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THE EDGE-TO-VERTEX STEINER DOMINATION NUMBER OF A

GRAPH

J. JOHN1∗, S. ANCY MARY2, §

Abstract. A set W ⊆ E is said to be an edge-to-vertex Steiner dominating set of G if
W is both an edge-to-vertex dominating set and a edge-to-vertex Steiner set of G. The
edge-to-vertex Steiner domination number γsev(G) of G is the minimum cardinality of its
edge-to-vertex Steiner dominating set of G and any edge-to-vertex Steiner dominating
set of cardinality γsev(G) is a γsev-set of G. Some general properties satisfied by this
concept are studied. The edge-to-vertex Steiner domination number of certain classes
of graphs are determined. Connected graph of size q ≥ 3 with edge-to-vertex Steiner
domination number q or q−1 are characterized. It is shown for every pair a, b of integers
with 2 ≤ a ≤ b, there exists a connected graph G such that γev(G) = a and γsev(G) = b.

Keywords: Edge-to-vertex Steiner domination number, Edge-to-vertex Steiner number,
Edge-to-vertex Steiner distance, Edge-to-vertex domination number.
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1. Introduction

By a graph G = (V,E ), we mean a finite undirected connected graph without loops or
multiple edges. The order and size of G are denoted by p and q respectively. For basic
definitions and terminologies we refer to [1]. Two vertices u and v are said to be adjacent
if uv is an edge of G. The open neighbourhood of a vertex v in a graph G is defined as
the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}, while the closed neighbourhood of v in G is
defined as NG[v] = NG(v) ∪ {v}. For any vertex v in a graph G, the number of vertices
adjacent to v is called the degree of v in G, denoted by degG(v). If the degree of a vertex
is 0, it is called an isolated vertex, while if the degree is 1, it is called an end-vertex. The
minimum degree of vertices in G is defined by δ(G) = min{deg(v) : v ∈ V (G)}. The
maximum degree of vertices in G is defined by 4(G) = max{deg(v) : v ∈ V (G)}. A
cut-vertex (cut-edge) of a graph G is a vertex (edge) whose removal increases the number
of components. For a cut-vertex v in a connected graph G and a component H of G v,
the subgraph H and the vertex v together with all edges joining v and V (H) is called a
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Department of Mathematics, 2022; all rights reserved.

1311



1312 TWMS J. APP. AND ENG. MATH. V.12, N.4, 2022

branch of G at v. A vertex v is called a universal vertex if degG(v) = p− 1. For any set S
of vertices of G, the induced subgraph 〈S〉 is the maximal subgraph of G with vertex set
S. A vertex v is an extreme vertex of G if 〈N(v)〉 is complete. An edge of a connected
graph G is called an extreme edge of G if one of its ends is an extreme vertex of G.

A subset S ⊆ V (G) is called a dominating set if every vertex v ∈ V (G)\S is adja-
cent to a vertex u ∈ S. The domination number γ(G) of a graph G denotes the minimum
cardinality of such dominating sets of G. A minimum dominating set of a graph G is hence
often called as a γ-set of G. The domination concept was studied in [4]. A subset S ⊆ E(G)
is said to be an edge-to-vertex-dominating set of G if every vertex in G is dominated by an
edge in S. The edge-to-vertex domination number γev(G) of G is the minimum cardinality
of its edge-to-vertex dominating sets. Any edge-to-vertex domination set of cardinality
γev(G) is called a γev-set of G. The edge-to-vertex domination number of a graph was
studied in [12-15]. It has applications in game theory, telephone switching centres, facility
locations, distributed computing, information retrieval, and communication networks.

