# THE EDGE-TO-VERTEX STEINER DOMINATION NUMBER OF A GRAPH 

J. JOHN ${ }^{1 *}$, S. ANCY MARY ${ }^{2}$, §


#### Abstract

A set $W \subseteq E$ is said to be an edge-to-vertex Steiner dominating set of $G$ if $W$ is both an edge-to-vertex dominating set and a edge-to-vertex Steiner set of $G$. The edge-to-vertex Steiner domination number $\gamma_{\text {sev }}(G)$ of $G$ is the minimum cardinality of its edge-to-vertex Steiner dominating set of $G$ and any edge-to-vertex Steiner dominating set of cardinality $\gamma_{s e v}(G)$ is a $\gamma_{s e v}$-set of $G$. Some general properties satisfied by this concept are studied. The edge-to-vertex Steiner domination number of certain classes of graphs are determined. Connected graph of size $q \geq 3$ with edge-to-vertex Steiner domination number $q$ or $q-1$ are characterized. It is shown for every pair $a, b$ of integers with $2 \leq a \leq b$, there exists a connected graph $G$ such that $\gamma_{e v}(G)=a$ and $\gamma_{s e v}(G)=b$.


Keywords: Edge-to-vertex Steiner domination number, Edge-to-vertex Steiner number, Edge-to-vertex Steiner distance, Edge-to-vertex domination number.

AMS Subject Classification: 05C12, 05C69.

## 1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of $G$ are denoted by $p$ and $q$ respectively. For basic definitions and terminologies we refer to [1]. Two vertices $u$ and $v$ are said to be adjacent if $u v$ is an edge of $G$. The open neighbourhood of a vertex $v$ in a graph $G$ is defined as the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$, while the closed neighbourhood of $v$ in $G$ is defined as $N_{G}[v]=N_{G}(v) \cup\{v\}$. For any vertex $v$ in a graph $G$, the number of vertices adjacent to $v$ is called the degree of $v$ in $G$, denoted by $\operatorname{deg}_{G}(v)$. If the degree of a vertex is 0 , it is called an isolated vertex, while if the degree is 1 , it is called an end-vertex. The minimum degree of vertices in $G$ is defined by $\delta(G)=\min \{\operatorname{deg}(v): v \in V(G)\}$. The maximum degree of vertices in $G$ is defined by $\triangle(G)=\max \{\operatorname{deg}(v): v \in V(G)\}$. A cut-vertex (cut-edge) of a graph $G$ is a vertex (edge) whose removal increases the number of components. For a cut-vertex $v$ in a connected graph $G$ and a component $H$ of $G v$, the subgraph $H$ and the vertex $v$ together with all edges joining $v$ and $V(H)$ is called a

[^0]branch of $G$ at $v$. A vertex $v$ is called a universal vertex if $\operatorname{deg}_{G}(v)=p-1$. For any set $S$ of vertices of $G$, the induced subgraph $\langle S\rangle$ is the maximal subgraph of $G$ with vertex set $S$. A vertex $v$ is an extreme vertex of $G$ if $\langle N(v)\rangle$ is complete. An edge of a connected graph $G$ is called an extreme edge of $G$ if one of its ends is an extreme vertex of $G$.

A subset $S \subseteq V(G)$ is called a dominating set if every vertex $v \in V(G) \backslash S$ is adjacent to a vertex $u \in S$. The domination number $\gamma(G)$ of a graph $G$ denotes the minimum cardinality of such dominating sets of $G$. A minimum dominating set of a graph $G$ is hence often called as a $\gamma$-set of $G$. The domination concept was studied in [4]. A subset $S \subseteq E(G)$ is said to be an edge-to-vertex-dominating set of $G$ if every vertex in $G$ is dominated by an edge in $S$. The edge-to-vertex domination number $\gamma_{e v}(G)$ of $G$ is the minimum cardinality of its edge-to-vertex dominating sets. Any edge-to-vertex domination set of cardinality $\gamma_{e v}(G)$ is called a $\gamma_{e v}$-set of $G$. The edge-to-vertex domination number of a graph was studied in [12-15]. It has applications in game theory, telephone switching centres, facility locations, distributed computing, information retrieval, and communication networks.

