′i = yi+1−yi−1

2h + T1,

y′i−1 = −yi+1+4yi−3yi−1

2h + T2,

y′i+1 = 3yi+1−4yi+yi−1

2h + T2,

(16)

where
T1 = −h2

6 y
′′′(ξ) and T2 = h2

12y
′′′(ξ), for ξ ∈ (xi−1, xi).
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Substituting Eq. (16) in to Eq. (15), we get

Mi = 1
ε

{
Ri − pi

(
yi+1−yi−1

2h + T1

)
− qiyi

}
,

Mi−1 = 1
ε

{
Ri−1 − pi−1

(
−yi+1+4yi−3yi−1

2h + T2

)
− qi−1yi−1

}
,

Mi+1 = 1
ε

{
Ri+1 − pi+1

(
3yi+1−4yi+yi−1

2h + T2

)
− qi+1yi+1

}
.

(17)

Substituting Eq. (17) into Eq. (14) and rearranging, we get

ε

h2
(yi−1 − 2yi + yi+1) +

αpi−1

2h
(−yi+1 − 4yi − 3yi−1) +

2βpi
2h

(yi+1 − yi−1)

+
αpi+1

2h
(3yi+1 − 3yi + yi−1) = α(Ri−1 − qi−1yi−1 +Ri+1 − qi+1yi+1)

+2β(Ri − qiyi) + T,

(18)

where T = (4βpi − αpi−1 − αpi+1)h
2

12y
′′′(ξ) is the local truncation error.

From the theory of singular perturbations described in [22] and the Taylor’s series expan-
sion of y(x) about the point ′0′ in the asymptotic solution of the problem in Eq.(9), we
have

y(xi) ≈ y0(xi) + (φ0 − y0(0))e−p(0) ih
ε ,

and letting ρ = h
ε , we get

lim
h→0

y(ih) ≈ y0(0) + (φ0 − y0(0))e−p(0)iρ,

since xi = x0 + ih.
To handle the effect of the perturbation parameter exponentially fitting factor (artificial

viscosity) σ(ρ) is multiplied on the term containing the perturbation parameter in Eq. (18)
and it becomes

σ(ρ)ε

h2
(yi−1 − 2yi + yi+1) +

αpi−1

2h
(−yi+1 − 4yi − 3yi−1) +

2βpi
2h

(yi+1 − yi−1)

+
αpi+1

2h
(3yi+1 − 3yi + yi−1) = α(Ri−1 − qi−1yi−1 +Ri+1 − qi+1yi+1)

+2β(Ri − qiyi) + T.

(19)

Multiplying Eq. (19) by h and taking a limit as h→ 0, we get

σ

ρ
lim
h→0

(yi−1 − 2yi + yi+1) +
αp(0)

h
lim
h→0

(−yi+1 − 4yi − 3yi−1)

+βp(0) lim
h→0

(yi+1 − yi−1) +
αp(0)

2
lim
h→0

(3yi+1 − 3yi + yi−1) = 0.

(20)

Thus, we consider two cases of the boundary layers.
Case 1: For p(x) > 0 (Left-end boundary layer), we have

lim
h→0

(yi−1 − 2yi + yi+1) = (φ0 − y0(0))e−p(0)iρ(ep(0)ρ + e−p(0)ρ − 2),

lim
h→0

(−yi+1 − 4yi − 3yi−1) = (φ0 − y0(0))e−p(0)iρ(−3ep(0)ρ − e−p(0)ρ + 4),

lim
h→0

(yi+1 − yi−1) = (φ0 − y0(0))e−p(0)iρ(ep(0)ρ + 3e−p(0)ρ − 4),

lim
h→0

(3yi+1 − 3yi + yi−1) = (φ0 − y0(0))e−p(0)iρ(e−p(0)ρ − ep(0)ρ).

(21)



1218 TWMS J. AND APP. ENG. MATH. V.12, N.4, 2022

Substituting Eq. (21) into Eq. (20) and simplifying, we get

σ0 = ρp(0)(α+ β) coth

(
p(0)ρ

2

)
. (22)

Case 2: For p(x) < 0 (Right-end boundary layer), we have

lim
h→0

(yi−1 − 2yi + yi+1) = (ϕ− y0(1))e−p(1)iρ(ep(1)ρ + e−p(1)ρ − 2),

lim
h→0

(−yi+1 − 4yi − 3yi−1) = (ϕ− y0(1))e−p(1)iρ(−3ep(1)ρ − e−p(1)ρ + 4),

lim
h→0

(yi+1 − yi−1) = (ϕ− y0(1))e−p(1)iρ(ep(1)ρ + 3e−p(1)ρ − 4),

lim
h→0

(3yi+1 − 3yi + yi−1) = (ϕ− y0(1))e−p(1)iρ(e−p(1)ρ − ep(1)ρ).

