TWMS J. App. and Eng. Math. V.12, N.4, 2022, pp. 1271-1282

CUBIC (1,2)-IDEALS ON SEMIGROUPS

THITI GAKETEM¹, §

ABSTRACT. In this paper we introduce the concept of cubic (1, 2)-ideals on semigroups and we study basic properties of cubic (1, 2)-ideals. In particular, we find condition cubic bi-ideal is cubic (1, 2)-ideal coincide. Finally we can show that the images or inverse images of a cubic (1, 2)-ideal of a semigroup become a cubic (1, 2)-ideal.

Keywords: Cubic set, Cubic ideal, Cubic (1,2)-ideal, Cubic bi-ideal.

AMS Subject Classification: 16Y60, 08A72, 03G25, 03E72.

1. INTRODUCTION

A semigroup is an algebraic structure consisting of a non-empty set S together with an associative binary operation. Semigroups are important in many areas of mathematics, for example, coding and language theory, automata theory, combinatorics and mathematical analysis.

In 1965, Zadeh [24] introduced the concept of fuzzy sets. Since fuzzy set has been applied to many branches in mathematics. The fuzzification of algebraic structures was initiated by Rosenfeld [14], and he introduced the notion of fuzzy subgroups. In 1981, Kuroki [8] introduced and studied the concepts of fuzzy ideal and fuzzy bi-ideals on semigroups. In 1975, the concept of interval valued fuzzy sets was introduced by Zadeh [25], as a generalization of the notion of fuzzy sets. In 2006, Narayanan and Manikanran [13] initiated the notion of interval valued fuzzy ideal in semigroup. In 2012, Jun et al. [5] introduced a new notion, called a cubic set, and investigated several properties and introduced cubic subsemigroups and cubic left (right) ideals of semigroups. In 2015 Sadaf et al. [15], discussed cubic bi-ideal of a semigroup. Recently, Khamrod and Deetae [7] studied Q-cubic bi-quasi ideals of semigroups. Moreover, the concept of cubic sets has been discussed in other research and fields such as cubic soft ideals in BCK/BCI-algebras [6], cubic soft sets with applications in BCK/BCI-algebras [9], subalgebras of BCK/BCI-Algebras based on cubic soft sets [10], stable cubic sets [11], cubic intuitionistic structures applied to ideals of BCI-algebras [16], neutrosophic cubic set theory applied to UP-algebras [22], and the concept of cubic sets is more relevant in mathematics [17, 20, 21].

¹ Department of Mathematics, School of Science, University of Phayao, Phayao, 56000-Thailand. e-mail: newtonisaac41@yahoo.com; ORCID: https://orcid.org/0000-0002-6267-8517.

[§] Manuscript received: August 29, 2020; accepted: February 25, 2021.

TWMS Journal of Applied and Engineering Mathematics, Vol.12, No.4 © Işık University, Department of Mathematics, 2022; all rights reserved.

In this paper we have studied the concept study cubic (1, 2)-ideal of a semigroup and we study basic properties of cubic (1, 2)-ideal and study the cubic bi-ideal is a cubic (1, 2)ideal coincidence. Furthermore we can show that the images or inverse images of a cubic (1, 2)-ideal of a semigroup become a cubic (1, 2)-ideal.

2. Preliminaries

In this topic, we review some definitions and results which are used in the next section.

A semigroup S is said to be *regular* if for each element $a \in S$, there exists an element $x \in S$ such that a = axa. A non-empty subset A of a semigroup S is a subsemigroup of S if it $A^2 \subseteq A$. A non-empty subset A of a semigroup S is called a left(right) ideal of S if $SA \subseteq A(AS \subseteq A)$. An ideal A of S is a nonempty subset which is both a left ideal and a right ideal of S. A non-empty subset K of a semigroup S is called a *generalized bi-ideal* of S if $KSK \subseteq K$. A subsemigroup A of a semigroup S is called a *bi-ideal* of S if $ASA \subseteq A$. A subsemigroup A of S is called a (1, 2)-ideal of S if $ASA^2 \subseteq A$. We note here that every bi-ideal of a semigroup S is a (1, 2)-ideal of S [12].

Definition 2.1. [24] A fuzzy subset f of a non-empty subset T is a function $T \to [0, 1]$.

For any $\eta_1, \eta_2 \in [0, 1]$, we have

 $\eta_1 \lor \eta_2 = \max\{\eta_1, \eta_2\} \text{ and } \eta_1 \land \eta_2 = \min\{\eta_1, \eta_2\}.$

More generally, if $\{\eta_i : i \in \mathcal{J}\}$ is a collection of fuzzy sets of T, then

$$\bigvee_{i\in\mathcal{J}}\eta_i:=\sup_{i\in\mathcal{J}}\{\eta_i\} \quad ext{and} \quad \mathop{\wedge}_{i\in\mathcal{J}}\eta_i:=\inf_{i\in\mathcal{J}}\{\eta_i\}.$$

Definition 2.2. [12] Let S be a semigroup. A fuzzy subset f of S is said to be

- (1) a fuzzy subsemigroup of S if $f(uv) \ge f(u) \land f(v)$, for all $u, v \in S$,
- (2) a fuzzy left(right) ideal of S if $f(uv) \ge f(v)(f(uv) \ge f(u))$, for all $u, v \in S$,
- (3) a fuzzy ideal of S if it is a fuzzy left ideal and a fuzzy right ideal of S,
- (4) a fuzzy generalized bi-ideal of S if $f(uvw) \ge f(u) \land f(w)$ for all $u, v, w \in S$,
- (5) a fuzzy bi-ideal of S if if f is a fuzzy subsemigroup of S and $f(uvw) \ge f(u) \land f(w)$ for all $u, v, w \in S$,
- (6) a fuzzy (1,2)-ideal of S if f is a fuzzy subsemigroup of S and $f(ua(vw)) \ge f(u) \land f(v) \land f(w)$ for all $u, a, v, w \in S$.

Suppose C[0,1] to denote the set of all closed subintervals of [0,1], i.e.,

$$C[0,1] = \{\overline{\eta} = [\eta^-, \eta^+] \mid 0 \le \eta^- \le \eta^+ \le 1\}.$$

Note that $[\eta, \eta] = \{\eta\}$ for all $\eta \in [0, 1]$. For $\eta = 0$ or 1 we shall denote [0, 0] by $\overline{0}$ and [1, 1] by $\overline{1}$.