The distance $d(u, v)$ between two vertices $u$ and $v$ in a connected graph $G$ is the length of a shortest $u-v$ path in $G$. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. For subsets $A$ and $B$ of $V(G)$, the distance $d(A, B)$ is defined as $d(A, B)=\min \{d(x, y): x \in A, y \in B\}$. An $u-v$ path of length $d(A, B)$ is called an $A-B$ geodesic joining the sets $A, B$, where $u \in A$ and $v \in B$. A vertex $x$ is said to lie on an $A-B$ geodesic if $x$ is a vertex of an $A-B$ geodesic. For $A=\{u, v\}$ and $B=\{z, w\}$ with $u v$ and $z w$ edges, we write an $A-B$ geodesic as $u v-z w$ geodesic and $d(A, B)$ as $d(u v, z w)$. Let $G=(V, E)$ be a connected graph with at least three vertices. A set $S \subseteq E$ is called an edge-to-vertex geodetic set if every vertex of $G$ is either incident with an edge of $S$ or lies on a geodesic joining a pair of edges of $S$. The edge-to-vertex geodetic number $g_{e v}(G)$ of $G$ is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality $g_{e v}(G)$ is an edge-to-vertex $g_{e v}$ set of $G$. The edge-to-vertex geodetic number of a graph was studied in [5,9-11]. Let $W$ be a subset of a set of vertices $V$ of $G$. A Steiner tree for $W$ (Steiner $W$ - tree) is a connected subgraph of $G$ with a minimum number of edges that contains all vertices of $W$. The number of edges in a Steiner $W$-tree is the Steiner distance $d(W)$ of $W$ in $G$. The Steiner distance of a graph was studied in [2]. The Steiner interval $S(W)$ contains all the vertices that lie on some Steiner $W$ - tree. If $S(W)=V$, we call $W$ a Steiner set of $G$. A Steiner set of minimum cardinality is a minimum Steiner set or simply a $s$-set and its cardinality is the Steiner number $s(G)$ of $G$. The Steiner number of a graph was introduced in [3] and further studied in $[6,7]$.

For a non-empty set $W$ of edges in a connected graph in $G$, the edge-to-vertex Steiner distance $d_{e v}(W)$ of $W$ is the minimum size of a tree containing $V(W)$ and is called an edge-to-vertex Steiner tree with respect to $W$ or a Steiner $W_{e v}$-tree of $G$. For a given set $W \subseteq E(G)$, there may be more than one Steiner $W_{\text {ev }}$-tree in $G$. In fact,it may occur that $T_{1}$ and $T_{2}$ are Steiner $W_{e v}$-trees with $V\left(T_{1}\right) \neq V\left(T_{2}\right)$; however $V(W) \subseteq$ $V\left(T_{1}\right) \cap V\left(T_{2}\right)$. For $W \subseteq E$, let $S_{e v}(W)$ denote the set of all vertices of $G$ that lie on some Steiner $W_{e v}$-tree. If $S_{e v}(W)=V$, then $W$ is called an edge-to-vertex Steiner set of $G$. The edge-to-vertex Steiner number $s_{e v}(G)$ of $G$ is the minimum cardinality of its edge-to-vertex Steiner sets and any edge-to-vertex Steiner sets of cardinality $s_{e v}(G)$ is a minimum edge-to-vertex Steiner set of $G$ or $s_{e v}$-set of $G$.For the graph $G$ given in Figure 1.1, $W=\left\{v_{1} v_{2}, v_{2} v_{10}, v_{4} v_{5}, v_{7} v_{8}\right\}$ is a $s_{e v}$-set of $G$ so that $s_{e v}(G)=4$. The edge-tovertex Steiner number of a graph was introduced in [8]. Steiner tree problem is used in


Figure 1.1


Two Steiner $W_{e v}$-trees of $G$
combinatorial optimization and computer science especially in design of computer circuits. They have numerous applications in industries. Applying the edge-to-vertex Steiner tree concept improves the effectiveness in networks.
Throughout the following $G$ denotes a connected graph with at least three vertices. The following theorems are used in the sequel.

Theorem 1.1. [8] If $v$ is an extreme vertex of a connected graph $G$, then every edge-tovertex Steiner set contains at least one extreme edge that is incident with $v$.

Theorem 1.2. [8] Let $G$ be a connected graph and $W$ be a $s_{\text {ev }}$-set of $G$. Then no cut-edge of $G$ which is not an end-edge of $G$ belongs to $W$.

## 2. The Edge-to-Vertex Steiner Domination Number of a Graph

In general edge-to vertex dominating set is not an edge-to-vertex Steiner set in a connected graph $G$. Also the converse is not valid in general. This has motivated us to study the new edge-to vertex domination conception of edge-to-vertex Steiner domination. In this section, some general properties satisfied by this concept are studied and also we determine the edge-to-vertex Steiner domination number of some standard graphs.

Definition 2.1. $A$ set $W \subseteq E$ is said to be an edge-to-vertex Steiner dominating set of $G$ if $W$ is both an edge-to-vertex dominating set and an edge-to-vertex Steiner set of $G$. The edge-to-vertex Steiner domination number $\gamma_{s e v}$ of $G$ is the minimum cardinality of its edge-to-vertex Steiner dominating set of $G$ and any edge-to-vertex Steiner dominating set of cardinality $\gamma_{\text {sev }}(G)$ is a $\gamma_{\text {sev }}$-set of $G$.