The distance d(u, v) between two vertices u and v in a connected graph G is
the length of a shortest u − v path in G. An u − v path of length d(u,v) is called
an u − v geodesic. For subsets A and B of V (G), the distance d(A,B) is defined as
d(A,B) = min{d(x, y) : x ∈ A, y ∈ B}. An u − v path of length d(A,B) is called an
A−B geodesic joining the sets A,B, where u ∈ A and v ∈ B. A vertex x is said to lie on
an A− B geodesic if x is a vertex of an A− B geodesic. For A = {u, v} and B = {z, w}
with uv and zw edges, we write an A − B geodesic as uv − zw geodesic and d(A,B)
as d(uv, zw). Let G = (V,E) be a connected graph with at least three vertices. A set
S ⊆ E is called an edge-to-vertex geodetic set if every vertex of G is either incident with
an edge of S or lies on a geodesic joining a pair of edges of S. The edge-to-vertex geodetic
number gev(G) of G is the minimum cardinality of its edge-to-vertex geodetic sets and
any edge-to-vertex geodetic set of cardinality gev(G) is an edge-to-vertex gev set of G. The
edge-to-vertex geodetic number of a graph was studied in [5,9-11]. Let W be a subset of
a set of vertices V of G. A Steiner tree for W (Steiner W - tree) is a connected subgraph
of G with a minimum number of edges that contains all vertices of W . The number of
edges in a Steiner W -tree is the Steiner distance d(W ) of W in G. The Steiner distance
of a graph was studied in [2]. The Steiner interval S(W ) contains all the vertices that lie
on some Steiner W - tree. If S(W ) = V , we call W a Steiner set of G. A Steiner set
of minimum cardinality is a minimum Steiner set or simply a s-set and its cardinality is
the Steiner number s(G) of G. The Steiner number of a graph was introduced in [3] and
further studied in [6,7].

For a non-empty set W of edges in a connected graph in G, the edge-to-vertex
Steiner distance dev(W ) of W is the minimum size of a tree containing V (W ) and is
called an edge-to-vertex Steiner tree with respect to W or a Steiner Wev-tree of G. For
a given set W ⊆ E(G), there may be more than one Steiner Wev-tree in G. In fact,it
may occur that T1 and T2 are Steiner Wev-trees with V (T1) 6= V (T2); however V (W ) ⊆
V (T1) ∩ V (T2). For W ⊆ E, let Sev(W ) denote the set of all vertices of G that lie on
some Steiner Wev-tree. If Sev(W ) = V , then W is called an edge-to-vertex Steiner set
of G. The edge-to-vertex Steiner number sev(G) of G is the minimum cardinality of its
edge-to-vertex Steiner sets and any edge-to-vertex Steiner sets of cardinality sev(G) is a
minimum edge-to-vertex Steiner set of G or sev-set of G.For the graph G given in Figure
1.1, W = {v1v2, v2v10, v4v5, v7v8} is a sev-set of G so that sev(G) = 4. The edge-to-
vertex Steiner number of a graph was introduced in [8]. Steiner tree problem is used in
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Two Steiner Wev-trees of G

combinatorial optimization and computer science especially in design of computer circuits.
They have numerous applications in industries. Applying the edge-to-vertex Steiner tree
concept improves the effectiveness in networks.

Throughout the following G denotes a connected graph with at least three vertices. The
following theorems are used in the sequel.

Theorem 1.1. [8] If v is an extreme vertex of a connected graph G, then every edge-to-
vertex Steiner set contains at least one extreme edge that is incident with v.

Theorem 1.2. [8] Let G be a connected graph and W be a sev-set of G. Then no cut-edge
of G which is not an end-edge of G belongs to W.

2. The Edge-to-Vertex Steiner Domination Number of a Graph

In general edge-to vertex dominating set is not an edge-to-vertex Steiner set in a
connected graph G. Also the converse is not valid in general. This has motivated us to
study the new edge-to vertex domination conception of edge-to-vertex Steiner domination.
In this section, some general properties satisfied by this concept are studied and also we
determine the edge-to-vertex Steiner domination number of some standard graphs.

Definition 2.1. A set W ⊆ E is said to be an edge-to-vertex Steiner dominating set of
G if W is both an edge-to-vertex dominating set and an edge-to-vertex Steiner set of G.
The edge-to-vertex Steiner domination number γsev of G is the minimum cardinality of its
edge-to-vertex Steiner dominating set of G and any edge-to-vertex Steiner dominating set
of cardinality γsev(G) is a γsev-set of G.
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Example 2.1. For the graph G in Figure 2.1, W = {v1v2, v1v3, v4v5, v10v11} is a minimum
edge-to-vertex Steiner dominating set of G so that γsev(G) = 4..

Remark 2.1. There can be more than one γsev-set of G. For the graph G in Figure 2.1,
W1 = {v1v2, v1v3, v8v10, v9v11} is another γsev-set of G.