Definition 2.3. [23] For each interval $\overline{\eta} = [\eta^-, \eta^+]$ and $\overline{\vartheta} = [\vartheta^-, \vartheta^+]$ in C[0, 1], define the operations " \succeq ", " \preceq ", "=", " λ " " Υ as follows:

(1) $\overline{\eta} \succeq \overline{\vartheta}$ if and only if $\eta^- \ge \vartheta^-$ and $\eta^+ \ge \vartheta^+$, (2) $\overline{\eta} \preceq \overline{\vartheta}$ if and only if $\eta^- \le \vartheta^-$ and $\eta^+ \le \vartheta^+$, (3) $\overline{\eta} = \overline{\vartheta}$ if and only if $\eta^- = \vartheta^-$ and $\eta^+ = \vartheta^+$, (4) $\overline{\eta} \land \overline{b} = [(\eta^- \land \vartheta^-), (\eta^+ \land \vartheta^+)],$ (5) $\overline{\eta} \lor \overline{b} = [(\eta^- \lor \vartheta^-), (\eta^+ \lor \vartheta^+)].$ We write $\overline{\eta} \succeq \overline{\vartheta}$ whenever $\overline{\vartheta} \preceq \overline{\eta}.$ (1) $\overline{\eta} \downarrow \overline{\eta} = \overline{\eta} \text{ and } \overline{\eta} \curlyvee \overline{\eta} = \overline{\eta},$

- (2) $\overline{\eta} \downarrow \overline{\vartheta} = \overline{\vartheta} \downarrow \overline{\eta} \text{ and } \overline{\eta} \curlyvee \overline{\vartheta} = \overline{\vartheta} \curlyvee \overline{\eta},$
- (3) $(\overline{\eta} \land \overline{\vartheta}) \land \overline{\omega} = \overline{\eta} \land (\overline{\vartheta} \land \overline{\omega}) \text{ and } (\overline{\eta} \land \overline{\vartheta}) \land \overline{\omega} = \overline{\eta} \land (\overline{\vartheta} \land \overline{\omega}),$
- (4) $(\overline{\eta} \land \overline{\vartheta}) \land \overline{\omega} = (\overline{\eta} \land \overline{\omega}) \land (\overline{\vartheta} \land \overline{r}) and (\overline{\eta} \land \overline{\vartheta}) \land \overline{\omega} = (\overline{\eta} \land \overline{\omega}) \land (\overline{\vartheta} \land \overline{\omega}),$
- (5) If $\overline{\eta} \preceq \overline{\vartheta}$, then $\overline{\eta} \downarrow \overline{\omega} \preceq \overline{\vartheta} \downarrow \overline{\omega}$ and $\overline{\eta} \uparrow \overline{\omega} \preceq \overline{\vartheta} \uparrow \overline{\omega}$.

Definition 2.5. [4] For each interval $\overline{\eta}_i = [\eta_i^-, \eta_i^+] \in C[0, 1], i \in \mathcal{J}$ where \mathcal{J} is an index set, define

$$\underset{i\in\mathcal{J}}{\overset{\wedge}{\pi}}\overline{\eta}_i = [\underset{i\in\mathcal{J}}{\overset{\wedge}{\pi}}\overline{\eta}_i^-, \underset{i\in\mathcal{J}}{\overset{\wedge}{\pi}}\overline{\eta}_i^+] \quad \text{and} \quad \underset{i\in\mathcal{J}}{\overset{\vee}{\pi}}\overline{\eta}_i = [\underset{i\in\mathcal{J}}{\overset{\vee}{\pi}}\overline{\eta}_i^-, \underset{i\in\mathcal{J}}{\overset{\vee}{\pi}}\overline{\eta}_i^+].$$

Definition 2.6. [23] Let T be a non-empty set. Then the function $\overline{f}: T \to C[0,1]$ is called an *interval valued fuzzy subset* (shortly, IVF subset) of T.

Definition 2.7. [13, 3] An IVF subset \overline{f} of a semigroup S is said to be

- (1) an *IVF subsemigroup* of S if $\overline{\mu}(uv) \succeq \overline{\mu}(u) \land \overline{\mu}(v)$ for all $u, v \in S$,
- (2) an *IVF left (right) ideal* of S if $\overline{\mu}(uv) \succeq \overline{\mu}(v)(\overline{\mu}(uv) \succeq \overline{\mu}(u))$ for all $u, v \in S$. An IVF subset $\overline{\mu}$ of S is called an *IVF ideal* of S if it is both an IVF left ideal and an IVF right ideal of S,
- (3) an *IVF generalized bi-ideal* of S if $\overline{\mu}(uvw) \succeq \overline{\mu}(u) \land \overline{\mu}(w)$ for all $u, v, w \in S$,
- (4) an *IVF bi-ideal* of S if $\overline{\mu}$ is an IVF subsemigorup and $\overline{\mu}(uvw) \succeq \overline{\mu}(u) \land \overline{\mu}(w)$ for all $u, v, w \in S$,
- (5) an *IVF* (1,2)-*ideal* of S if $\overline{\mu}$ is an IVF subsemigorup and $\overline{\mu}(ua(vw)) \succeq \overline{\mu}(u) \land \overline{\mu}(v) \land \overline{\mu}(w)$ } for all $a, u, v, w \in S$.

Definition 2.8. [4] Let T be a non-empty set. A *cubic set* \mathcal{A} in T is a structure of the form

$$\mathcal{A} = \{ \langle x, \overline{\mu}(x), f(x) \rangle : x \in T \}$$

and denoted by $\mathcal{A} = \langle \overline{\mu}, f \rangle$ where $\overline{\mu} = [\mu^-, \mu^+]$ is an interval-valued fuzzy set (briefly. IVF) in X and f is a fuzzy set in T. In this case we will use

$$\mathcal{A}(x) = \langle \overline{\mu}(x), f(x) \rangle = \langle [\mu^{-}(x), \mu^{+}(x)], f(x) \rangle$$

For all $x \in T$. Note that a cubic set is a generalization of an intuitionistic fuzzy set.

Definition 2.9. Let S be a semigroup. Then cubic set characteristic function $\chi_A = \langle \overline{\mu}_{\chi_A}, f_{\chi_A} \rangle$ of is defined as

$$\overline{\mu}_{\chi_A}(x) = \begin{cases} \overline{1}, & \text{if } x \in A, \\ \overline{0}, & \text{if } x \notin A. \end{cases}$$

and

$$f_{\chi_A}(x) = \begin{cases} 0, & \text{if } x \in A, \\ 1, & \text{if } x \notin A. \end{cases}$$

Definition 2.10. [4] The whole cubic set S in a semigroup S is defined to be a structure

$$\mathcal{S} = \{ \langle x, 1_S(x), 0_S(x) \rangle : x \in S \}$$

with $1_S(x) = \overline{1}$ and $0_S(x) = \overline{0}$ for all $x \in S$. It will briefly denoted by $\mathcal{S} = \langle 1_S, 0_S \rangle$.