Figure 2.1

Example 2.1. For the graph $G$ in Figure 2.1, $W=\left\{v_{1} v_{2}, v_{1} v_{3}, v_{4} v_{5}, v_{10} v_{11}\right\}$ is a minimum edge-to-vertex Steiner dominating set of $G$ so that $\gamma_{\text {sev }}(G)=4$..

Remark 2.1. There can be more than one $\gamma_{s e v}$-set of $G$. For the graph $G$ in Figure 2.1, $W_{1}=\left\{v_{1} v_{2}, v_{1} v_{3}, v_{8} v_{10}, v_{9} v_{11}\right\}$ is another $\gamma_{\text {sev }}$-set of $G$.
Theorem 2.1. For a connected graph $G$ of size $q \geq 2,2 \leq \max \left(\gamma_{e v}(G), s_{e v}(G)\right) \leq$ $\gamma_{\text {sev }}(G) \leq q$.

Proof: A $\gamma_{s e v}$-set needs at least two edges and so $\gamma_{s e v}(G) \geq 2$. Also the set of all edges of $G$ is an edge-to-vertex Steiner dominating set of $G$ so that $\gamma_{s e v}(G) \leq q$. Thus $2 \leq \max \left\{\gamma_{e v}(G), s_{e v}(G)\right\} \leq \gamma_{s e v}(G) \leq q$.
Remark 2.2. The bounds in Theorem 2.1 are sharp. For $G=C_{4}, \gamma_{s e v}(G)=2$. For the star $G=K_{1, q}(q \geq 2)$, it is clear that the set of all edges is the unique so that $\gamma_{\text {sev }}(G)=q$. Also the bound in Theorem 2.1 can be strict. For the graph $G$ given in Figure 2.1, $\gamma_{e v}(G)=$ $S_{e} v(G)=3, \gamma_{\text {sev }}(G)=4$ and $q=13$. Thus $2<\max \left\{\gamma_{e v}(G), s_{e v}(G)\right\}<\gamma_{s e v}(G)<q$.

Theorem 2.2. If $v$ is an extreme vertex of a connected graph $G$, then every edge-to-vertex Steiner dominating set of $G$ contains at least one extreme edge that is incident with $v$.
Proof: Since every edge-to-vertex Steiner dominating set of $G$ is an edge-to-vertex Steiner set of $G$, the result follows from Theorem 1.1.

Corollary 2.1. Every end edge of a connected graph $G$ belongs to every edge-to-vertex Steiner dominating set of $G$.
Proof: The follows from Theorem 2.2.
Theorem 2.3. If $G$ is any connected graph of size $q$ with number of end edges $k$, then $\max \{2, k\} \leq \gamma_{\text {sev }}(G) \leq q$.
Proof: This follows from Theorem 2.1 and Corollary 2.1.
Theorem 2.4. Let $G$ be a connected graph with cut vertices and $W$ an edge-to-vertex Steiner dominating set of $G$. Then every branch of $G$ contains an element of $W$.

Proof: Suppose that there is a branch $B$ of $G$ at a cut vertex $v$ which has no element of $W$. By Corollary $2.1, B$ does not contain any end-edge of $G$. Therefore $|V(B)| \geq 2$. Let $u$ be a vertex of $G$ such that $u \neq v$. Since $W$ is an edge to-vertex Steiner dominating set of
$G, u$ lies on a Steiner $W_{e v}$-tree of $G$, say $T$. Since $W$ contains no element of $B$ and $V$ is a cut-vertex of $G, v$ lies on $T$. Which implies $T$ contains a cycle, which is a contradiction to $T$ is a tree.

Theorem 2.5. Let $G$ be a connected graph with cut edges and $W$ an edge to-vertex Steiner dominating set of $G$. Then for any cut-edge of $G$, which is not an end-edge, each of the two-components of $G-e$ contains an element of $W$.

Proof: Let $e=u v$. Let $G_{1}$ and $G_{2}$ be the two components of $G-e$. Without loss of generality, let us assume that $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Let $B_{1}$ be the branch at $u$ and $B_{2}$ be the branch at $v$. The $G_{1}$ contains $B_{1}$ and $G_{2}$ contains $B_{2}$. Hence by Theorem 2.4, each of $G_{1}$ and $G_{2}$ contain an element of $W$.