Theorem 2.1. For a connected graph G of size q ≥ 2, 2 ≤ max(γev(G), sev(G)) ≤
γsev(G) ≤ q.

Proof: A γsev-set needs at least two edges and so γsev(G) ≥ 2. Also the set of all
edges of G is an edge-to-vertex Steiner dominating set of G so that γsev(G) ≤ q. Thus
2 ≤ max{γev(G), sev(G)} ≤ γsev(G) ≤ q. �

Remark 2.2. The bounds in Theorem 2.1 are sharp. For G = C4, γsev(G) = 2. For the
star G = K1,q (q ≥ 2), it is clear that the set of all edges is the unique so that γsev(G) = q.
Also the bound in Theorem 2.1 can be strict. For the graph G given in Figure 2.1, γev(G) =
Sev(G) = 3, γsev(G) = 4 and q = 13. Thus 2 < max{γev(G), sev(G)} < γsev(G) < q.

Theorem 2.2. If v is an extreme vertex of a connected graph G, then every edge-to-vertex
Steiner dominating set of G contains at least one extreme edge that is incident with v.

Proof: Since every edge-to-vertex Steiner dominating set of G is an edge-to-vertex Steiner
set of G, the result follows from Theorem 1.1. �

Corollary 2.1. Every end edge of a connected graph G belongs to every edge-to-vertex
Steiner dominating set of G.

Proof: The follows from Theorem 2.2. �

Theorem 2.3. If G is any connected graph of size q with number of end edges k, then
max{2, k} ≤ γsev(G) ≤ q.

Proof: This follows from Theorem 2.1 and Corollary 2.1. �

Theorem 2.4. Let G be a connected graph with cut vertices and W an edge-to-vertex
Steiner dominating set of G. Then every branch of G contains an element of W.

Proof: Suppose that there is a branch B of G at a cut vertex v which has no element of
W. By Corollary 2.1, B does not contain any end-edge of G. Therefore |V (B)| ≥ 2. Let u
be a vertex of G such that u 6= v. Since W is an edge to-vertex Steiner dominating set of
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G, u lies on a Steiner Wev-tree of G, say T . Since W contains no element of B and V is
a cut-vertex of G,v lies on T . Which implies T contains a cycle, which is a contradiction
to T is a tree. �

Theorem 2.5. Let G be a connected graph with cut edges and W an edge to-vertex Steiner
dominating set of G. Then for any cut-edge of G, which is not an end-edge, each of the
two-components of G− e contains an element of W .

Proof: Let e = uv. Let G1 and G2 be the two components of G − e. Without loss of
generality, let us assume that u ∈ V (G1) and v ∈ V (G2). Let B1 be the branch at u and
B2 be the branch at v. The G1 contains B1 and G2 contains B2. Hence by Theorem 2.4,
each of G1 and G2 contain an element of W . �

Theorem 2.6. Let G be a connected graph and e be an end edge of G. Let W be a γsev-set
of G. If f is a cut edge of G which is adjacent to e and not an end edge of G, then f 6∈W .

Proof: The proof is similar to the proof of Theorem 1.2. �

Corollary 2.2. For any non-trivial γsev(T ) ≥ k, where k is the number of end edges of
G.

Proof: This follows from Corollary 2.1. �

Corollary 2.3. For the star G = K1,q (q ≥ 2) , γsev(G) = q.

Proof: This follows from Corollary 2.2. �

Corollary 2.4. If G is a double star, then γsev(G) = q − 1.

Proof: This follows from Corollary 2.1 and Theorem 2.6. �

Theorem 2.7. For p even, a set W of edges of G = Kp (p ≥ 4) is a minimum edge-to-
vertex Steiner dominating set of Kp if and only if W consists of p/2 independent edges.

Proof: Let W be any set of p/2 independent edges of Kp. Since V (W ) = V , the spanning
tree of G is a Steiner Wev-tree of G, so that W is a edge-to-vertex Steiner dominating set
of G. It follows that γsev(G) ≤ p/2. If γsev(G) < p/2, then there exists an edge-to-vertex

Steiner dominating set W
′

of Kp such that | W ′
1 |< p/2. Therefore, there exists at least

one vertex v of Kp such that v is not incident with any edge of W
′
. Hence v does not lie on

any Steiner Wev-tree of G, which is a contradiction. Thus, W is a minimum edge-to-vertex
Steiner dominating set of Kp. Conversely, let W be a minimum edge-to-vertex Steiner

dominating set of Kp. Let W
′

be any set of p/2 independent edges of Kp. Then by first

part of this theorem, W
′

is the minimum edge-to-vertex Steiner dominating set of Kp.