Definition 2.11. [4] For two cubic set $\mathcal{A} = \langle \overline{\mu}, f \rangle$ and $\mathcal{B} = \langle \overline{\lambda}, g \rangle$ in a semigroup S, we define

$$\mathcal{A} \sqsubseteq \mathcal{B} \Leftrightarrow \overline{\mu} \preceq \lambda, f \ge g$$

Definition 2.12. [4] Let $\mathcal{A} = \langle \overline{\mu}, f \rangle$ and $\mathcal{B} = \langle \overline{\lambda}, g \rangle$ be two cubic set in a semigroup S. Then the cubic product of \mathcal{A} and \mathcal{B} is a structure

$$\mathcal{A} \odot \mathcal{B} = \{ \langle x, (\overline{\mu} \circ \overline{\lambda})(x), (f \circ g)(x) \rangle : x \in S \}$$

which is briefly denoted by $\mathcal{A} \odot \mathcal{B} = \langle \overline{\mu} \circ \overline{\lambda}, f \circ g \rangle$ where $\overline{\mu} \circ \overline{\lambda}$ and $f \circ g$ are defined as follows, respectively:

$$(\overline{\mu} \circ \overline{\lambda})(x) = \begin{cases} \bigsqcup_{(y,z) \in F_x} [\overline{\mu}(y) \land \overline{\lambda}(z)\}] & \text{if } x = yz, \\ \overline{0}, & \text{otherwise,} \end{cases}$$

and

$$(f \circ g)(x) = \begin{cases} \bigwedge_{(y,z) \in F_x} [f(y) \lor g(z)] & \text{if } x = yz\\ 1, & \text{otherwise,} \end{cases}$$

for all $x \in S$.

Definition 2.13. [4] Let $\mathcal{A} = \langle \overline{\mu}, f \rangle$ and $\mathcal{B} = \langle \overline{\lambda}, f_B \rangle$ be two cubic set in a semigroup S. Then the intersection of \mathcal{A} and \mathcal{B} denoted by $\mathcal{A} \square \mathcal{B}$ is the cubic set

$$\mathcal{A}\overline{\sqcap}\mathcal{B} = \langle \overline{\mu} \sqcap \overline{\lambda}, f \lor g \rangle$$

where $(\overline{\mu} \sqcap \overline{\lambda})(x) = \overline{\mu}(x) \land \overline{\lambda}(x)$ and $(f \lor g)(x) = f(x) \lor g(x)$ for all $x \in S$. And union of \mathcal{A} and \mathcal{B} denoted by $\mathcal{A} \sqcup \mathcal{B}$ is the cubic set

$$\mathcal{A} \sqcup \mathcal{B} = \langle \overline{\mu} \sqcup \overline{\lambda}, f \land g \rangle$$

where $(\overline{\mu} \sqcup \overline{\lambda})(x) = \overline{\mu}(x) \lor \overline{\lambda}(x)$ and $(f \land g)(x) = f(x) \land g(x)$ for all $x \in S$.

Proposition 2.14. [4] For any cubic set $\mathcal{A} = \langle \overline{\mu}, f \rangle$, $\mathcal{B} = \langle \overline{\lambda}, g \rangle$ and $\mathcal{C} = \langle \overline{\nu}, h \rangle$ in semigroup S. Then the following statement holds.

- $(1) \ \mathcal{A} \underline{\sqcup} (\mathcal{B} \overline{\sqcap} C) = (\mathcal{A} \underline{\sqcup} \mathcal{B}) \overline{\sqcap} (\mathcal{A} \underline{\sqcup} \mathcal{C}),$
- (2) $\mathcal{A}\overline{\sqcap}(\mathcal{B}\underline{\sqcup}C) = (\mathcal{A}\overline{\sqcap}\mathcal{B})\underline{\sqcup}(\mathcal{A}\overline{\sqcap}\mathcal{C}),$
- (3) $\mathcal{A} \odot (\mathcal{B} \sqcup C) = (\mathcal{A} \odot \mathcal{B})(\mathcal{A} \odot \mathcal{C}),$
- (4) $\mathcal{A} \odot (\mathcal{B} \overline{\sqcap} C) = (\mathcal{A} \odot \mathcal{B}) \overline{\sqcap} (\mathcal{A} \odot \mathcal{C}).$

Definition 2.15. [4] A cubic set $\mathcal{A} = \langle \overline{\mu}, f \rangle$ in a semigroup S is called a *cubic subsemigroup* of S if it satisfies:

- (1) $\overline{\mu}(uv) \succeq \overline{\mu}(u) \land \overline{\mu}(v),$
- (2) $f(uvy) \le f(u) \lor f(v)$ for all $u, v \in S$.

Definition 2.16. [4] A cubic set $\mathcal{A} = \langle \overline{\mu}, f \rangle$ in a semigroup S is called a *cubic left*(resp. right)ideal of S if it satisfies:

(1) $\overline{\mu}(uv) \succeq \overline{\mu}(v) \ (\overline{\mu}(uv) \succeq \overline{\mu}(u)),$

(2) $f(uv) \leq f(v), (f(uv) \leq f(u))$ for all $u, v \in S$.

A non-empty cubic set $\mathcal{A} = \langle \overline{\mu}, f \rangle$ of S is called a *cubic ideal* of S if it is a cubic left ideal and a cubic right ideal of S.

Definition 2.17. [15] A cubic semigroup $\mathcal{A} = \langle \overline{\mu}, f \rangle$ in a semigroup S is called a *cubic* generalized bi-ideal of S if it satisfies:

- (1) $\overline{\mu}(uvw) \succeq \overline{\mu}(u) \land \overline{\mu}(w),$
- (2) $f(uvw) \le f(u) \lor f(w)$ for all $u, v, w \in S$.

Definition 2.18. [15] A cubic subsemigroup $\mathcal{A} = \langle \overline{\mu}, f \rangle$ on a semigroup S is called a *cubic bi-ideal* of S if it satisfies:

(1) $\overline{\mu}(uvw) \succeq \overline{\mu}(u) \land \overline{\mu}(w),$ (2) $f(uvw) \le f(u) \lor f(w)$ for all $u, v, w \in S.$

Theorem 2.19. [4] Let $\mathcal{A} = \langle \overline{\mu}, f \rangle$ and $\mathcal{B} = \langle \overline{\lambda}, g \rangle$ be a cubic subsemigroup of S. Then $A \overline{\sqcap} B = \langle \overline{\mu} \sqcap \overline{\lambda}, f \lor g \rangle$ is a cubic subsemigroup of S.

Theorem 2.20. [4] Let A be non-empty subset of a semigroup S. Then A is a subsemigroup of S if and only if the characteristic cubic set $\chi_A = \langle \overline{\mu}_{\chi_A}, f_{\chi_A} \rangle$ is a cubic subsemigroup of S.

Definition 2.21. [4] Let $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is cubic set in X. For any $k \in [0, 1]$ and $[s, t] \in C[0, 1]$, we define U(A, [s, t], k) as follows:

$$U(\mathcal{A}, [s, t], k) = \{ x \in X \mid \overline{\mu}(x) \succeq [s, t], f(x) \le k \},\$$

and we say it is a cubic level set of $\mathcal{A} = \langle \overline{\mu}, f \rangle$.

Theorem 2.22. [4] Let S be a semigroup. Then $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic subsemigroup of S if and only if the level set $U(\mathcal{A}, [s, t], k)$ is subsemigroup of S.

3. Cubic (1,2)-ideals of semigroups

In this section, we define cubic (1,2)-ideal and discuss some of its properties.