Theorem 2.6. Let $G$ be a connected graph and $e$ be an end edge of $G$. Let $W$ be a $\gamma_{\text {sev }}$-set of $G$. If $f$ is a cut edge of $G$ which is adjacent to $e$ and not an end edge of $G$, then $f \notin W$.
Proof: The proof is similar to the proof of Theorem 1.2.
Corollary 2.2. For any non-trivial $\gamma_{s e v}(T) \geq k$, where $k$ is the number of end edges of $G$.

Proof: This follows from Corollary 2.1.
Corollary 2.3. For the star $G=K_{1, q}(q \geq 2), \gamma_{\operatorname{sev}}(G)=q$.
Proof: This follows from Corollary 2.2.
Corollary 2.4. If $G$ is a double star, then $\gamma_{s e v}(G)=q-1$.
Proof: This follows from Corollary 2.1 and Theorem 2.6.
Theorem 2.7. For $p$ even, a set $W$ of edges of $G=K_{p}(p \geq 4)$ is a minimum edge-tovertex Steiner dominating set of $K_{p}$ if and only if $W$ consists of $p / 2$ independent edges.
Proof: Let $W$ be any set of $p / 2$ independent edges of $K_{p}$. Since $V(W)=V$, the spanning tree of $G$ is a Steiner $W_{e v}$-tree of $G$, so that $W$ is a edge-to-vertex Steiner dominating set of $G$. It follows that $\gamma_{s e v}(G) \leq p / 2$. If $\gamma_{s e v}(G)<p / 2$, then there exists an edge-to-vertex Steiner dominating set $W^{\prime}$ of $K_{p}$ such that $\left|W_{1}^{\prime}\right|<p / 2$. Therefore, there exists at least one vertex $v$ of $K_{p}$ such that $v$ is not incident with any edge of $W^{\prime}$. Hence $v$ does not lie on any Steiner $W_{e v}$-tree of $G$, which is a contradiction. Thus, $W$ is a minimum edge-to-vertex Steiner dominating set of $K_{p}$. Conversely, let $W$ be a minimum edge-to-vertex Steiner dominating set of $K_{p}$. Let $W^{\prime}$ be any set of $p / 2$ independent edges of $K_{p}$. Then by first part of this theorem, $W^{\prime}$ is the minimum edge-to-vertex Steiner dominating set of $K_{p}$. Therefore $\left|W_{1}^{\prime}\right|=p / 2$. Hence $|W|=p / 2$. If $W$ is not independent, then there exists a vertex $v$ of $K_{p}$ such that $v$ is not incident with any edge of $W$. Therefore $v$ does not lie on any Steiner $W_{e v}$-tree of $G$. Hence it follows that $W$ is not an edge-to-vertex Steiner dominating set of $G$, which is a contradiction. Therefore, $W$ consists of $p / 2$ independent edges.

Theorem 2.8. $A$ set $W$ of edges of $G=K_{n, n}(n \geq 2)$ is a minimum edge-to-vertex Steiner dominating set of $G$ if and only if $W$ consists of $n$ independent edges.

Proof: Let $W$ be any set of $n$ independent edges of $G=K_{n, n}(n \geq 2)$. Since $V(W)=V$, the spanning tree of $G$ is a Steiner $W_{e v}$ tree of $G$, it follows that $s_{e v}(G) \leq n$. If $s_{e v}(G)<n$, then there exists an edge-to-vertex Steiner dominating set $W^{\prime}$ of $K_{n, n}$ such that $\left|W^{\prime}\right|<n$. Therefore, there exists at least one vertex $v$ of $K_{n, n}$ such that $v$ is not incident with any
edge of $W^{\prime}$. Hence $v$ does not lying on any Steiner $W_{e v}$-tree of $G$, which is a contradiction. Hence $W$ is a minimum edge-to-vertex Steiner dominating set of $K_{n, n}$. Conversely, let $W$ be a minimum edge-to-vertex Steiner dominating set of $G$. Let $W^{\prime}$ be any set of $n$ independent edges of $G$. Then as in the first part of this theorem, $W^{\prime}$ is a minimum edge-to-vertex Steiner dominating set of $G$. Therefore, $\left|W^{\prime}\right|=n$. Hence $|W|=n$. If $W$ is not independent, then there exists a vertex $v$ of $G$ such that $v$ is not incident with any edge of $W$ and also $v$ does not lie on any Steiner $W_{e v}$-tree of $G$. Hence $W$ is not an edge-to-vertex Steiner dominating set of $G$, which is a contradiction. Thus $W$ consists of $n$ independent edges.

