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SECOND HANKEL DETERMINANT FOR A CLASS OF ANALYTIC

FUNCTIONS OF THE MITTAG-LEFFLER-TYPE BOREL

DISTRIBUTION RELATED WITH LEGENDRE POLYNOMIALS

G. MURUGUSUNDARAMOORTHY1, S. M. EL-DEEB2∗, §

Abstract. In this paper, we obtain the Fekete-Szegö inequalities for the functions of
complex order connected with the Mittag-Leffler-type Borel distribution based upon
the Legendre polynomials. Also, find upper bounds of the second Hankel determinant∣∣a2a4 − a23∣∣ for functions belonging to the class Mη

γ (λ, α, β, x).
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1. Introduction

Denote A the family of analytic functions whose members are

f(z) = z +
∞∑
k=2

akz
k, (∆ = {z : |z| < 1, z ∈ C} (1)

with the normalization condition f(0) = 0 = f ′(0)− 1, and S be the subclass of A, which
are univalent functions. Furthermore, let P be the family of functions p(z) ∈ A

If f and g are analytic functions in ∆, we say that f is subordinate to g, written f ≺ g if
there exists a Schwarz function w, which is analytic in ∆ with w(0) = 0 and |w(z)| < 1 for
all z ∈ ∆, such that f(z) = g(w(z)). Furthermore, if the function g is univalent in ∆, then
we have the following equivalence (see [5] and [21]):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(∆) ⊂ g(∆).
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Let Eα(z) and Eα,β (z) be the function defined by

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, (z ∈ C,Re(α) > 0 ) (2)

and

Eα,β (z) =
1

Γ(β)
+
∞∑
k=1

zk

Γ (αk + β)
, (α, β ∈ C, < (α) > 0, < (β) > 0).

It can be written in other form

Eα,β (z) =
1

Γ(β)
+
∞∑
k=2

zk−1

Γ (α(k − 1) + β)
, (α, β ∈ C, < (α) > 0, < (β) > 0).

The function Eα(z) was introduced by Mittag-Leffler [24] and is, therefore, known as the
Mittag-Leffler function. A more general function Eα,β generalizing Eα(z) was introduced
by Wiman [29] and defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, (z, α, β ∈ C,Re(α) > 0, Re(β) > 0 ). (3)

Observe that the function Eα,β contains many well-known functions as its special case, for
example,
E1,1(z) = ez, E1,2(z) = ez−1

z , E2,1(z
2) = cosh z, E2,1(−z2) = cos z, E2,2(z

2) = sinh z
z ,

E2,2(−z2) = sin z
z ,E4(z) = 1

2 [cos z1/4+cosh z1/4] and E3(z) = 1
2 [ez

1/3
+2e−

1
2
z1/3 cos(

√
3
2 z

1/3)].
The Mittag-Leffler function arises naturally in the solution of fractional order differential
and integral equations, and especially in the investigations of fractional generalization of
kinetic equation, random walks, Lévy flights, super-diffusive transport and in the study
of complex systems. Several properties of Mittag-Leffler function and generalized Mittag-
Leffler function can be found e.g. in [2, 4, 12, 13, 14, 18]. Observe that Mittag-Leffler
function Eα,β(z) does not belong to the family A. Thus,it is natural to consider the fol-
lowing normalization of Mittag-Leffler functions as below :

Eα,β(z) = zΓ(β)Eα,β(z) = z +
∞∑
k=2

Γ(β)

Γ(α(k − 1) + β)
zk, (4)

it holds for complex parameters α, β and z ∈ C. In this paper,we shall restrict our attention
to the case of real-valued α, β and z ∈ ∆.

A discrete random variable x is said to have a Borel distribution if it takes the values
1, 2, 3, · · · with the probabilities e−λ

1! ,
2λe−2λ

2! , 9λ
2e−3λ

3! , · · · , respectively, where λ is called
the parameter.
Very recently, Wanas and Khuttar [28] introduced the Borel distribution (BD) whose
probability mass function is

P (x = ρ) =
(ρλ)ρ−1 e−λρ

ρ!
, ρ = 1, 2, 3, · · · .