(23)

Substituting Eq. (23) into Eq. (20) and simplifying, we get

σN = ρp(1)(α+ β) coth

(
p(1)ρ

2

)
. (24)

In general, we take a variable fitting parameter as

σi = ρip(xi)(α+ β) coth

(
p(xi)ρi

2

)
, (25)

where, ρi = h
ε .

Thus, Eq. (19) can be written as{
εσi
h2
− 3αpi−1

2h
+ αqi−1 −

βpi
h

+
αpi+1

2h

}
yi−1 −

{
2εσi
h2
− 2αpi−1

h
− 2βqi +

2αpi+1

h

}
yi

+

{
εσi
h2
− αpi−1

2h
+ αqi+1 +

βpi
h

+
3αpi+1

2h

}
yi+1

= α(Ri−1 +Ri+1) + 2βRi.
(26)

Simplifying Eq. (9), for left layer in domain Ω1, we get the tri-diagonal system of the
equation of the form

LN ≡ Eiyi−1 − Fiyi +Giyi+1 = Hi, for i = 1, 2, ..., N − 1, (27)

where 
Ei = εσi

h2
− 3αpi−1

2h + αqi−1 − βpi
h + αpi+1

2h ,

Fi = 2εσi
h2
− 2αpi−1

h − 2βqi + 2αpi+1

h ,

Gi = εσi
h2
− αpi−1

2h + αqi+1 + βpi
h + 3αpi+1

2h ,

Hi = α(Ri−1 +Ri+1) + 2βRi.

Similarly, if we consider Ω2 = (1, 2) from Eqs. (4)–(6), we will obtain the differential
equation {

εy′′(x) + p(x)y′(x) + q(x)y(x) + r(x)y(x− 1) = S(x), x ∈ Ω2,

y(1) = θ, y(2) = l,
(28)

where p(x) = −a(x), q(x) = −b(x), r(x) = −c(x), S(x) = −f(x).
Substituting S′′(xi) = y′′i = Mi in to Eq. (28), we get

εMi = Si − piy′i − qiyi − riy(xi − 1),

εMi−1 = Si−1 − pi−1y
′
i−1 − qi−1yi−1 − ri−1y(xi−1 − 1),

εMi+1 = Si+1 − pi+1y
′
i+1 − qi+1yi+1 − ri+1y(xi+1 − 1).

(29)
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Substituting Eq. (16) in to Eq. (29), we get

Mi = 1
ε

{
Si − pi

(
yi+1−yi−1

2h + T1

)
− qiyi − riy(xi − 1)

}
,

Mi−1 = 1
ε

{
Si−1 − pi−1

(
−yi+1+4yi−3yi−1

2h + T2

)
− qi−1yi−1 − ri−1y(xi−1 − 1)

}
,

Mi+1 = 1
ε

{
Si+1 − pi+1

(
3yi+1−4yi+yi−1

2h + T2

)
− qi+1yi+1 − ri+1y(xi+1 − 1)

}
.

(30)

Substituting Eq.(30) in to Eq.(14), introducing fitting factor and rearranging, we get

LN ≡ Eiyi−1 − Fiyi +Giyi+1 + Ti = Hi, i = N + 1, N + 2, ..., 2N − 1. (31)

where 

Ei = εσi
h2
− 3αpi−1

2h + αqi−1 − βpi
h + αpi+1

2h ,

Fi = 2εσi
h2
− 2αpi−1

h − 2βqi + 2αpi+1

h ,

Gi = εσi
h2
− αpi−1

2h + αqi+1 + βpi
h + 3αpi+1

2h ,

Hi = α(Si−1 + Si+1) + 2βSi,

Ti = α{ri−1y(xi−1 − 1) + ri+1y(xi+1 − 1)}+ 2βriy(xi − 1).