Therefore | W ′
1 | = p/2. Hence | W | = p/2. If W is not independent, then there exists a

vertex v of Kp such that v is not incident with any edge of W. Therefore v does not lie
on any Steiner Wev-tree of G. Hence it follows that W is not an edge-to-vertex Steiner
dominating set of G, which is a contradiction. Therefore, W consists of p/2 independent
edges. �

Theorem 2.8. A set W of edges of G = Kn,n (n ≥ 2) is a minimum edge-to-vertex
Steiner dominating set of G if and only if W consists of n independent edges.

Proof: Let W be any set of n independent edges of G = Kn,n (n ≥ 2). Since V (W ) = V ,
the spanning tree of G is a Steiner Wev tree of G, it follows that sev(G) ≤ n. If sev(G) < n,

then there exists an edge-to-vertex Steiner dominating set W
′

of Kn,n such that |W ′ | < n.
Therefore, there exists at least one vertex v of Kn,n such that v is not incident with any
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edge of W
′
. Hence v does not lying on any Steiner Wev-tree of G, which is a contradiction.

Hence W is a minimum edge-to-vertex Steiner dominating set of Kn,n. Conversely, let

W be a minimum edge-to-vertex Steiner dominating set of G. Let W
′

be any set of n
independent edges of G. Then as in the first part of this theorem, W

′
is a minimum

edge-to-vertex Steiner dominating set of G. Therefore, |W ′ | = n. Hence |W | = n. If
W is not independent, then there exists a vertex v of G such that v is not incident with
any edge of W and also v does not lie on any Steiner Wev-tree of G. Hence W is not an
edge-to-vertex Steiner dominating set of G, which is a contradiction. Thus W consists of
n independent edges. �

Corollary 2.5. For the complete graph Kp (p ≥ 4) with p even, γsev(Kp) = p/2.

Theorem 2.9. For the complete graph G = Kp (p ≥ 5) with p odd, γsev(Kp) =
p+ 1

2
.

Proof: Let S consist of any set of
p− 3

2
independent edges of Kp and S

′
consist of 2

adjacent edges of Kp, each of which is independent with the edges of S. Let W = S ∪ S′ .
Then V (W ) = V . Therefore the spanning tree of G is an edge-to- vertex Steiner Wev-tree

of G. It follows that sev(G) ≤ p+ 1

2
+ 2 =

p+ 1

2
. If sev(G) <

p+ 1

2
, then there exists an

edge-to-vertex Steiner dominating set W
′

of Kp such that |W ′ | < p+ 1

2
. Therefore there

exists at least one vertex v of Kp such that v is not incident with any edge of W
′
. Hence

the vertex v does not lie any Steiner Wev-tree of G, which is a contradiction. Thus W is

a minimum edge-to-vertex Steiner dominating set of Kp. Hence sev(G) =
p+ 1

2
. �

Corollary 2.6. For the complete bipartite graph G = Kn,n (n ≥ 2), γsev(G) = n.

Theorem 2.10. For the complete bipartite graph G = Km,n (2 ≤ m ≤ n), γsev(G) = n.

Proof: Let X = {x1, x2, . . . , xm}, and Y = {y1, y2, .., yn} be the bipartition of G. Let T

consist of the set of m − 1 independent edges x1y1, x2y2, ..., xm−1ym−1 and T
′

consist of
the n−m+1 adjacent edges xmym, xmym+1, ..., xmyn. Let W = T ∪T ′ . Then S(W ) = V .
Hence it follows that γsev(G) = m− 1 + n−m+ 1 = n. If γsev < n, then there exists an

edge-to-vertex Steiner set W
′

of G such that | W ′ |< n. Therefore there exists at least

one vertex v of G such that v is not incident with any edge of W
′
. Hence v does not lie

any Steiner Wev-tree of G, which is a contradiction. Therefore γsev(G) = n. �

Theorem 2.11. For the cycle G = Cp, (p ≥ 3),

γsev(Cp) =


2 if p = 3, 4, 6, 8

3 if p = 5, 7⌈p
4

⌉
if p ≥ 9

Proof: Let us prove this result by the method of mathematical induction. Clearly this
result is true for p = 3, 4, 5, 6 and 7. Assume that it is true for p = k.

i.e., γsev(Ck) =
⌈k

4

⌉
, k ≥ 9.