Wanas and Khuttar introduced a seriesM(λ; z) whose coefficients are probabilities of the
Borel distribution (BD)

M(λ; z) = z +

∞∑
k=2

[λ (k − 1)]k−2 e−λ(k−1)

(k − 1)!
zk, (0 < λ ≤ 1) . (5)
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The probability mass function of the Mittag-Leffler-type Borel distribution is given by

P (λ, α, β; ρ) =
(λρ)ρ−1

Eα,β (λρ) Γ (αρ+ β)
, ρ = 0, 1, 2, · · · ,

where

Eα,β (z) =
∞∑
k=0

zk

Γ (αk + β)
, (α, β ∈ C, < (α) > 0, < (β) > 0).

Thus by using(4) and (5) and by convolution operator, we define the Mittag-Leffler-type
Borel distribution series as below

B (λ, α, β) = z +

∞∑
k=2

(λ (k − 1))! [λ (k − 1)]k−2 e−λ(k−1)

(k − 1)!Eα,β (λ (k − 1)) Γ (α (k − 1) + β)
zk, (0 < λ ≤ 1) .

Next, we introduce the convolution operator

B (λ, α, β) f(z) = z +
∞∑
k=2

(λ (k − 1))! [λ (k − 1)]k−2 e−λ(k−1)

(k − 1)!Eα,β (λ (k − 1)) Γ (α (k − 1) + β)
akz

k,

= z +
∞∑
k=2

φkakz
k, (6)

where α, β ∈ C, < (α) > 0, < (β) > 0, 0 < λ ≤ 1 and

φk =
(λ (k − 1))! [λ (k − 1)]k−2 e−λ(k−1)

(k − 1)!Eα,β (λ (k − 1)) Γ (α (k − 1) + β)
. (7)

Legendre polynomials, which are exceptional cases of Legendre functions, are familiarized
in 1784 by the French mathematician A. M. Legendre (1752-1833). Legendre functions are
a vital and important in problems including spherical coordinates. As well, the Legendre
polynomials, Pk(x), (|x| < 1) , are designated via the following generating function(see
[19]) :

G(x, z) =
1√

1− 2xz + z2
=

∞∑
k=0

Pk(x)zk. (8)

Legendre polynomials are the everywhere regular solutions of Legendre’s differential equa-
tion that we can write as follows:

(1− x2) d
2

dx2
Pk(x)− 2x

d

dx
Pk(x) +mPk(x) = 0

where m = k(k + 1) and k = 0, 1, 2, · · · . Taking x = 1 in (8) and by using geometric
series, we see that Pk(1) = 1, so that the Legendre polynomials are normalized.Thus Let
G(x, z) denote the class of analytic functions on U which are normalized by the conditions
G(x, 0) = 0 and G′(x, 0) = 1.

Definition 1.1. Let Pk(x) is Legendre polynomials of the first kind of order k = 0, 1, 2, · · · ,
the recurrence formula is

Pk+1(x) =
2k + 1

k + 1
xPk(x)− k

k + 1
Pk−1(x), (9)

with

P0(x) = 1 and P1(x) = x.
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In 1976, Noonan and Thomas [26] discussed the qth Hankel determinant of a locally
univalent analytic function f(z) for q ≥ 1 and n ≥ 1 which is defined by

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q

...
...

...
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ .
For our present discussion, we consider the Hankel determinant in the case q = 2 and
n = 2, i.e. H2(2) = a2a4 − a23. This is popularly known as the second Hankel determinant
of f.
Stimulated by the recent works on radii problems for some classes of analytic functions
and coefficient results associated with Legendre polynomials in the articles[6, 8, 9],in this
paper we define a new classMη

γ (λ, α, β, x) given in Definition 1.2.Based on Earlier works
on sharp upper bounds of H2(2) for different classes of analytic functions(see[1, 3, 10, 11,
16, 22, 23, 25])we investigate the Fekete-Szegö inequalities for the functions in the class.
We also obtain an upper bound to the functional H2(2) for f ∈Mη

γ (λ, α, β, x) .