Corollary 2.5. For the complete graph $K_{p}(p \geq 4)$ with $p$ even, $\gamma_{\text {sev }}\left(K_{p}\right)=p / 2$.
Theorem 2.9. For the complete graph $G=K_{p}(p \geq 5)$ with $p$ odd, $\gamma_{s e v}\left(K_{p}\right)=\frac{p+1}{2}$.
Proof: Let $S$ consist of any set of $\frac{p-3}{2}$ independent edges of $K_{p}$ and $S^{\prime}$ consist of 2 adjacent edges of $K_{p}$, each of which is independent with the edges of $S$. Let $W=S \cup S^{\prime}$. Then $V(W)=V$. Therefore the spanning tree of $G$ is an edge-to- vertex Steiner $W_{e v}$-tree of $G$. It follows that $s_{e v}(G) \leq \frac{p+1}{2}+2=\frac{p+1}{2}$. If $s_{e v}(G)<\frac{p+1}{2}$, then there exists an edge-to-vertex Steiner dominating set $W^{\prime}$ of $K_{p}$ such that $\left|W^{\prime}\right|<\frac{p+1}{2}$. Therefore there exists at least one vertex $v$ of $K_{p}$ such that $v$ is not incident with any edge of $W^{\prime}$. Hence the vertex $v$ does not lie any Steiner $W_{e v}$-tree of $G$, which is a contradiction. Thus $W$ is a minimum edge-to-vertex Steiner dominating set of $K_{p}$. Hence $s_{e v}(G)=\frac{p+1}{2}$.

Corollary 2.6. For the complete bipartite graph $G=K_{n, n}(n \geq 2), \gamma_{\text {sev }}(G)=n$.
Theorem 2.10. For the complete bipartite graph $G=K_{m, n}(2 \leq m \leq n), \gamma_{\text {sev }}(G)=n$.
Proof: Let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$, and $Y=\left\{y_{1}, y_{2}, . ., y_{n}\right\}$ be the bipartition of $G$. Let $T$ consist of the set of $m-1$ independent edges $x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{m-1} y_{m-1}$ and $T^{\prime}$ consist of the $n-m+1$ adjacent edges $x_{m} y_{m}, x_{m} y_{m+1}, \ldots, x_{m} y_{n}$. Let $W=T \cup T^{\prime}$. Then $S(W)=V$. Hence it follows that $\gamma_{s e v}(G)=m-1+n-m+1=n$. If $\gamma_{s e v}<n$, then there exists an edge-to-vertex Steiner set $W^{\prime}$ of $G$ such that $\left|W^{\prime}\right|<n$. Therefore there exists at least one vertex $v$ of $G$ such that $v$ is not incident with any edge of $W^{\prime}$. Hence $v$ does not lie any Steiner $W_{e v}$-tree of $G$, which is a contradiction. Therefore $\gamma_{s e v}(G)=n$.

Theorem 2.11. For the cycle $G=C_{p},(p \geq 3)$,

$$
\gamma_{s e v}\left(C_{p}\right)= \begin{cases}2 & \text { if } p=3,4,6,8 \\ 3 & \text { if } p=5,7 \\ \left\lceil\frac{p}{4}\right\rceil & \text { if } p \geq 9\end{cases}
$$

Proof: Let us prove this result by the method of mathematical induction. Clearly this result is true for $p=3,4,5,6$ and 7 . Assume that it is true for $p=k$.
i.e., $\gamma_{s e v}\left(C_{k}\right)=\left\lceil\frac{k}{4}\right\rceil, k \geq 9$.

To prove $\gamma_{s e v}\left(C_{k+1}\right)=\left\lceil\frac{k+1}{4}\right\rceil$.

Clearly $\gamma_{s e v}\left(C_{k}\right) \leq \gamma_{s e v}\left(C_{k+1}\right) \leq \gamma_{s e v}\left(C_{k+1}\right)+1$.

$$
\begin{aligned}
\gamma_{s e v}\left(C_{k+1}\right)+1 & \geq \gamma_{\text {sev }}\left(C_{k}\right) \\
& =\left\lceil\frac{k}{4}\right\rceil=\left\lceil\frac{(k+1)-1}{4}\right\rceil \\
& =-\left\lfloor\frac{(k+1)-1}{4}\right\rfloor \text { since }\lceil-x\rceil=\lfloor-x\rfloor \\
& =-\left\lfloor-\frac{(k+1)}{4}+\frac{1}{4}\right\rfloor \\
& \geq-\left\{\left\lfloor-\frac{(k+1)}{4}\right\rfloor+\left\lfloor\frac{1}{4}\right\rfloor\right\} \text { since }\lceil x\rceil+\lceil y\rceil \leq\lceil x+y\rceil \\
& \geq-\left\{\left\lfloor-\frac{(k+1)}{4}\right\rfloor+\left\lfloor\frac{-1}{4}\right\rfloor\right\} \text { since }\lfloor x\rfloor \leq\lfloor-x\rfloor \\
& =\left\lceil\frac{(k+1)}{4}\right\rceil+\left\lceil\frac{1}{4}\right\rceil \text { since }\lfloor-x\rfloor=-\lfloor-x\rfloor \\
& =\left\lceil\frac{(k+1)}{4}\right\rceil+1 \\
\gamma_{\text {sev }}\left(C_{k+1}\right) & \geq\left\lceil\frac{(k+1)}{4}\right\rceil \ldots . .(1)
\end{aligned}
$$