To treat the integral boundary for i = 2N , the composite Simpson’s rule approximates
the integral of g(x)y(x) by∫ 2

0
g(x)y(x)dx =

h

3

(
g(0)y(0) + g(2)y(2) + 2

2N−1∑
i=1

g(x2i)y(x2i)

+4

2N∑
i=1

g(x2i−1)y(x2i−1)

)
.

(32)

Substituting Eq. (32) into Eq. (3) gives

y(2)− εh

3

(
g(0)y(0) + g(2)y(2) + 2

2N−1∑
i=1

g(x2i)y(x2i) + 4

2N∑
i=1

g(x2i−1)y(x2i−1)

)
= l (33)

Since y(0) = φ(0) in Eq. (2), Eq. (33) can be re-written as

−4εh

3

2N∑
i=1

g(x2i−1)y(x2i−1)

)
− 2εh

3

2N−1∑
i=1

g(x2i)y(x2i) +

(
1− εh

3
g(2)

)
y(2)

= l +
εh

3
g(0)φ(0).

(34)

Therefore, on the whole domain Ω̄ = [0, 2], the basic schemes to solve Eqs. (1)-(2) are
the schemes given in Eq. (27), Eq. (31) and Eq. (34).

5. Stability and Convergence Analysis

Theorem 5.1. (Stability) Let B be a coefficient matrix of the tri-diagonal system, Eq.(27).
Then, for all ε > 0 and sufficiently small h, the matrix B is an irreducible and diagonally
dominant matrix and hence the scheme is stable.
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Proof. Substituting Eq.(25) in Eq.(26) and multiplying both sides of the equation by h we
get the equivalent tri-diagonal scheme:{

pi
2

coth

(
piρi

2

)
− 3αpi−1

2
+ hαqi−1 − βpi +

αpi+1

2

}
yi−1

−
{
pi coth

(
piρi

2

)
− 2αpi−1 − 2hβqi + 2αpi+1

}
yi

+

{
pi
2

coth

(
piρi

2

)
+

3αpi+1

2
+ hαqi+1 + βpi −

αpi−1

2

}
yi+1

= h(α(Ri−1 +Ri+1) + 2βRi).

(35)

This can be written as

E∗i yi−1 − F ∗i yi +G∗i yi+1 = H∗i , i = 1, 2, ..., N − 1. (36)

where 

E∗i = pi
2 coth

(
piρi

2

)
− 3αpi−1

2 + hαqi−1 − βpi + αpi+1

2 ,

F ∗i = pi coth

(
piρi

2

)
− 2αpi−1 − 2hβqi + 2αpi+1,

G∗i = pi
2 coth

(
piρi

2

)
+ 3αpi+1

2 + hαqi+1 + βpi − αpi−1

2 ,

H∗i = h(α(Ri−1 +Ri+1) + 2βRi).

Rewriting Eq. (36) in a matrix vector form, we obtain

BY = C (37)

where, B is a coefficient matrix, Y = (y1, y2, ..., yN−1)T and C = (H∗1 − E∗1φ0, H
∗
2 −

E∗2φ1, ...,H
∗
N−1 − E∗N−1ϕ)T .

The matrix B is tri-diagonal matrix and its off-diagonal elements are E∗i and G∗i .
Now,

|E∗i +G∗i |=|pi coth

(
piρi

2

)
+ 2αpi+1 − 2αpi−1)|

=|pi coth

(
piρi

2

)
+ 2α(pi+1 − pi−1)|

≤|F ∗i |

This implies that for each row of B, the sum of the two off-diagonal elements is less than
the modulus of the diagonal element. Therefore, B is diagonally dominant.
Further, for sufficiently small h(i.e, h→ 0), we have, E∗i 6= 0 and G∗i 6= 0, ∀i = 1, 2, ..., N−
1. Hence, B is irreducible [27]. Therefore, from these two conditions, the scheme in (27)
is stable [16]. �

Theorem 5.2. (Convergence) Let y(x) be the analytical solution of the problem in Eq.
(8) and yN be the numerical solution of the discretized problem of Eq. (27). Then,
||y − yN ||≤ Ch2 for sufficiently small h and C is positive constant.