Now, we define the following class Mη
γ (λ, α, β, x) (0 ≤ γ ≤ 1, η ∈ C∗ = C\{0}, α, β ∈

C, < (α) > 0, < (β) > 0, 0 < λ ≤ 1, |x| < 1) as follows:

Definition 1.2. Let a function f(z) ∈ A is said to be in the class Mη
γ (λ, α, β, x) if

1 +
1

η

(
(1− γ) B(λ,α,β)f(z)z + γ (B (λ, α, β) f(z))′ − 1

)
≺ G(x, z) (10)

where η ∈ C∗; 0 ≤ γ ≤ 1; 0 < λ ≤ 1; |x| < 1; z ∈ ∆.

Example 1.1. Let a function f(z) ∈ A is said to be in the classMη
0 (α, β, x) ≡ N η (α, β, x)

if

1 +
1

η

(
B(λ,α,β)f(z)

z − 1
)
≺ G(x, z) (11)

where η ∈ C∗; 0 < λ ≤ 1; |x| < 1; z ∈ ∆.

Example 1.2. Let a function f(z) ∈ A is said to be in the class Mη
1 (λ, α, β, x) ≡

Rη (α, β, x) if

1 +
1

η

(
(B (λ, α, β) f(z))′ − 1

)
≺ G(x, z) (12)

where η ∈ C∗; 0 < λ ≤ 1; |x| < 1; z ∈ ∆.

Example 1.3. Let a function f(z) ∈ A is said to be in the classM1
0 (α, β, x) ≡ N (α, β, x)

if (
B(λ,α,β)f(z)

z

)
≺ G(x, z) (13)

where 0 < λ ≤ 1; |x| < 1; z ∈ ∆.

Example 1.4. Let a function f(z) ∈ A is said to be in the class M1
1 (λ, α, β, x) ≡

R (α, β, x) if

(B (λ, α, β) f(z))′ ≺ G(x, z) (14)

where 0 < λ ≤ 1; |x| < 1; z ∈ ∆.
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2. Preliminary Results

To prove our results, we need the following lemmas.

Lemma 2.1. [27] Let

h(z) = 1 +

∞∑
n=1

cnz
n ≺ 1 +

∞∑
n=1

Cnz
n = H(z) (z ∈ ∆). (15)

If the function H is univalent in ∆ and H(∆) is a convex set, then

|cn| ≤ |C1| . (16)

Lemma 2.2. [7] Let a function p ∈ P be given by

p(z) = 1 + c1z + c2z
2 + .... (z ∈ ∆), (17)

then, we have

|cn| ≤ 2 (n ∈ N). (18)

The result is sharp.

Lemma 2.3. [17, 20] Let p ∈ P be given by the power series (17), then for any complex
number ν, then ∣∣c2 − νc21∣∣ ≤ 2 max{1; |2ν − 1|}. (19)

The result is sharp for the functions given by

p(z) =
1 + z2

1− z2
and p(z) =

1 + z

1− z
(z ∈ ∆).

Lemma 2.4. [15].Let a function p ∈ P be given by the power series (17), then

2c2 = c21 + κ(4− c21) (20)

for some κ, |κ| ≤ 1, and

4c3 = c31 + 2(4− c21)c1κ− c1(4− c21)κ2 + 2(4− c21)
(

1− |κ|2
)
z, (21)

for some z, |z| ≤ 1.