Also in a cycle, an edge can dominate almost 4 vertices and so
$\gamma_{s e v}\left(C_{k+1}\right) \leq\left\lceil\frac{k+1}{4}\right\rceil$
From (1) and (2)
$\gamma_{s e v}\left(C_{k+1}\right)=\left\lceil\frac{k+1}{4}\right\rceil$.
Hence by mathematical induction , $\gamma_{s e v}\left(C_{p}\right)=\left\lceil\frac{p}{4}\right\rceil$,for $k \geq 9$.

## 3. Some results on the Edge-to-Vertex Steiner Dominating Number of a Graph

In this section, we characterized connected graphs $G$ of size $q$ with $\gamma_{\text {sev }}=q$ or $q-1$. Also we give some realization results concerning the edge-to-vertex Steiner domination number of $G$.

Theorem 3.1. Let $G$ be a connected graph with $\gamma_{e v}(G)=2$. Then $\gamma_{s e v}(G) \leq 3$.
Proof: Let $S=\{e, f\}$ be a $\gamma_{e v}$-set. If $d(e, f)=2$, then $S$ is a $\gamma_{s e v}$-set of $G$ so that $\gamma_{\text {sev }}(G)=2$. Suppose that $d(e, f)=1$. Then there exists $u \in G$ such that $u$ is not incident with $e$ and $u$ is not incident with $f$. Let $x$ be a vertex which is incident with either $e$ or $f$. Then $\{e, f, x u\}$ is an edge-to-vertex steiner dominating set of $G$ so that $\gamma_{\text {sev }}(G) \leq 3$.

Theorem 3.2. Let $G$ be a connected graph of size $q \geq 4$ which is not a tree. Then $\gamma_{s e v}(G) \leq q-2$.
Proof: If the graph $G$ is a cycle $C_{p}(p \geq 4)$, then by Theorem 2.11, $\gamma_{s e v}(G) \leq q-2$. If the graph $G$ is not a cycle, let $C: v_{1}, v_{2}, v_{3}, \ldots, v_{k}, v_{1}(k \geq 3)$ be a smallest cycle in $G$ and let $v$ be a vertex such that $v$ is not on $C$ and $v$ be adjacent to $v_{1}$ (say). Now $W=E(G)-\left\{v_{1} v_{2}, v_{1} v_{k}\right\}$ is an edge-to-vertex Steiner dominating set of $G$ so that $\gamma_{s e v}(G) \leq$ $q-2$.


Figure 3.1

Remark 3.1. The bound in Theorem 3.2 is sharp. For the graph $G$ given in Figure 3.1, $W=\left\{v_{1} v_{4}, v_{2} v_{3}\right\}$ is a $\gamma_{\text {sev }}$-set of $G$ so that $\gamma_{\text {sev }}(G)=2=q-2$.

Theorem 3.3. For any connected graph $G$, with size $q \geq 3, \gamma_{s e v}(G)=q$ if and only if $G$ is a star.

Proof: Let $G$ be a star. Then by Corollary 2.3, $\gamma_{s e v}(G)=q$. Conversely, let $\gamma_{\text {sev }}(G)=q$. Suppose that $G$ is not a star. Then $G$ contains at least one edge $e$, which is not an end edge of $G$. Then $W=E(G)-e$ is an edge-to-vertex Steiner dominating set of $G$ so that $\gamma_{s e v}(G) \leq q-1$, which is a contradiction. Therefore $G$ is the star $K_{1, q}$.
Theorem 3.4. For any connected graph $G$ with $q \geq 3, \gamma_{s e v}(G)=q-1$ if and only if $G$ is either $C_{3}$ or a double star.

Proof: Let $q=3$. If $G=C_{3}$ then we have done. If $G=P_{4}$, then $G$ is a double star. So we have done. If $G=K_{1,3}$, then $\gamma_{\text {sev }}(G)=3=q$, which is not so. Let us assume that $q \geq 4$. If $G$ is not a tree, then by Theorem $3.2, \gamma_{\operatorname{sev}}(G) \leq q-2$, which is a contradiction. Therefore $G$ is a tree. If $G$ is a double star, then we have done. Suppose that $G$ is not a double star. If $G$ is a star, then by Theorem 3.3, $\gamma_{s e v}(G)=q$, which is not so. If $G$ is neither a star nor a double star, then $G$ contains at least two internal edges. Which implies, $\gamma_{s e v}(G) \leq q-2$, which is a contradiction. Therefore $G$ is either $C_{3}$ or a double star. Converse is clear.