Definition 3.1. A cubic subsemigroup $\mathcal{A} = \langle \overline{\mu}, f \rangle$ of a semigroup S is called a *cubic* (1,2)-*ideal* of S if it satisfies:

(1) $\overline{\mu}(ua(vw)) \succeq \overline{\mu}(u) \land \overline{\mu}(v) \land \overline{\mu}(w),$

(2) $f(ua(vw)) \le f(u) \lor f(v) \lor f(w)$ for all $a, u, v, w \in S$.

The following example is a cubic (1, 2)-ideal of a semigroup.

Example 3.2. Consider a semigroup $S = \{a, b, c\}$ defined by the following table:

•	a	b	c	d
a	a	a	a	a
b	a	b	c	a
c	a	b	c	b
d	a	b	d	d

Define cubic set $\mathcal{A} = \langle \overline{\mu}, f \rangle$ in S as follows:

S:	$\overline{\mu}(x)$	f(x)
a	[0.9, 1]	0.2
b	[0.6, 0.8]	0.5
c	[0.4, 0.6]	0.2
d	[0.2, 0.3]	0.2

Then, by routine calculation one can easily verify that $\mathcal{A} = \langle \overline{\mu}, f \rangle$ of S is a cubic (1, 2)-ideal of S.

The following theorem we shown the intersection of any family of cubic (1, 2) ideal of a semigroup.

Theorem 3.3. The intersection of any family of cubic (1,2)-ideals of semigroup S is a cubic (1,2)-ideal of a semigroup S.

Proof. Let $\{A_i\}_{i \in I}$ be a family of a cubic (1, 2)-ideals of semigroup S and let $u, v \in S$. Then

$$\prod_{i \in I} \overline{\mu}_i(uv) \succeq \prod_{i \in I} (\overline{\mu}_i(u) \land \overline{\mu}_i(v)) = \prod_{i \in I} \overline{\mu}_i(u) \land \prod_{i \in I} \overline{\mu}_i(v).$$

And

$$\bigvee_{i \in I} f_i(uv) \le \bigvee_{i \in I} (f_i(u) \lor f_i(v)) = \bigvee_{i \in I} f_i(u) \lor \bigvee_{i \in I} f_i(v)$$

Hence $\overline{\bigcap}_{i\in I} \mathcal{A}_i = \langle \prod_{i\in I} \overline{\mu}_i, \bigvee_{i\in I} f_i \rangle$ is a cubic subsemigroup of S. In a similar way, let $a, u, v, w \in S$ we get that

$$\begin{array}{rcl} & & & & & & & & \\ & & & & & & \\ & & & & & i \in I \end{array} \{ \overline{\mu}_i(ua(vw)) \} & \succeq & & & & & \\ & & & & & & i \in I \end{array} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & i \in I \end{array} \{ \overline{\mu}_i(v) \land \prod_{i \in I} \overline{\mu}_i(w) \land \prod_{i \in I} \overline{\mu}_i(w) . \end{array}$$

Thus $\underset{i \in I}{\sqcap} \{\overline{\mu}_i(ua(vw))\} \succeq \underset{i \in I}{\sqcap} \overline{\mu}_i(u) \land \underset{i \in I}{\sqcap} \overline{\mu}_i(v) \land \underset{i \in I}{\sqcap} \overline{\mu}_i(w).$ And $\bigvee_{i \in I} \{ f_i(ua(vw)) \} \} \leq \bigvee_{i \in I i \in I} (f_i(u) \lor f_i(v) \lor f_i(w))$

$$= \bigvee_{i \in I}^{i \in I i \in I} f_i(u) \vee \bigvee_{i \in I} f_i(v) \vee \bigvee_{i \in I} f_i(w).$$

Thus $\bigvee_{i \in I} \{f_i(ua(vw))\} \leq \bigvee_{i \in I} f_i(u) \lor \bigvee_{i \in I} f_i(v) \lor \bigvee_{i \in I} f_i(w).$ Hence $\bigcap_{i \in I} \mathcal{A}_i = \langle \bigcap \overline{\mu}_i, \bigvee_{i \in I} f_i \rangle$ is a cubic (1,2)-ideal of S.

In the following theorems, we give a relationship between (1, 2)-ideal of a semigroup and the characteristic cubic set.

Theorem 3.4. Let S be a semigroup and let A be non-empty subset of S. Then A is a (1,2)-ideal of S if and only if the characteristic cubic set $\chi_A = \langle \overline{\mu}_{\chi_A}, f_{\chi_A} \rangle$ is a cubic (1,2)-ideals of S.

Proof. Suppose that A is a (1,2)-ideal of S. Then A is a subsemigroup of S. By Theorem 2.20 we have $\chi_A = \langle \overline{\mu}_{\chi_A}, f_{\chi_A} \rangle$ is a cubic subsemigroup of S. Let $a, u, v, w \in S$. Then the following cases:

If $u, v, w \in A$ then, $ua(vw) \in A$. Thus, $\overline{\mu}_{\chi_A}(u) = \overline{\mu}_{\chi_A}(v) = \overline{\mu}_{\chi_A}(w) = \overline{\mu}_{\chi_A}(ua(vw)) = \overline{1}$ and $f_{\chi_A}(u) = f_{\chi_A}(v) = f_{\chi_A}(w) = f_{\chi_A}(ua(vw)) = 0.$ Hence

$$\overline{\mu}_{\chi_A}(ua(vw)) \succeq \overline{\mu}_{\chi_A}(u) \land \overline{\mu}_{\chi_A}(v) \land \overline{\mu}_{\chi_A}(w)$$

and

$$f_{\chi_A}(ua(vw)) \le f_{\chi_A}(u) \lor f_{\chi_A}(v) \lor f_{\chi_A}(w)$$

Assume that $u \notin A$ or $v \notin A$ or $w \notin A$. Then,

$$\overline{\mu}_{\chi_A}(ua(vw)) \succeq \overline{\mu}_{\chi_A}(u) \land \overline{\mu}_{\chi_A}(v) \land \overline{\mu}_{\chi_A}(w)$$

and

$$f_{\chi_A}(ua(vw)) \le f_{\chi_A}(u) \lor f_{\chi_A}(v) \lor f_{\chi_A}(w)$$

Therefore $\chi_A = \langle \overline{\mu}_{\chi_A}, f_{\chi_A} \rangle$ is a cubic (1, 2)-ideal of S.

Conversely, suppose that $\chi_A = \langle \overline{\mu}_{\chi_A}, f_{\chi_A} \rangle$ is a cubic (1,2)-ideal of S and let $u, v \in A$. Then by Theorem 2.20 we have A is a subsemigroup of S.