Lemma 2.5. [15] The power series for p(z) given in (17) converges in ∆ to a function
in P if and only if the Toeplitz determinants

Dn =

∣∣∣∣∣∣∣∣∣
2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

∣∣∣∣∣∣∣∣∣ , n = 1, 2, 3, · · · (22)

and c−k = ck, are all nonnegative. They are strictly positive except for

p(z) =
m∑
k=1

ρkp0(e
itkz), ρk > 0, tk real

and tk 6= tj for k 6= j in this case Dn > 0 for n < m− 1 and Dn = 0 for n ≥ m.



1252 TWMS J. APP. AND ENG. MATH. V.12, N.4, 2022

3. Main results

Unless otherwise mentioned, we shall assume in the reminder of this paper that η ∈
C∗, α, β ∈ C, < (α) > 0, < (β) > 0, 0 ≤ γ ≤ 1, 0 < λ ≤ 1, |x| < 1 and z ∈ ∆, the powers
are understood as principle values.

We give the following result related to the coefficient of f(z) ∈Mη
γ (λ, α, β, x)

Theorem 3.1. Let f(z) given by (1) belongs to the class Mη
γ (λ, α, β, x) and η ∈ C∗,

then

|ak| ≤
|ηx| (k − 1)!Eα,β (λ (k − 1)) Γ (α (k − 1) + β)

[1 + γ (k − 1)] (λ (k − 1))! [λ (k − 1)]k−2 e−λ(k−1)
, (k ∈ N \ {1}) . (23)

Proof. If f(z) of the form (1) belongs to the class Mη
γ (λ, α, β, x) , then

1 +
1

η

(
(1− γ) B(λ,α,β)f(z)z + γ (B (λ, α, β) f(z))

′
− 1
)
≺ G(x, z)

whereη ∈ C∗, 0 ≤ γ ≤ 1, 0 < λ ≤ 1, |x| < 1, z ∈ ∆, and G(x, z) is convex univalent in
∆, we have

1 +
1

η

(
(1− γ) B(λ,α,β)f(z)z + γ (B (λ, α, β) f(z))

′
− 1
)

= 1 +
1

η

∞∑
k=2

(1 + kγ − γ)φkakz
k−1

= 1 +
1

η

∞∑
k=2

(1 + kγ − γ)
(λ (k − 1))! [λ (k − 1)]k−2 e−λ(k−1)

(k − 1)!Eα,β (λ (k − 1)) Γ (α (k − 1) + β)
akz

k−1

= 1 +

∞∑
k=1

(1 + kγ)

η

(λk)! [λk]k−1 e−λk

k!Eα,β (λk) Γ (αk + β)
ak+1z

k.

By Definition 1.2, we get

1 +
∞∑
k=1

(1 + kγ)

η

(λk)! [λk]k−1 e−λk

k!Eα,β (λk) Γ (αk + β)
ak+1z

k

≺ 1 + xz − 1

2
(3x2 − 1)z2 +

1

2
(5x3 − 3x)z3 + · · · (z ∈ ∆) . (24)

Now, by applying Lemma 2.1, we get

|ak+1| ≤
|xη|

(1 + kγ)

k!Eα,β (λk) Γ (αk + β)

(λk)! [λk]k−1 e−λk
.

This completes the proof of Theorem 3.1.
�

In the next two theorems, we obtain the result concerning Fekete-Szego inequality and
upper bound of Hankel determinant for the class Mη

γ (λ, α, β, x) .

Theorem 3.2. Let f(z) given by (1) belongs to the class Mη
γ (λ, α, β, x) , 0 ≤ γ ≤

1, −1 ≤ B < A ≤ 1 and η ∈ C∗, then∣∣a3 − µa22∣∣ ≤
|ηx|Eα,β (2λ) Γ (2α+ β)

λ (1 + 2γ) (2λ)!e−2λ

× max

{
1,

∣∣∣∣∣ 1

2x
− 3

2
x+

µηλx (1 + 2γ) (2λ)!E2
α,β (λ) Γ2 (α+ β)

2 (1 + γ)2 (λ!)2Eα,β (2λ) Γ (2α+ β)

∣∣∣∣∣
}
.(25)
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This result is sharp.