In view of Theorem 2.1, we have the following realization results.

Theorem 3.5. For every positive integers $a$ and $b$ such that $2 \leq a \leq b$, there exists $a$ connected graph $G$ such that $\gamma_{e v}(G)=a$ and $\gamma_{\text {sev }}(G)=b$.

Proof: Let $P_{i}: u_{i}, v_{i}, w_{i}, x_{i}(1 \leq i \leq a-1)$ be a copy of path on four vertices. Let $H$ be a graph obtained from $P_{i}(1 \leq i \leq a-1)$ by introducing a new vertex $y$ and joining $y$ with each $u_{i}(1 \leq i \leq a-1)$, and joining with each $x_{i}(1 \leq i \leq a-1)$. Let $G$ be a graph obtained from $H$ by adding the new vertices $z_{1}, z_{2}, \ldots, z_{b-a+1}$ and joining each $z_{i}$ $(1 \leq i \leq b-a+1)$ with $y$. The graph $G$ is shown in Figure 3.2.

First we show that $\gamma_{e v}(G)=a$. Let $W$ be a $\gamma_{e v}$-set of $G$. It is easily observed that $W$ contains at least one edge from $G-y$. Therefore $\gamma_{e v}(G) \geq a-1$. Let $W=$ $\left\{v_{1} w_{1}, v_{1} w_{2}, \ldots, v_{a-1} w_{a-1}\right\}$. Then $W$ is not a $\gamma_{e v}$-set of $G$ and so $\gamma_{e v}(G) \geq a$ on the other hand $W \cup\left\{y u_{1}\right\}$ is a $\gamma_{e v}$-set of $G$ so that $\gamma_{e v}(G)=a$.

Next we prove that $\gamma_{s e v}(G)=b$. Let $Z=\left\{y z_{1}, y z_{2}, \ldots, y z_{b-a+1}\right\}$ be the set of all end


G
Figure 3.2
edges of $G$. By Corollary $2.1, Z$ is a subset of every $\gamma_{e v}$-set of $G$. It is easily observed that every $\gamma_{\text {sev }}$-set of $G$ contains at least one edge from $G-y$ and so $\gamma_{s e v}(G)=b-a+1+a-1=b$. Now $W_{1}=W \cup Z$ is a $\gamma_{s e v}$-set of $G$ so that $\gamma_{s e v}(G)=b$.
Theorem 3.6. For every positive integers $a$ and $b$ such that $2 \leq a \leq b$, there exists $a$ connected graph $G$ such that $s_{e v}(G)=a$ and $\gamma_{s e v}(G)=b$.
Proof: Let $P_{i}: u_{i}, v_{i}, w_{i}(1 \leq i \leq b-a)$ be a copy of path on three vertices and $P$ : $z, w_{1}, v_{1}, u_{1}, x, y$ be a path of order 6 . Let $H$ be a graph obtained from $P_{i}(1 \leq i \leq b-a)$ and $P$ by joining each $u_{i}(2 \leq i \leq b-a)$ with $y$, and $w_{i}(2 \leq i \leq b-a)$ with $z$. Let $G$ be a graph obtained from $H$ by adding vertices $z_{1}, z_{2}, \ldots, z_{a-1}$ and joining each $z_{i}(1 \leq i \leq a-1)$ with $z$. The graph $G$ is shown in Figure 3.3.

First we prove that $s_{e v}(G)=a$. Let $Z=\left\{z z_{1}, z z_{2}, \ldots, z z_{a-1}\right\}$ be the set of end edges of $G$. By Theorem 1.1, $Z$ is a subset of every edge-to-vertex Steiner set of $G$. It is clear that $Z$ is not an edge-to-vertex Steiner set of $G$ and so $s_{e v}(G) \geq a$. Now $Z \cup\{x y\}$ is an edge-to-vertex Steiner set of $G$ so that $s_{e v}(G)=a$.

Next we prove that $\gamma_{\text {sev }}(G)=b$. By Corollary $2.1, Z$ is a subset of every edge-to-vertex Steiner dominating set of $G$. Also it is easily observed that every edge-tovertex Steiner dominating set of $G$ contains each $v_{i} w_{i}(1 \leq i \leq b-a)$ and so $\gamma_{\text {sev }}(G) \geq$ $a-1+b-a=b-1$. Let $S=Z \cup\left\{v_{1} w_{1}, v_{2} w_{2}, \ldots, v_{b-a} w_{b-a}\right\}$. Then $S$ is not an edge-tovertex Steiner dominating set of $G$ and $\gamma_{\text {sev }}(G) \geq b$. However $S \cup\{x y\}$ is an edge-to-vertex Steiner dominating set of $G$ so that $\gamma_{s e v}(G)=b$.