To prove γsev(Ck+1) =
⌈k + 1

4

⌉
.
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Clearly γsev(Ck) ≤ γsev(Ck+1) ≤ γsev(Ck+1) + 1.

γsev(Ck+1) + 1 ≥ γsev(Ck)

=

⌈
k

4

⌉
=

⌈
(k + 1)− 1

4

⌉
= −

⌊
(k + 1)− 1

4

⌋
since d−xe = b−xc

= −
⌊
−(k + 1)

4
+

1

4

⌋
≥ −

{⌊
−(k + 1)

4

⌋
+

⌊
1

4

⌋}
since dxe+ dye ≤ dx+ ye

≥ −
{⌊
−(k + 1)

4

⌋
+

⌊
−1

4

⌋}
since bxc ≤ b−xc

=

⌈
(k + 1)

4

⌉
+

⌈
1

4

⌉
since b−xc = −b−xc

=
⌈(k + 1)

4

⌉
+ 1

γsev(Ck+1) ≥
⌈(k + 1)

4

⌉
.....(1)

Also in a cycle, an edge can dominate almost 4 vertices and so

γsev(Ck+1) ≤
⌈k + 1

4

⌉
.....(2)

From (1) and (2)

γsev(Ck+1) =
⌈k + 1

4

⌉
.

Hence by mathematical induction , γsev(Cp) =
⌈p

4

⌉
,for k ≥ 9. �

3. Some results on the Edge-to-Vertex Steiner Dominating Number of a
Graph

In this section, we characterized connected graphs G of size q with γsev = q or q−1.
Also we give some realization results concerning the edge-to-vertex Steiner domination
number of G.

Theorem 3.1. Let G be a connected graph with γev(G) = 2. Then γsev(G) ≤ 3.

Proof: Let S = {e, f} be a γev-set. If d(e, f) = 2, then S is a γsev-set of G so that
γsev(G) = 2. Suppose that d(e, f) = 1. Then there exists u ∈ G such that u is not
incident with e and u is not incident with f . Let x be a vertex which is incident with
either e or f . Then {e, f, xu} is an edge-to-vertex steiner dominating set of G so that
γsev(G) ≤ 3. �

Theorem 3.2. Let G be a connected graph of size q ≥ 4 which is not a tree. Then
γsev(G) ≤ q − 2.

Proof: If the graph G is a cycle Cp (p ≥ 4), then by Theorem 2.11, γsev(G) ≤ q − 2.
If the graph G is not a cycle, let C : v1, v2, v3, ..., vk, v1 (k ≥ 3) be a smallest cycle
in G and let v be a vertex such that v is not on C and v be adjacent to v1(say). Now
W = E(G)−{v1v2, v1vk} is an edge-to-vertex Steiner dominating set ofG so that γsev(G) ≤
q − 2. �
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Remark 3.1. The bound in Theorem 3.2 is sharp. For the graph G given in Figure 3.1,
W = {v1v4, v2v3} is a γsev-set of G so that γsev(G) = 2 = q − 2.

Theorem 3.3. For any connected graph G, with size q ≥ 3, γsev(G) = q if and only if G
is a star.

Proof: Let G be a star. Then by Corollary 2.3, γsev(G) = q. Conversely, let γsev(G) = q.
Suppose that G is not a star. Then G contains at least one edge e, which is not an end
edge of G. Then W = E(G)− e is an edge-to-vertex Steiner dominating set of G so that
γsev(G) ≤ q − 1, which is a contradiction. Therefore G is the star K1,q. �

Theorem 3.4. For any connected graph G with q ≥ 3, γsev(G) = q − 1 if and only if G
is either C3 or a double star.