Proof. Let f(z) ∈Mη
γ (λ, α, β, x) , then there is a Schwarz function w(z) in ∆ with w(0) =

0 and |w(z)| < 1 in ∆ and such that

1 +
1

η

(
(1− γ) B(λ,α,β)f(z)z + γ (B (λ, α, β) f(z))

′
− 1
)

= Φ(w(z)) (z ∈ ∆), (26)

where

Φ(z) =
1√

1− 2xz + z2
= 1 + xz +

1

2
(3x2 − 1)z2 +

1

2
(5x3 − 3x)z3 + · · · , (27)

= 1 + P1 (x) z + P2 (x) z2 + P3 (x) z3 + P4 (x) z4 + · · · (z ∈ ∆).

If the function p1(z) is analytic and has positive real part in ∆ and p1(0) = 1, then

p1(z) =
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + c3z
3 + · · · (z ∈ ∆). (28)

Since w(z) is a Schwarz function. Define

h(z) = 1 +
1

η

(
(1− γ) B(λ,α,β)f(z)z + γ (B (λ, α, β) f(z))

′
− 1
)

= 1 + d1z + d2z
2 + d3z

3 + · · · (z ∈ ∆). (29)

In view of the equations (26) and (28), we have

p(z) = Φ

(
p1(z)− 1

p1(z) + 1

)
.

p1(z)− 1

p1(z) + 1
=

1

2

[
c1z +

(
c2 −

c21
2

)
z2 +

(
c3 +

c31
4
− c1c2

)
z3 + · · ·

]
. (30)

Therefore, we have

Φ

(
p1(z)− 1

p1(z) + 1

)
= 1 +

1

2
P1 (x) c1z +

[
1

2
P1 (x)

(
c2 −

c21
2

)
+

1

4
P2 (x) c21

]
z2

+

(
P1 (x)

2

(
c3 − c1c2 +

c31
4

)
+
P2 (x) c1

2

(
c2 −

c21
2

)
+
P3 (x) c31

8

)
z3 + · · · ,

(31)

and from this equation and (29), we obtain

d1 =
1

2
P1 (x) c1, d2 =

1

2
P1 (x)

(
c2 −

c21
2

)
+

1

4
P2 (x) c21. (32)

Sinceand

d3 =
P1 (x)

2

(
c3 − c1c2 +

c31
4

)
+
P2 (x) c1

2

(
c2 −

c21
2

)
+
P3 (x) c31

8
. (33)

Then, from (27), we see that

d1 =
(1 + γ)λ!e−λa2

ηEα,β (λ) Γ (α+ β)
, (34)

d2 =
λ (1 + 2γ) (2λ)!e−2λa3
ηEα,β (2λ) Γ (2α+ β)

, (35)
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and

d3 =
3λ2 (1 + 3γ) (3λ)!e−3λa4
2ηEα,β (3λ) Γ (3α+ β)

(36)

Now from (27),(29) and (34), we have the following

a2 =
ηxEα,β (λ) Γ (α+ β) c1

2 (1 + γ)λ!e−λ
, (37)

Thus by Lemma 2.2

|a2| ≤
|ηx|Eα,β (λ) Γ (α+ β)

(1 + γ)λ!e−λ
.