Assume that $(ua(vw)) \notin A$. Then there exist $x, a, y, z \in S$ and $u, v, w \in A$. Thus, $\overline{\mu}_{\chi_A}(ua(vw)) = \overline{0}, \ \overline{\mu}_{\chi_A}(u) = \overline{\mu}_{\chi_A}(v) = \overline{\mu}_{\chi_A}(w) = \overline{1} \text{ and } f_{\chi_A}(ua(vw)) = 1, \ f_{\chi_A}(u) = f_{\chi_A}(v) = f_{\chi_A}(w) = 0.$

Since $\chi_A = \langle \overline{\mu}_{\chi_A}, f_{\chi_A} \rangle$ is a cubic (1,2)-ideal of S. we have

$$\overline{\mu}_{\chi_A}(ua(vw)) \succeq \overline{\mu}_{\chi_A}(u) \land \overline{\mu}_{\chi_A}(v) \land \overline{\mu}_{\chi_A}(w)$$

and

$$f_{\chi_A}(xa(yz)) \le f_{\chi_A}(u) \lor f_{\chi_A}(v) \lor f_{\chi_A}(w).$$

Thus, $\overline{\mu}_{\chi_A}(ua(vw)) = \overline{1}$ and $f_{\chi_A}(ua(vw)) = 0$. It is a contradiction. Hence $(ua(vw)) \in A$ for all $u, v, w \in A$ and $a, u, v, w \in S$. Therefore A is a (1, 2)-ideal of S.

In the following theorems, we give a relationship between cubic (1, 2)-ideal of a semigroup and the cubic level set.

Theorem 3.5. Let S be a semigroup then $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic (1, 2)-ideal of S if and only if every nonempty cubic level set of $U(\mathcal{A}, [s, t], k)$ is a (1, 2)-ideal of S.

Proof. Suppose that $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic (1, 2)-ideal of S. Let $u, v \in U(\mathcal{A}, [s, t], k)$. By Theorem 2.22 we have $U(\mathcal{A}, [s, t], k)$ is a subsemigroup of S.

Assume that $(ua(vw)) \notin U(\mathcal{A}, [s, t], k)$. Then there exist $u, v, w \in U(\mathcal{A}, [s, t], k)$, $a, u, v, w \in S$ and $[s, t] \in C[0, 1], k \in [0, 1]$. Thus, $\overline{\mu}(u) \succeq [s, t], \overline{\mu}(v) \succeq [s, t], \overline{\mu}(w) \succeq [s, t], \overline{\mu}(ua(vw)) \prec [s, t]$ and $f(u) \leq k, f(v) \leq k, f_A(w) \leq k, f_A(xy) > k$.

Since $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic (1, 2)-ideal of S we have

$$\overline{\mu}(ua(vw)) \succeq \overline{\mu}(u) \land \overline{\mu}(v) \land \overline{\mu}(w) \quad \text{and} \quad f(ua(vw)) \leq f(u) \lor f(v) \lor f(w).$$

Thus $\overline{\mu}(ua(vw)) \succeq [s,t]$ and $f(ua(vw)) \leq k$. It is a contradiction. Hence $(ua(vw)) \in U(\mathcal{A}, [s,t], k)$ for all $u, v, w, \in U(\mathcal{A}, [s,t], k), a, u, v, w \in S$ and $[s,t] \in C[0,1], k \in [0,1]$. Therefore $U(\mathcal{A}, [s,t], k)$ is a cubic level set is a (1,2)-ideal of S.

Conversely, suppose that $U(\mathcal{A}, [s, t], k)$ is a cubic level set is a (1, 2)-ideal of S. Let $u, v \in S$. By Theorem 2.22 we have $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic subsemigroup of S. Let $a, u, v, w \in S$. Then the following cases:

If $u, v, w \in A$, then $ua(vw) \in A$. Thus, $\overline{\mu}(u) \succeq [s,t], \overline{\mu}(v) \succeq [s,t], \overline{\mu}(w) \succeq [s,t], \overline{\mu}(ua(vw)) \succeq [s,t]$ and $f(u) \le k, f(v) \le k, f(w) \le k, f(ua(vw)) \le k$. Hence,

$$\overline{\mu}(ua(vw)) \succeq \overline{\mu}(u) \land \overline{\mu}(v) \land \overline{\mu}(w) \quad \text{and} \quad f(ua(vw)) \le f(u) \lor f(v) \lor f(w).$$

Suppose that $u \notin A$ or $v \notin A$ or $w \notin A$. Then

$$\overline{\mu}(ua(vw)) \succeq \overline{\mu}(u) \land \overline{\mu}(v) \land \overline{\mu}(w) \quad \text{and} \quad f(ua(vw)) \le f(u) \lor f(v) \lor f(w).$$

Hence $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic (1, 2)-ideal of S.

The following theorem we present relationship of cubic ideal and cubic (1, 2)-ideals.

Theorem 3.6. Every cubic ideal of a semigroup S is a cubic (1, 2)-ideal of S.

Proof. Let $\mathcal{A} = \langle \overline{\mu}, f \rangle$ be a cubic ideal of S and let $u, v \in S$. Since $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic ideal of S we have $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic right ideal of S. Thus $\overline{\mu}(uv) \succeq \overline{\mu}(u)$ and $f(uv) \leq f(u)$ Hence, $\overline{\mu}(uv) \succeq \overline{\mu}(u) \succeq \overline{\mu}(u) \land \overline{\mu}(v)$ and $f(uv) \leq f(u) \leq f(u) \lor f(v)$. Therefore $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic subsemigroup of S.

Let $a, u, v, w \in S$. Since $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic ideal of S we have \overline{f} is a cubic left ideal of S. Thus, $\overline{\mu}(ua(vw)) = \overline{\mu}((uav)w) \succeq \overline{\mu}(w)$ and $f(ua(vw)) = f((uav)w) \leq f(w)$ so $\overline{\mu}(ua(vw)) \succeq \overline{\mu}(w) \succeq \overline{\mu}(u) \land \overline{\mu}(v) \land \overline{\mu}(w)$ and $f(ua(vw)) \leq f(w) \leq f(u) \lor f(v) \lor f(w)$. Hence $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic (1, 2)-ideal of S.

The following theorem we shown that cubic bi-ideal is a cubic (1, 2)-ideals on a semigroup S.

Theorem 3.7. In semigroup S, cubic bi-ideal is a cubic (1, 2)-ideal of S.

Proof. Let $\mathcal{A} = \langle \overline{\mu}, f \rangle$ be a cubic bi-ideal of semigroup S and let $a, u, v, w \in S$. Then,

 $\overline{\mu}(ua(vw)) = \overline{\mu}((uav)w) \succeq \overline{\mu}(uav) \land \overline{\mu}(w) \succeq (\overline{\mu}(u) \land \overline{\mu}(v)) \land \overline{\mu}(w) = \overline{\mu}(u) \land \overline{\mu}(v) \land \overline{\mu}(w)$ and

$$f(ua(vw)) = f((uav)w) \le f(uav) \lor f(w) \le (f(u) \lor f(v)) \lor f(w) = f(u) \lor f(v) \lor f(w).$$

Hence $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic (1, 2)-ideal of semigroup S.