## 4. Conclusion

In this article, we introduce and studied the concept of the edge-to-vertex Steiner domination number of a graph. In general, every edge-to-vertex Steiner set of $G$ need not be an edge-to-vertex geodetic set of $G$. By the similar way, every edge-to-vertex Steiner dominating set of $G$ need not be an edge-to-vertex geodetic dominating set of $G$. Hence it can be further investigated to find out under which condition the inequality $\gamma_{g e v}(G) \leq \gamma_{\text {sev }}(G)$ or $\gamma_{\text {sev }}(G) \leq \gamma_{g e v}(G)$ holds true.

## 5. Acknowledgement

The authors would like to thank anonymous reviewers for their valuable and constructive comments.


Figure 3.3

## References

[1] Buckley F., and Harary F., (1990), Distance in Graphs, Addition-Wesley, Redwood City, CA.
[2] Chartrand G., Oellermann, Ortred, Tian Song, Song Ling, Zou and Hung Kin,(1989), Steiner distance in graphs, Caspopis Pro Pestovani Mathematiky, (114), pp. 399-410.
[3] Chartrand G., and Zhang P., (2002), The Steiner number of a graph, Discrete Mathematics, 242, pp. 41-54.
[4] Haynes T.W., Hedetniemi S.T., and Slater.P.J, (1998), Fundamentals of Domination in Graphs, Marcel Dekker, New York.
[5] John J., Vijayan A., and Sujitha S., (2012), The Upper Edge-to-Vertex Geodetic Number of a Graph, International Journal of Mathematical Archive, 3, (4), pp. 1423-1428.
[6] John J., Malchijah Raj M. S., (2020), The upper restrained Steiner number of a graph, Discrete Mathematics, Algorithms and Applications, 2050004, (12 pages).
[7] John J., (2020), The total Steiner number of a graph, Discrete Mathematics Algorithms and Applications, 12, (3), 2050038, (7 pages).
[8] John J., Ancy Mary S., and Joseph Robin S., (2021), The Edge-to-Vertex Steiner Number of a Graph, Communications in Algebra and Graph Theory, 1, (1), pp. 8-20.
[9] Santhakumaran A. P., and John J., (2012), On the Edge-to-Vertex Geodetic Number of a Graph, Miskolc Mathematical Notes, 13, (1),pp. 107-119.
[10] Sujitha S., John J., and Vijayan A., (2014), The Extreme Edge-to-Vertex Geodesic Graphs, International Journal of Mathematics Research, 6, (3), pp. 279-288.
[11] Sujitha S., John J., and Vijayan A., (2015), The Forcing Edge-to-Vertex Geodetic Number of a Graph, International Journal of Pure and Applied Mathematics, 103, (1), pp. 109-121.
[12] Thanga Rajathi D., and John J., (2017), The Lower and Upper Edge-to-Vertex Domination Numbers of a Graph, International Journal of Pure and Applied Mathematics, 116, (21), pp. 821-835.
[13] Thanga Rajathi D., and John J., (2017), The Edge-to-Vertex Geodetic Domination Number of a Graph, Journal of Advanced Research in Dynamical \& Control Systems, 9, (7), pp. 26-34.
[14] Thanga Rajathi D., and John J., (2018), The Forcing Edge-to-Vertex Geodetic Domination Number of a Graph, Journal of Advanced Research in Dynamical and Control Systems, 10, (4), pp. 178-183.
[15] Thakkar D.K., and Neha P. Jamvecha, (2018), Edge-Vertex Domination in Graphs, International Journal of Mathematics And its Applications, 6, (1-C), pp. 549-555.



[^0]:    ${ }^{1}$ Department of Mathematics, Government College of Engineering, Tirunelveli-627 007, India. e-mail: john@gcetly.ac.in; ORCID: https://orcid.org/0000-0001-5528-4387.

    * Corresponding author.
    ${ }^{2}$ Department of Mathematics, St. John's College of Arts and Science, Nagercoil, 629 204, India. e-mail: ancymary369@gmail.com; ORCID: https://orcid.org/0000-0002-9276-8329.
    § Manuscript received: March 30, 2020; accepted: February 09, 2021.
    TWMS Journal of Applied and Engineering Mathematics, Vol.12, No. 4 © Işık University, Department of Mathematics, 2022; all rights reserved.