Now

a3 =
ηxEα,β (2λ) Γ (2α+ β)

4λ (1 + 2γ) (2λ)!e−2λ

{
2c2 − c21

(
2x+ 1

2x
− 3

2
x

)}
=

ηxEα,β (2λ) Γ (2α+ β)

2λ (1 + 2γ) (2λ)!e−2λ

{
c2 −

c21
2

(
2x+ 1

2x
− 3

2
x

)}
, (38)

thus by Lemma 2.3, we have
∣∣c2 − νc21∣∣ ≤ max{1; |2ν − 1|}, thus

|a3| ≤
|ηx|Eα,β (2λ) Γ (2α+ β)

2λ (1 + 2γ) (2λ)!e−2λ
max{1; |2ν − 1|}

where ν = 1
2

(
2x+1
2x −

3
2x
)

Hence

|a3| ≤
|ηx|Eα,β (2λ) Γ (2α+ β)

2λ (1 + 2γ) (2λ)!e−2λ
max{1;

∣∣∣∣ 1

2x
− 3

2
x

∣∣∣∣}.
Now we note that

a4 =
ηxEα,β (3λ) Γ (3α+ β)

24λ2 (1 + 3γ) (3λ)!e−3λ
{

8xc3 + 4c1c2
(
3x2 − 2x− 1

)
+ c31(5x

3 − 6x2 − x+ 2)
}
.

(39)
Therefore, we have

a3 − µa22 =
ηxEα,β (2λ) Γ (2α+ β)

2λ (1 + 2γ) (2λ)!e−2λ
{
c2 − νc21

}
, (40)

where

ν =
1

2

[
2x+ 1

2x
− 3

2
x+

µηλx (1 + 2γ) (2λ)!E2
α,β (λ) Γ2 (α+ β)

2 (1 + γ)2 (λ!)2Eα,β (2λ) Γ (2α+ β)

]
. (41)

Our result now follows by an application of Lemma 2.3.This completes the proof of The-
orem 3.2.
The result is sharp for the functions

1 +
1

η

(
(1− γ) B(λ,α,β)f(z)z + γ (B (λ, α, β) f(z))

′
− 1
)

= Φ(z2)

Φ(z2) =
1√

1− 2xz2 + z4
= 1 + xz2 +

1

2
(3x2 − 1)z4 +

1

2
(5x3 − 3x)z6 + · · · ,

= 1 + P1 (x) z2 + P2 (x) z4 + P3 (x) z6 + P4 (x) z8 + · · · (z ∈ ∆).

Here d1 = 0⇒ a2 = 0, also we get c1 = 0 and

d2 = P1(x)⇒ a3 =
ηxEα,β (2λ) Γ (2α+ β)

λ (1 + 2γ) (2λ)!e−2λ
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Thus by (40)

|a3 − µa22| ≤
|ηx|Eα,β (2λ) Γ (2α+ β)

λ (1 + 2γ) (2λ)!e−2λ
.

Actually this is |a3|, hence the result is sharp for w(z) = z2 which is Φ(z2). �

Theorem 3.3. If f(z) ∈Mη
γ (λ, α, β, x) , then

|a2a4 − a23| ≤
(
ηxEα,β (2λ) Γ (2α+ β)

λ (1 + 2γ) (2λ)!e−2λ

)2

. (42)

Proof. Since f(z) ∈Mη
γ (λ, α, β, x) , and, from (37),(38) (39), it can be established that

|a2a4 − a23| =
1

48λ2 (1 + γ) (1 + 3γ)λ! (3λ)!e−4λ

×
∣∣∣ η2x2Eα,β (λ) Γ (α+ β)Eα,β (3λ) Γ (3α+ β) c1{

8xc3 + 4c1c2
(
3x2 − 2x− 1

)
+ c31(5x

3 − 6x2 − x+ 2)
}

−
(
ηxEα,β (2λ) Γ (2α+ β)

4λ (1 + 2γ) (2λ)!e−2λ

{
2c2 − c21

(
2x+ 1

2x
− 3

2
x

)})2
∣∣∣∣∣ . (43)

For the sake of brevity we consider

M =
η2x2Eα,β (λ)Eα,β (3λ) Γ (α+ β) Γ (3α+ β)

48λ2 (1 + γ) (1 + 3γ)λ! (3λ)!e−4λ
> 0, (44)

and

N =

(
ηxEα,β (2λ) Γ (2α+ β)