Remark 3.8. In example 3.2 we can show that the converse of Theorem 3.7 is not true. Consider $\overline{\mu}(bcb) = [0.4.0.6] \not\geq [0.6, 0.8] = \overline{f}(b) \land \overline{f}(b)$ and $f(bcb) = 0.2 \leq 0.5 = f(b) \lor f(b)$. Then $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is not a cubic bi-ideal of S.

The following theorem we present relationship of cubic (1, 2)-ideal and cubic bi-ideals.

Theorem 3.9. In regular semigroup S, every cubic (1,2)-ideal is a cubic bi-ideal and conversely.

Proof. Assume that S is a regular semigroup and let $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic (1,2)-ideal of semigroup S and let $x, y, z \in S$. Then there exist an element $a \in S$ such that x = xax. Thus, xy = (xax)y = (xa(xy)) so, $xy \in (xSx)S \subseteq xSx$ implies that, xy = xsx for some $s \in S$. Consider

$$\begin{array}{ll} \overline{\mu}(xyz) &=& \overline{\mu}((xsx)z) = \overline{\mu}(xs(xz)) \\ &\succeq & \overline{\mu}(x) \land \overline{\mu}(x) \land \overline{\mu}(z) = \overline{\mu}(x) \land \overline{\mu}(z) \end{array}$$

and

$$\begin{array}{rcl} f(xyz) &=& f((xsx)z) = f(xs(xz)) \\ &\leq& f(x) \lor f(x) \lor f(z) = f(x) \lor f(z). \end{array}$$

Hence $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic bi-ideal of semigroup S.

The following lemma will be used to prove in Theorem 3.11.

Lemma 3.10. [2] In regular semigroup S, every cubic bi-ideal of a semigroup S is cubic generalized bi-ideals and conversely.

The following theorem we present relationship of cubic generalized bi-ideals and cubic (1, 2)-ideals.

Theorem 3.11. In regular semigroup S, every cubic (1,2)-ideal is a cubic generalized bi-ideals and conversely.

Proof. Suppose that $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic (1,2)-ideal. Then by Theorem 3.9 and Lemma 3.10, $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic generalized bi-ideal.

Conversely assume that $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic generalized bi-ideal of S and let $u, v \in S$. Then there exists $k \in S$ such that v = vkv. Thus, $\overline{\mu}(uv) = \overline{\mu}(u(vkv)) = \overline{\mu}(u(vk)v) \succeq \overline{\mu}(u) \land \overline{\mu}(v)$ and $f(uv) = f(u(vkv)) = f(u(vkv)) \leq f(u) \lor f(v)$. Hence $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic subsemigroup of S. Let $a, u, v, w \in S$. It follows form Theorem 3.7. Thus $\mathcal{A} = \langle \overline{\mu}, f \rangle$ is a cubic (1, 2)-ideal of S.

4. Homomorphic inverse image operation to get cubic set

In this section, we study some properties of homomorphic and inverse image of cubic set.

Definition 4.1. [4] Let $\mathcal{C}(X)$ be the family of cubic set in a set X. Let X and Y be sets. A mapping $h: X \to Y$ induces two mapping $\mathcal{C}_h: \mathcal{C}(X) \to \mathcal{C}(Y), \mathcal{A} \mapsto \mathcal{C}_h(\mathcal{A})$ and $\mathcal{C}_h^{-1}: \mathcal{C}(Y) \to \mathcal{C}(X), \ \mathcal{B} \mapsto \mathcal{C}_h^{-1}(\mathcal{B}) \text{ where } \mathcal{C}_h(\mathcal{A}) \text{ is given by}$

$$\mathcal{C}_{h}(\overline{\mu})(y) = \begin{cases} \bigsqcup_{y=h(x)} \overline{\mu}(x), & \text{if } h^{-1}(y) \neq 0, \\ \overline{0}, & \text{otherwise} \end{cases}$$

$$\mathcal{C}_h(f)(y) = \begin{cases} \bigwedge_{y=h(x)} f(x), & \text{if } h^{-1}(y) \neq 0, \\ 1, & \text{otherwise} \end{cases}$$

for all $y \in Y$. The *inverse image* $\mathcal{C}_h^{-1}(\mathcal{B})$ is defined by $\mathcal{C}_h^{-1}(\overline{\lambda})(x) = \overline{\lambda}(h(x))$ and $\mathcal{C}_h^{-1}(g)(x) = g(h(x))$ for all $x \in X$. Then the mapping \mathcal{C}_h (resp. \mathcal{C}_h^{-1}) is called a cubic transformation (inverse cubic transformation) induced by h: A cubic set $\mathcal{A} = \langle \overline{\mu}, f \rangle$ in X has the *cubic* property if for any subset T of X there exists $x_0 \in T$ such that $\overline{\mu}(x_0) = \underset{x \in T}{\sqcup} \overline{\mu}(x)$ and

$$f(x_0) = \bigwedge_{x \in T} f(x).$$

Theorem 4.2. Let $h: X \to Y$ be a homomorphism of semigroups and let $\mathcal{C}_h : \mathcal{C}(X) \to \mathcal{C}(Y)$ and be the cubic transformation cubic transformation induced by h. If $\mathcal{A} = \langle \overline{\mu}, f \rangle \in \mathcal{C}(X)$ is a cubic (1,2)-ideal of X which has the cubic property, then $\mathcal{C}_h(\mathcal{A})$ is a cubic (1,2)-ideal of Y.

Proof. Assume that $\mathcal{A} = \langle \overline{\mu}, f \rangle \in \mathcal{C}(X)$ is a cubic (1, 2)-ideal of X and let $h(x), h(y) \in h(X)$ $x_0 \in h^{-1}(h(x)), y_0 \in h^{-1}(h(y))$ be such that $\overline{\mu}(x_0) = \bigsqcup_{z \in h^{-1}(h(x))} \overline{\mu}(a), f(x_0) = \bigwedge_{z \in h^{-1}(h(x))} f(a)$ and $\overline{\mu}(y_0) = \bigsqcup_{z \in h^{-1}(h(y))} \overline{\mu}(a), f(y_0) = \bigwedge_{z \in h^{-1}} f(b)$ respectively. Then

$$\begin{aligned} \mathcal{C}_{h}(\overline{\mu})(h(x)h(y)) &= \bigsqcup_{z \in h^{-1}(h(x)h(y))} \overline{\mu}(z) \succeq \overline{\mu}(x_{0}y_{0}) \succeq \overline{\mu}(x_{0}) \land \overline{\mu}(y_{0}) \\ &= \bigsqcup_{a \in h^{-1}(h(x))} \overline{\mu}(a) \land \bigsqcup_{a \in h^{-1}(h(y))} \overline{\mu}(b) = \mathcal{C}_{h}(\overline{\mu}(a))(h(x)) \land \mathcal{C}_{h}(\overline{\mu}(a))(h(y)). \end{aligned}$$

and

$$\begin{aligned} \mathcal{C}_h(f)(h(x)h(y)) &= \bigwedge_{\substack{z \in h^{-1}(h(x)h(y))\\ a \in h^{-1}(h(x))}} f(z) \succeq f(x_0y_0) \leq f(x_0) \lor f(y_0) \\ &= \bigwedge_{\substack{a \in h^{-1}(h(x))\\ a \in h^{-1}(h(y))}} f(a) \lor \bigwedge_{\substack{a \in h^{-1}(h(y))\\ a \in h^{-1}(h(y))}} f(b) = \mathcal{C}_h(f(a))(h(x)) \lor \mathcal{C}_h(f(a))(h(y)). \end{aligned}$$