Proof. Multiplying both sides of Eq. (26) by −h
2

εσi
and simplifying, we obtain

(−1 + ui)yi−1 + (2 + vi)yi + (−1 + wi)yi+1 + gi + Ti = 0, (38)
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where 

ui = 1
εσi

(
3αhpi−1

2 − αh2qi−1 + βpih− αhpi+1

2

)
,

vi = 2
εσi

(
αhpi+1 − αhpi−1 − βh2qi

)
,

wi = 1
εσi

(
αhpi−1

2 − βpih− 3αhpi+1

2 − αh2qi+1

)
,

gi = −h2
εσi
{α(Ri−1 +Ri+1) + 2βRi},

and Ti = α(pi−1+pi+1)−4βpi
12εσi

h4y′′′(ξ) is a local truncation error for i = 1, 2, ..., N − 1.

Incorporating the boundary condition y0 = φ(x0) = φ0, yN = φ(1) = ϕ in Eq. (38), we
get the system of equation of the form

(D + P )y +M + T (h) = 0̄, (39)

where

D =


2 −1 0 . . . 0
−1 2 −1 . . . 0
0 − − 0
... −1
0 − − −1 2

 and P =


v1 w1 0 . . . 0
u2 v2 w2 . . . 0
0 − − 0
... wN−2

0 − − uN−1 uN−1

 are tri-diagonal

matrices of order N − 1, M = [(g1 + (−1 + u1)φ0, g2, g3, ..., (gN−1 + (−1 + wN−1)ϕ]T ,
T (h) = O(h4) and y = [y1, y2, ..., yN−1]T , T (h) = [T1, T2, ..., TN−1]T , 0̄ = [0, 0, ..., 0]T are
associated vectors of Eq. (39).
Let yN = [yN1 , y

N
2 , ..., y

N
N−1]T ∼= y be the solution which satisfies Eq. (39), we have

(D + P )yN +M = 0̄, (40)

Let ei = yi − yNi for i = 1, 2, ..., N − 1 be the discretization error then y − yN =
[e1, e2, ..., eN−1]T .
Subtracting Eq. (39) from Eq.(40), we get

(D + P )(yN − y) = T (h). (41)

Let |pi−1|≤ c1, |pi|≤ c2, |pi+1|≤ c3, |qi−1|≤ k1, |qi|≤ k2, |qi+1|≤ k3 and ti,j be the (i, j)th

element of the matrix P , then
|ti,i+1|= |wi| ≤ h

εσi

(
3αc1

2 + αhc2 + 3αc3
2 + αk3

)
, i = 1, 2, ..., N − 2,

|ti,i−1|= |ui| ≤ h
εσi

(
3αc1

2 + αhk2 + βc2 + αc3
2

)
, i = 2, 3, ..., N − 1.

Thus, for sufficiently small h, we have{
−1 + |ti,i+1|6= 0, i = 1, 2, ..., N − 2,

−1 + |ti,i−1|6= 0, i = 2, 3, ..., N − 1.
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Hence, the matrix (D + P ) is irreducible [27].
Let Ai be the sum of the elements of the ith row of the matrix (D + P ), then

Ai = 1 + vi + wi

= 1 + 2h
εσi

(
αpi+1 − αpi−1 + αpi−1

4 − βpi
2 −

3αpi+1

4

)
+O(h2), i = 1,

Ai = ui + vi + wi

= h2

εσi

(
− αqi−1 − βqi − αqi+1

)
, i = 2, 3, ...N − 2,

Ai = 1 + ui + vi

= 1 + 2h
εσi

(
3αpi+1

4 − αpi−1

4 + βpi
2

)
+O(h2), i = N − 1.

Let d1 = min
1≤i≤N−1

1
εσi

(−αqi−1 − 2βqi − αqi+1),

d2 = max
1≤i≤N−1

1
εσi

(−αqi−1 − 2βqi − αqi+1),

then, 0 ≤ d1 ≤ d2.
For sufficiently small h, (D + P ) is monotone [27] and [28]. Hence, (D + P )−1 exists and
(D + P )−1 ≥ 0.
From the error in Eq. (41), we have

||y − yN ||≤ ||(D + P )−1|| ||T (h)||. (42)

For sufficiently small h, we have Ai > h2d1, for i = 1, ..., N − 1,

where d1 = min1≤i≤N−1

(
1
εσi

(−αqi−1 − 2βqi − αqi+1)

)
.