4λ (1 + 2γ) (2λ)!e−2λ

)2

> 0. (45)

Thus, we have

|a2a4 − a23| =
∣∣Mc1

{
8xc3 + 4c1c2

(
3x2 − 2x− 1

)
+ c31(5x

3 − 6x2 − x+ 2)
}

−N
(

2c2 − c21
(

2x+ 1

2x
− 3

2
x

))2
∣∣∣∣∣ . (46)

Suppose c1 = c and c ∈ [0, 2]. We make use of Lemma 2.5 to obtain the proper bound on
(43). We may assume without restriction that c1 > 0. We begin by rewriting (22) for the
cases n = 2 and n = 3,

D2 =

∣∣∣∣∣∣
2 c1 c2
c1 2 c1
c2 c1 2

∣∣∣∣∣∣ = 8 + 2Re {c21c2} − 2|c2|2 − 4c21 ≥ 0, (47)

which is equivalent to

2c2 = c21 + κ(4− c21) (48)

for some x, |x| ≤ 1. Then D3 ≥ 0 is equivalent to

| (4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)2 | ≤ 2(4− c21)2 − 2|2c2 − c21|2 (49)

and from (20) with (49), we have,

4c3 = c31 + 2(4− c21)c1κ− c1(4− c21)κ2 + 2(4− c21)(1− |κ|2)z, (50)
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for some value of z, |z| ≤ 1. Using (48) along with (50) , (49) we obtain

|a2a4 − a23| =
∣∣M {

8xc1c3 + 4c21c2
(
3x2 − 2x− 1

)
+ c41(5x

3 − 6x2 − x+ 2)
}

− N

(
2c2 − c21

(
2x+ 1

2x
− 3

2
x

))2
∣∣∣∣∣

≤
∣∣M {

8xc1c3 + 4c21c2
(
3x2 − 2x− 1

)
+ c41(5x

3 − 6x2 − x+ 2)
}∣∣

+
∣∣N(2c2 − c21(2x+1

2x −
3
2x))2

∣∣ .
By using Lemma 2.4, we have

|a2a4 − a23| ≤ M
∣∣c4 (5x3 − 3x

)
− 2x

(
4− c2

)
c2χ2 + 2

(
4− c2

) (
3x2 − 1

)
c2χ

+ 4cx
(
4− c2

) (
1− |χ|2

)
z
∣∣∣+

N

∣∣∣∣∣(4− c2)2 χ2 − 2c2χ
(
4− c2

)(1− 3x2

2x

)
+ c4

(
1− 3x2

2x

)2
∣∣∣∣∣

≤ M
[
c4
(
5x3 − 3x

)
− 2x

(
4− c2

)
c2ρ2 + 2

(
4− c2

) (
3x2 − 1

)
c2ρ

+ 4cx
(
4− c2

) (
1− ρ2

)]
+

N

[(
4− c2

)2
ρ2 − 2c2ρ

(
4− c2

)(1− 3x2

2x

)
+ c4

(
1− 3x2

2x

)2
]

= F (ρ, c) , (51)

where ρ = |χ| ≤ 1 and |z| < 1. We assume that the upper bound for (54) is attained at
an interior point of the set {(ρ, c) : ρ ∈ [0, 1] , c ∈ [0, 2]} , then

∂F (ρ, c)

∂ρ
= M

[
−4x

(
4− c2

)
c2ρ+ 2

(
4− c2

) (
3x2 − 1

)
c2 − 8cxρ

(
4− c2

)]
+

N
[
2ρ
(
4− c2

)2 − 2c2
(
4− c2

) (
1−3x2
2x

)]
. (52)

We note that ∂F(ρ,c)
∂ρ > 0 and consequently F is increasing and max F(ρ, c) = F(1, c),

which contradicts our assumption of having the maximum value at the interior of ρ ∈ [0, 1].
Now let