Thus $\mathcal{C}_h(\overline{\mu})(h(x)h(y)) \succeq \mathcal{C}_h(\overline{\mu}(a))(h(x)) \land \mathcal{C}_h(\overline{\mu}(a))(h(y))$ and $\mathcal{C}_h(f)(h(x)h(y)) \le \mathcal{C}_h(f(a))(h(x)) \land \mathcal{C}_h(f(a))(h(y)).$ Hence $\mathcal{C}_h(\mathcal{A})$ is a cubic subsemigroup of Y. Similarly, let h(x), h(y), h(w), $h(z) \in h(x)$ and let $x_0 \in h^{-1}(h(x))$, $y_0 \in h^{-1}(h(y))$, $w_0 \in h^{-1}(h(w))$, $z_0 \in h^{-1}(h(z))$ be such that $\overline{\mu}(x_0) = \bigsqcup_{a \in h^{-1}(h(x))} \overline{\mu}(a)$, $f(x_0) = \bigwedge_{a \in h^{-1}(h(x))} f(a)$, $\overline{\mu}(y_0) = \bigsqcup_{b \in h^{-1}(h(y))} \overline{\mu}(b)$, $f(y_0) = \bigwedge_{b \in h^{-1}(h(y))} f(b)$, $\overline{\mu}(w_0) = \bigsqcup_{c \in h^{-1}(h(z))} \overline{\mu}(c)$, $f(w_0) = \bigwedge_{c \in h^{-1}(h(w))} f(c)$ and $\overline{\mu}(z_0) = \prod_{c \in h^{-1}(h(w))} f(c)$

$$\underset{d \in h^{-1}h(z))}{\sqcup} \overline{\mu}(d), f(z_0) = \bigwedge_{d \in h^{-1}(h(x))} f(d) \text{ respectively. Then}$$

$$\mathcal{C}_h(\overline{\mu})(h(x)h(y)(h(w)h(z))) = \underset{k \in h^{-1}(h(x)h(y)(h(w)h(z)))}{\sqcup} \overline{\mu}(k) \succeq \overline{\mu}(x_0y_0(w_0z_0))$$

$$\succeq \overline{\mu}(x_0) \land \overline{\mu}(w_0) \land \overline{\mu}(z_0)$$

$$= \underset{a \in h^{-1}(h(x))}{\sqcup} \overline{\mu}(a) \land \underset{c \in h^{-1}(h(w))}{\sqcup} \overline{\mu}(c) \land \underset{d \in h^{-1}(h(z))}{\sqcup} \overline{\mu}(d)$$

$$= \mathcal{C}_h(\overline{\mu}(a))(h(x)) \land \mathcal{C}_h(\overline{\mu}(a))(h(w)) \land \mathcal{C}_h(\overline{\mu}(a))(h(z))$$

and

$$\begin{aligned} \mathcal{C}_{h}(f)(h(x)h(y)(h(w)h(z))) &= \bigwedge_{\substack{k \in h^{-1}(h(x)h(y)(h(w)h(z)))\\ \leq \overline{\mu}(x_{0}) \lor \overline{\mu}(w_{0}) \lor \overline{\mu}(z_{0})\\ = \bigwedge_{a \in h^{-1}(h(x))} f(a) \lor \bigwedge_{c \in h^{-1}(h(w))} f(c) \lor \bigwedge_{d \in h^{-1}(h(z))} f(d)\\ = \mathcal{C}_{h}(\overline{\mu}(a))(h(x)) \lor \mathcal{C}_{h}(\overline{\mu}(a))(h(w)) \lor \mathcal{C}_{h}(\overline{\mu}(a))(h(z)). \end{aligned}$$

Thus $\mathcal{C}_{h}(\overline{\mu})(h(x)h(y)(h(w)h(z))) \succeq \mathcal{C}_{h}(\overline{\mu}(a))(h(x)) \land \mathcal{C}_{h}(\overline{\mu}(a))(h(w)) \land \mathcal{C}_{h}(\overline{\mu}(a))(h(z))$ and $\mathcal{C}_{h}(f)(h(x)h(y)(h(w)h(z))) \leq \mathcal{C}_{h}(\overline{\mu}(a))(h(x)) \lor \mathcal{C}_{h}(\overline{\mu}(a))(h(w)) \lor \mathcal{C}_{h}(\overline{\mu}(a))(h(z)).$ Hence $\mathcal{C}_{h}(\mathcal{A})$ is a cubic (1,2)-ideal of Y. \Box

Theorem 4.3. Let $h: X \to Y$ be a homomorphism of semigroups and let $\mathcal{C}_h^{-1}: \mathcal{C}(Y) \to \mathcal{C}(X)$ be the cubic inverse cubic transformation, induced by h. If $\mathcal{A} = \langle \overline{\mu}, f \rangle \in \mathcal{C}(Y)$ is a cubic (1, 2)-ideal of Y then $\mathcal{C}_h^{-1}(\mathcal{A})$ is a cubic (1, 2)-ideal of X.

Proof. Suppose that $\mathcal{A} = \langle \overline{\mu}, f \rangle \in \mathcal{C}(Y)$ is a cubic (1, 2)-ideal of Y and let $x, y \in X$. Then

$$\begin{array}{lll} \mathcal{C}_{h}^{-1}(\overline{\mu}(xy)) & = & \overline{\mu}(h(xy)) = \overline{\mu}(h(x)h(y)) \succeq \overline{\mu}(h(x)) \land \overline{\mu}(h(y)) \\ & = & \mathcal{C}_{h}^{-1}(\overline{\mu}(x)) \land \mathcal{C}_{h}^{-1}(\overline{\mu}(y)). \end{array}$$

and

$$\begin{array}{lll} \mathcal{C}_h^{-1}(f(xy)) & = & f(h(xy)) = f(h(x)h(y)) \leq f(h(x)) \lor f(h(y)) \\ & = & \mathcal{C}_h^{-1}(f(x)) \lor \mathcal{C}_h^{-1}(f(y)). \end{array}$$

Thus $\mathcal{C}_h^{-1}(\overline{\mu}(xy)) \succeq \mathcal{C}_h^{-1}(\overline{\mu}(x)) \land \mathcal{C}_h^{-1}(\overline{\mu}(y))$ and $\mathcal{C}_h^{-1}(f(xy)) \leq \mathcal{C}_h^{-1}(f(x)) \lor \mathcal{C}_h^{-1}(f(y))$. Hence $\mathcal{C}_h^{-1}(\mathcal{A})$ is a cubic subsemigroup of S.