Let (D + P )−1
i,k be the(i, k)th elements of (D + P )−1 and we define

||(D + P )−1||= max
1≤i≤N−1

ΣN−1
k=1 (D + P )−1

i,k and ||T (h)||= max
1≤i≤N−1

|Ti| (43)

Since (D + P )−1
i,k ≥ 0 from the theory of matrices, we have

ΣN−1
k=1 (D + P )−1

i,k .Ak = 1 for i = 1, 2, ..., N − 1.

Hence,

ΣN−1
k=1 (D + P )−1

i,kAk ≤
1

min
1≤i≤N−1

Ak
≤ 1

h2d1
. (44)

Now, from Eqs. (42)–(44), we get

||y − yN || ≤ 1

h2d1

∣∣∣∣(α(pi−1 + pi+1)− 4βpi
εσi

)
1

12
h4y′′′(ξ)

∣∣∣∣,
≤
(
y′′′(ξ)(4βpi + α(pi−1 + pi+1)

12d1σi

)
h2,

= Ch2,

where C = y′′′(ξ)(4βpi+α(pi−1+pi+1))
12d1σi

which is independent of mesh size h. This establishes
that the method is of second order uniform convergent. �
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6. Numerical Examples and Results

In this section, two examples are given to illustrate the numerical method discussed
above. The exact solutions of the test problems are not known. Therefore, we use the
double mesh principle to estimate the error and compute the experiment rate of conver-
gence to the computed solution. For this we put

Ehε = max
0≤i≤2N

|Y N
i − Y 2N

2i |, (45)

where Y N
i and Y 2N

2i are the ith components of the numerical solutions on meshes of N and
2N respectively. We compute the uniform error and the rate of convergence as

EN = max
ε
Ehε and RN = log2

(
EN

E2N

)
. (46)

The numerical results are presented for the values of the perturbation parameter ε ∈
{ 2−4, 2−8, ..., 2−32}.

Example 6.1. Consider the model singularly perturbed boundary value problem

−εy′′(x) + 3y′(x) + y(x)− y(x− 1) = 1 x ∈ (0, 1) ∪ (1, 2),

subject to the boundary conditions

y(x) = 1, x ∈ [−1, 0], y(2) = 2 +
ε

3

∫ 2

0
xy(x)dx.

Example 6.2. Consider the model singularly perturbed boundary value problem

−εy′′(x) + (1 + x)y′(x) + (x+ 10)y(x)− exy(x− 1) =
4

π2
x(1− x), x ∈ (0, 1) ∪ (1, 2),

subject to the boundary conditions

y(x) = 2 + x, x ∈ [−1, 0], y(2) = 2 +
ε

3

∫ 2

0
xex sin(x)y(x)dx.
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Figure 1. The behavior of the Numerical Solution for Example 6.1 and
Example 6.2 at ε = 10−12 and N = 32 respectively.
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Table 1. Maximum absolute errors and rate of convergence for Example
6.1 at different number of mesh points.

ε N=32 N=64 N=128 N=256 N=512
Present Method

2−4 3.8313e-03 1.1778e-03 3.2791e-04 8.6603e-05 2.2259e-05
2−8 5.1839e-03 2.7107e-03 1.4599e-04 6.6728e-04 2.4157e-05
2−12 5.1713e-03 2.5949e-03 1.2998e-03 6.5046e-04 3.2618e-04
2−16 5.1713e-03 2.5949e-03 1.2998e-03 6.5046e-04 3.2538e-04
2−20 5.1713e-03 2.5949e-03 1.2998e-03 6.5046e-04 3.2538e-04
2−24 5.1713e-03 2.5949e-03 1.2998e-03 6.5046e-04 3.2538e-04
2−28 5.1713e-03 2.5949e-03 1.2998e-03 6.5046e-04 3.2538e-04
2−32 5.1713e-03 2.5949e-03 1.2998e-03 6.5046e-04 3.2538e-04

EN 5.1713e-03 2.5949e-03 1.2998e-03 6.5046e-04 3.2538e-04
RN 0.9948 0.9974 0.9988 0.9993