G (c) = F (1, c) = M
[
c4
(
5x3 − 3x

)
− 2x

(
4− c2

)
c2 + 2

(
4− c2

) (
3x2 − 1

)
c2
]

+

N

[(
4− c2

)2 − 2c2
(
4− c2

)(1− 3x2

2x

)
+ c4

(
1− 3x2

2x

)2
]

= M
[
c4
(
5x3 − 6x2 − x+ 2

)
+ 8c2

(
3x2 − x− 1

)]
+

N

[
c4
(

1 + 1−3x2
2x

)2
− 8c2

(
1 + 1−3x2

2x

)
+ 16

]
, (53)

then

G′ (c) = M
[
4c3
(
5x3 − 6x2 − x+ 2

)
+ 16c

(
3x2 − x− 1

)]
+

N

[
4c3
(

1 + 1−3x2
2x

)2
− 16c

(
1 + 1−3x2

2x

)]
= 0, (54)
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therefore (54) implies c = 0, which is a contradiction. We note that

G′′ (c) = M
[
12c2

(
5x3 − 3x2 − x+ 1

)
+ 16

(
3x2 − x− 1

)]
+

N

[
12c2

(
1 + 1−3x2

2x

)2
− 16

(
1 + 1−3x2

2x

)]
< 0. (55)

Thus any maximum points of G must be on the boundary of c ∈ [0, 2]. However, G(c) ≥
G(2) and thus G has maximum value at c = 0. The upper bound for (51) corresponds
to ρ = 1 and c = 0, in which case we get

|a2a4 − a23| ≤ 16N =

(
ηxEα,β (2λ) Γ (2α+ β)

λ (1 + 2γ) (2λ)!e−2λ

)2

,

this completes the proof Theorem 3.3.
�

Remark 3.1. By specializing the parameters γ = 0 and γ = 1 one can derive the coef-
ficient estimate, Fekete-Szegö inequalities and second Hankel determinant inequalities as
in Theorems 3.1, 3.2,and 3.3 respectively for the various other new interesting subclasses
of A stated in Example 1.1 to 1.4. The details involved may be left as an exercise for the
interested reader.

Acknowledgement We record our sincere thanks to the referees for their valuable
suggestions to state the results in present form.

References

[1] Abubaker A., Darus, M., (2011), Hankel Determinant for a class of analytic functions involving a
generalized linear differential operator, Internat. J. Pure and Applied Math., 69, (3), pp. 429-435.

[2] Attiya A., (2016), Some Applications of Mittag-Leffler Function in the Unit Disk, Filomat, 30, (7),
pp. 2075-2081.

[3] Bansal D., (2012), Upper bound of second Hankel determinant for a new class of analytic functions,
Appl. Math. Letters, doi:10.1016/j.aml.2012.04.002.

[4] Bansal D., Prajapat, J. K., (2016), Certain geometric properties of the Mittag-Leffler functions,
Complex Var. Elliptic Equ., 61, (3), pp. 338-350.

[5] Bulboaca T., (2005), Differential Subordinations and Superordinations, Recent Results, House of
Scientific Book Publ., Cluj-Napoca.

[6] Bulut S., Engel, O., (2019), The radius of starlikeness, convexity and uniform convexity of the Legendre
polynomials of odd degree, Results Math, 74:48, https://doi.org/10.1007/s00025-019-0975-1.

[7] Duren, P. L., (1983), Univalent Functions, vol. 259 of Grundlehren der Mathematischen Wis-
senschaften, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo.

[8] Ebadian A., Cho N.E., Adegani E.A., Bulut S., Bulboaca T., (2020), Radii problems for
some classes of analytic functions associated with Legendre polynomials of odd degree,JIA
178,https://doi.org/10.1186/s13660-020-02443-4.

[9] El-Deeb S. M., El-Matary B. M., (2020), New subclasses of bi-univalent functions connected
with aq− analogue of convolution Bbased upon the Legendre polynomials, Stud.Univ.Babeş-Bolyai
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