Let $x, y, w, z \in X$. Then

$$\begin{array}{lll} \mathcal{C}_h^{-1}(\overline{\mu}(xy(wz)) &=& \overline{\mu}(h(xy(wz)) = \overline{\mu}(h(x)h(y)h(w)h(z)) \\ &\succeq& \overline{\mu}(h(x)) \land \overline{\mu}(h(w)) \land \overline{\mu}(h(z)) \\ &=& \mathcal{C}_h^{-1}(\overline{\mu}(x)) \land \mathcal{C}_h^{-1}(\overline{\mu}(w)) \land \mathcal{C}_h^{-1}(\overline{\mu}(z)) \end{array}$$

and

$$\begin{array}{lll} \mathcal{C}_{h}^{-1}(f(xy(wz))) &=& f(h(xy)) = f(h(x)h(y)h(w)h(z)) \\ &\leq& f(h(x)) \lor f(h(w)) \lor f(h(z)) \\ &=& \mathcal{C}_{h}^{-1}(f(x)) \lor \mathcal{C}_{h}^{-1}(f(w)) \lor \mathcal{C}_{h}^{-1}(f(z)). \end{array}$$

Thus $\mathcal{C}_h^{-1}(\overline{\mu}(xy(wz)) \succeq \mathcal{C}_h^{-1}(\overline{\mu}(x)) \land \mathcal{C}_h^{-1}(\overline{\mu}(w)) \land \mathcal{C}_h^{-1}(\overline{\mu}(z))$ and $\mathcal{C}_h^{-1}(f(xy(wz)) \leq \mathcal{C}_h^{-1}(f(x)) \lor \mathcal{C}_h^{-1}(f(w)) \lor \mathcal{C}_h^{-1}(f(z)).$ Therefore \mathcal{C}_h^{-1} is a cubic (1, 2)-ideal of X.

5. CONCLUSION

In this paper, we give concept of cubic (1, 2)-ideals and establish basic properties of cubic (1, 2)-ideals on semigroups. Finally we discussed the images or inverse images of a cubic (1, 2)-ideal of a semigroup. In future, we will focus characterizations of some semigroups by the properties of cubic subsemigroups of a semigroup.

References

- Feng Y., Tu D. and Li H., (2016), Interval valued fuzzy hypergraph and interval valued fuzzy hyperopertions, Italian Journal of Pure and Applied Mathematics, 36, pp. 1-12.
- [2] Hadi A. and Khan A., (2016), Cubic generalized bi-ideal in semigroups, Discussiones Mathematicae General Algebra an Applications, 36, pp. 131-146.
- [3] Gaketem, T., (2020), Interval valued fuzzy (1,2)-ideal on semigroups, JP Journal of Algebra, Number Theory and Application, 47, (1), pp. 1-13.
- [4] Jun Y.B. and Khan A., (2013), Cubic ideal in semigroups, Honam Mathematical Journal, 35, pp. 607-623.
- [5] Jun Y. B., Kim C. S. and Yang K.O., (2012), Cubic sets, Annals of Fuzzy Mathematical and Informatics, 6, (1), pp. 83-98.
- [6] Jun Y. B., Muhiuddin G., Mehmet Ali Ozturk and Mehmet Ali Ozturk, (2017), Cubic soft ideals in BCK/BCI-algebra, Journal of Computational Analysis and Applications 22, (5), pp. 929-940.
- [7] Khamrod P. and Deetae N., (2020), Q-cubic bi-quasi Ideals of semigroups, Global Journal of Pure and Applied Mathematics, 16, (4), pp. 553-566.
- [8] Kuroki N., (1981), On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems, 5, pp. 203-215.
- [9] Muhiuddin G, and Al-roqi A., (2014), Cubic soft sets with applications in BCK/BCI-algebras, Annals of Fuzzy Mathematics and Informatics, 8, (2), pp. 291-304.
- [10] Muhiuddin G, Feng F. and Jun Y. B, (2014), Subalgebras of BCK/BCI-algebras based on cubic soft sets, The Scientific World Journal, pp. pp. 1-10.
- [11] Muhiuddin G, Ahn, S. S, Kim C. S. and Jun Y. B., (2017), Stable cubic sets, Journal of Computational Analysis and Applications 23, (5), pp. 802-819.
- [12] Mordeson J. N., Malik D. S. and Kuroki N., (2003), Fuzzy semigroup, Springer Science and Business Media.
- [13] Narayanan Al. and Manikantan, T., (2006), Interval valued fuzzy ideals generated by an interval valued fuzzy subset in semigroups, Journal of Applied Mathematics and Computing, 20, (1-2), pp. 455-464.
- [14] Rosenfeld A., (1971), Fuzzy groups, Journal of Mathematical Analysis and Applications, 35, (3), pp. 512-517.
- [15] Sadaf U., Asmat H. and Khan A., (2015), On prime cubic bi-ideals of semigroups, Annals of Fuzzy Mathematics and Informatics, 9, (6), pp. 957-974.
- [16] Senapati T, Jun Y. B, Muhiuddim G. and Shum K. P., (2019), Cubic intuitionistic structures applied to ideals of BCI-algebras, Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica, 27, (2), pp. 231-232.
- [17] Senapati T, Jun Y. B, and Shum K. P., (2018), Cubic set structure applied in UP-algebras, Discrete Math Algorithms Appl, 10, (4), https://doi.org/10.1142/S1793830918500490.
- [18] Senapati T, and Shum K. P., (2017), Cubic impliative ideals of BCK-algebra, Missouri journal of mathematical sciences, 29, (2), pp. 125-138.
- [19] Senapati T, and Shum K. P., (2018), Cubic commutative ideals of BCK-algebra, Missouri Journal of Mathematical Sciences, 30, (1), pp. 5-19.
- [20] Senapati T., Kim C. S, Bhowmik M., Pal, M., (2015), Cubic subalgebras and cubic closed ideals of B-algebras, Fuzzy Information and Engineering, 7, (2), pp. 129-149.
- [21] Senapati T, Pal M., Saeid, A. B., (2020), Different types of cubic ideals in BCI-algebras based on fuzzy points, Afrika Matematika, 31, (2), pp. 367-381.
- [22] Songsaeng M., Iampan A., (2020), Neutrosophic, Cubic Set Theory Applied to UP-Algebras, Thai Journal of Mathematics, 18, (3), pp. 1433-1446.
- [23] Yaqoob N., Chinram R., Ghareeb, A. and Aslam M., (2013), Left almost semigroups characterized by their interval valued fuzzy ideals, Afrika Mathematika, 24, pp. 231-245.

[24] Zadeh L.A., (1965), Fuzzy sets, Information and Control, 8, pp. 338-353.

[25] Zadeh L. A., (1975), The concept of a linguistic variable and its application to approximate reasoning I., Information Science, 8, pp. 199-249.

Thiti Gaketem for the photography and short autobiography, see TWMS J. App. and Eng. Math. V.12, N.2.