Proof: Let q = 3. If G = C3 then we have done. If G = P4, then G is a double star. So
we have done. If G = K1,3, then γsev(G) = 3 = q, which is not so. Let us assume that
q ≥ 4. If G is not a tree, then by Theorem 3.2, γsev(G) ≤ q − 2, which is a contradiction.
Therefore G is a tree. If G is a double star, then we have done. Suppose that G is not
a double star. If G is a star, then by Theorem 3.3, γsev(G) = q, which is not so. If G
is neither a star nor a double star, then G contains at least two internal edges. Which
implies, γsev(G) ≤ q − 2, which is a contradiction. Therefore G is either C3 or a double
star. Converse is clear. �

In view of Theorem 2.1, we have the following realization results.

Theorem 3.5. For every positive integers a and b such that 2 ≤ a ≤ b, there exists a
connected graph G such that γev(G) = a and γsev(G) = b.

Proof: Let Pi : ui, vi, wi, xi (1 ≤ i ≤ a − 1) be a copy of path on four vertices. Let H
be a graph obtained from Pi (1 ≤ i ≤ a − 1) by introducing a new vertex y and joining
y with each ui (1 ≤ i ≤ a − 1), and joining with each xi (1 ≤ i ≤ a − 1). Let G be a
graph obtained from H by adding the new vertices z1, z2, ..., zb−a+1 and joining each zi
(1 ≤ i ≤ b− a+ 1) with y. The graph G is shown in Figure 3.2.

First we show that γev(G) = a. Let W be a γev-set of G. It is easily observed
that W contains at least one edge from G − y. Therefore γev(G) ≥ a − 1. Let W =
{v1w1, v1w2, ..., va−1wa−1}. Then W is not a γev-set of G and so γev(G) ≥ a on the other
hand W ∪ {yu1} is a γev-set of G so that γev(G) = a.

Next we prove that γsev(G) = b. Let Z = {yz1, yz2, ..., yzb−a+1} be the set of all end
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edges of G. By Corollary 2.1, Z is a subset of every γev-set of G. It is easily observed that
every γsev-set ofG contains at least one edge fromG−y and so γsev(G) = b−a+1+a−1 = b.
Now W1 = W ∪ Z is a γsev-set of G so that γsev(G) = b. �

Theorem 3.6. For every positive integers a and b such that 2 ≤ a ≤ b, there exists a
connected graph G such that sev(G) = a and γsev(G) = b.

Proof: Let Pi : ui, vi, wi (1 ≤ i ≤ b − a) be a copy of path on three vertices and P :
z, w1, v1, u1, x, y be a path of order 6. Let H be a graph obtained from Pi (1 ≤ i ≤ b− a)
and P by joining each ui (2 ≤ i ≤ b− a) with y, and wi(2 ≤ i ≤ b− a) with z. Let G be a
graph obtained from H by adding vertices z1, z2, ..., za−1 and joining each zi (1 ≤ i ≤ a−1)
with z. The graph G is shown in Figure 3.3.

First we prove that sev(G) = a. Let Z = {zz1, zz2, ..., zza−1} be the set of end edges
of G. By Theorem 1.1, Z is a subset of every edge-to-vertex Steiner set of G. It is clear
that Z is not an edge-to-vertex Steiner set of G and so sev(G) ≥ a. Now Z ∪ {xy} is an
edge-to-vertex Steiner set of G so that sev(G) = a.

Next we prove that γsev(G) = b. By Corollary 2.1, Z is a subset of every edge-
to-vertex Steiner dominating set of G. Also it is easily observed that every edge-to-
vertex Steiner dominating set of G contains each viwi (1 ≤ i ≤ b − a) and so γsev(G) ≥
a− 1 + b− a = b− 1. Let S = Z ∪ {v1w1, v2w2, ..., vb−awb−a}. Then S is not an edge-to-
vertex Steiner dominating set of G and γsev(G) ≥ b. However S∪{xy} is an edge-to-vertex
Steiner dominating set of G so that γsev(G) = b. �

4. Conclusion

In this article, we introduce and studied the concept of the edge-to-vertex Steiner
domination number of a graph. In general, every edge-to-vertex Steiner set of G need
not be an edge-to-vertex geodetic set of G. By the similar way, every edge-to-vertex
Steiner dominating set of G need not be an edge-to-vertex geodetic dominating set of
G. Hence it can be further investigated to find out under which condition the inequality
γgev(G) ≤ γsev(G) or γsev(G) ≤ γgev(G) holds true.
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