Result in [17]
2−4 4.0400e-01 1.1900e-01 2.6200e-02 6.8300e-03 1.9400e-03
2−8 6.7100e-01 3.1700e-01 1.1800e-01 3.5100e-02 1.0000e-02
2−12 6.7000e-01 3.1800e-01 1.2100e-01 3.7300e-02 1.1300e-02
2−16 6.7000e-01 3.1700e-01 1.2000e-01 3.7300e-02 1.2500e-02
2−20 6.7000e-01 3.1700e-01 1.2000e-01 3.6900e-02 1.1700e-02
2−24 6.7000e-01 3.1700e-01 1.2000e-01 3.6900e-02 1.1600e-02
2−28 6.7000e-01 3.1700e-01 1.2000e-01 3.6900e-02 1.1600e-02
2−32 6.7000e-01 3.1700e-01 1.2000e-01 3.6900e-02 1.1600e-02

EN 6.7000e-01 3.1700e-01 1.2100e-01 3.7300e-02 1.2500e-02
RN 1.0818 1.3895 1.6978 1.5429
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Figure 2. Point wise absolute error of Example 6.1 and Example6.2 at
ε = 10−12 with different mesh point N respectively.

7. Discussion and Conclusion

This study introduces a fitted non-polynomial cubic spline method for singularly per-
turbed differential-difference equations with Integral boundary condition. The behavior of
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Table 2. Maximum absolute errors and rate of convergence for Example
6.2 at different number of mesh points.

ε N=32 N=64 N=128 N=256 N=512
Present Method

2−4 1.4188e-02 7.8640e-03 4.1253e-03 2.1109e-03 1.0675e-03
2−8 4.4111e-02 1.4909e-02 4.2638e-03 1.9668e-03 1.1364e-03
2−12 5.5346e-02 2.9454e-02 1.5214e-02 7.5267e-03 3.1077e-03
2−16 5.5346e-02 2.9454e-02 1.5221e-02 7.7407e-03 3.9043e-03
2−20 5.5346e-02 2.9454e-02 1.5221e-02 7.7407e-03 3.9043e-03
2−24 5.5346e-02 2.9454e-02 1.5221e-02 7.7407e-03 3.9043e-03
2−28 5.5346e-02 2.9454e-02 1.5221e-02 7.7407e-03 3.9043e-03
2−32 5.5346e-02 2.9454e-02 1.5221e-02 7.7407e-03 3.9043e-03

EN 5.5346e-02 2.9454e-02 1.5221e-02 7.7407e-03 3.9043e-03
RN 0.9100 0.9524 0.9755 0.9874

Result in [17]
2−4 6.6500e-01 1.7600e-01 3.5500e-02 7.7000e-03 1.5500e-03
2−8 8.7700e-01 4.1500e-01 1.5100e-01 4.1900e-02 1.2700e-02
2−12 8.8000e-01 4.1100e-01 1.5100e-01 4.3600e-02 1.2500e-02
2−16 8.8000e-01 4.1100e-01 1.5100e-01 4.3900e-02 1.2900e-02
2−20 8.8000e-01 4.1100e-01 1.5100e-01 4.3900e-02 1.2900e-02
2−24 8.8000e-01 4.1100e-01 1.5100e-01 4.3900e-02 1.2900e-02
2−28 8.8000e-01 4.1100e-01 1.5100e-01 4.3900e-02 1.2900e-02
2−32 8.8000e-01 4.1100e-01 1.5100e-01 4.3900e-02 1.2900e-02

EN 8.8000e-01 4.1100e-01 1.5100e-01 4.3900e-02 1.2900e-02
RN 1.0984 1.4446 1.7823 1.7668
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Figure 3. Uniform convergence with fitted operator in log-log scale for
Example 6.1 and Example 6.2 respectively.

the continuous solution of the problem is studied and shown that it satisfies the continu-
ous stability estimate and the derivatives of the solution are also bounded. The numerical
scheme is developed on uniform mesh using exponential fitted operator in the given dif-
ferential equation. The stability of the developed numerical method is established and its
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uniform convergence is proved. To validate the applicability of the method, two model
problems of (one variable coefficient and one constant coefficient) are considered for numer-
ical experimentation for different values of the perturbation parameter and mesh points.
The numerical results are tabulated in terms of maximum absolute errors, numerical rate
of convergence and uniform errors (see Tables 1-2). Further, behavior of the numerical
solution (Figure 1), point-wise absolute errors (Figure 2) and the uniform convergence of
the method is shown by the log-log plot (Figure 3 ). The method is shown to be uniformly
convergent with order of convergence O(h2). The performance of the proposed scheme is
investigated by comparing with prior study (see Table 1 and 2). The proposed method
gives more accurate, stable and uniform numerical result.
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