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NEIGHBORHUB NUMBER OF GRAPHS

V. MATHAD1, S. I. KHALAF1∗, V. RAIKAR2, §

Abstract. Let G be a graph. A neighborhub set (n-hub set) S of G is a set of vertices
with the property that for any pair of vertices outside of S, there is a path between them
with all intermediate vertices in S and G =

⋃
v∈S

< N [v] >. The neighborhub number

(n-hub number) hn(G) is then defined to be the size of a smallest neighborhub set of G.
In this paper, the neighborhub number for several classes of graphs is computed, bounds
in terms of other graph parameters are also determined.

Keywords: Neighborhood number, Connected neighborhood number, Hub number, Total
hub number, Neighborhub number.
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1. Introduction

Consider a transportation network, for example a network of locations(streets) in a
city. We want to identify minimum locations of this network such that there is an easy
passage between other locations of this network that passes solely through these identified
locations. Converting it into graph theoretic terms, let a graph G = (V,E) represent this
network. Now, our concern is with a set S ⊆ V of minimum cardinality such that any
vi, vj ∈ V \S are connected by a path having only elements of S. By a graph G = (V,E),
we mean a finite, undirected graph without loops or multiple edges, δ(G) denote the
minimum degree among the vertices of G. For graph theoretic terminology, we refer to
[2].

The open neighborhood N(v) of a vertex v in G is the set of vertices adjacent to v
and its closed neighborhood N [v] = N(v) ∪ {v}. For a set S ⊆ V , its open neighborhood
N(S) =

⋃
v∈S

N(v) and its closed neighborhood N [S] = S ∪N(S). For any two graphs G1

and G2 having disjoint vertex set V1 and V2, and edge sets E1 and E2, respectively, their
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corona G1 ◦G2 is the graph obtained by taking one copy of G1 of order p1 and p1 copies
of G2, and then joining the ith vertex of G1 to every vertex in the ith copy of G2. For
every v ∈ V1, denote by Gv

2, the copy of G2 whose vertices are attached one by one to the
vertex v [2].

A subset D of G is called a dominating set of G if each vertex of V \D is adjacent to
at least one vertex of D. The domination number of G denoted as γ(G) is the minimum
cardinality of a dominating set in G [3].
A dominating set D of a connected graph G is called a connected dominating set if the
induced subgraph 〈D〉 is connected. The minimum cardinality of a connected dominating
set of G is called the connected domination number of G and is denoted by γc(G) [3].

A subset S of V is called a neighborhood set of G if G =
⋃
v∈S

< N [v] >. A neighborhood

set S is said to be minimal if no proper subset of S is a neighborhood set. The minimum
cardinality of a minimal neighborhood set of G is called the neighborhood number of G
and is denoted by η(G) [16]. Various types of neighborhood numbers have been defined
and studied by several authors. E. Sampathkumar and Prabha S. Neeralagi [17] intro-
duced the concept of connected neighborhood number of graphs. A neighborhood set S
of G is called a connected neighborhood set if the induced subgraph < S > is connected.
The minimum cardinality of a connected neighborhood set of G is called the connected
neighborhood number of G and is denoted by ηc(G).

For v ∈ V (G), the contraction of v in G (denoted by G/v) is the graph obtained by
deleting v and putting a clique on the (open) neighborhood of v. If two neighbors of v are
already adjacent, then they remain simply adjacent [18]. Suppose that H ⊆ V (G) and let
x, y ∈ V (G). An H-path between x and y is a path where all intermediate vertices are
from H, (this includes the degenerate cases where the path consists of the single edge xy
or a single vertex x if x = y; call such an H-path trivial) [18].

A set S ⊆ V (G) is a hub set of G if it has the property that, for any x, y ∈ V (G) \ S,
there is an S-path in G between x and y [18]. The smallest size of a hub set in G is called
a hub number of G and is denoted by h(G) [18]. A hub set S of G is a restrained hub set
of G if for any two vertices u, v /∈ S, there is a path between them with all intermediate
vertices in V \ S, the minimum cardinality of S in G is called a restrained hub number
of G and is denoted by hr(G) [7]. Various types of hub numbers have been defined and
studied by several authors [6, 8, 9, 10, 11, 12, 13, 14].

Theorem 1.1. [18] Let S be a subset of V (G). Then G/S is complete if and only if S is
a hub set of G.

Theorem 1.2. [1] For any connected graphs G and F such that |V (G)| ≥ 2, h(G ◦ F ) =
|V (G)|.

2. Neighborhub number and Connected Neighborhub number

A set S ⊆ V (G) is a neighborhub set (n-hub set) of G if it has the property that, for
any x, y ∈ V (G)\S, there is an S-path in G between x and y and G =

⋃
v∈S

< N [v] >. The

smallest size of an n-hub set in G is called a neighborhub number of G, and is denoted
by hn(G). A neighborhub set S of G is called a connected neighborhub set (cn-set) if
< S > is connected. The minimum cardinality of a connected neighborhub set is called
the connected neighborhub number of G and is denoted by hcn(G).
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We now proceed to compute hn(G) for some standard graphs.

Proposition 2.1.

(1) For any path Pn,

hn(Pn) =

{
n− 2, if n ≥ 3 ;
1, if n = 2 .

.
(2) For any cycle Cn,

hn(Cn) =

{
n− 2, if n ≤ 5 ;
n− 3, if n ≥ 6 .

.
(3) For any complete graph Kn, hn(Kn) = 1, for all n ≥ 1.
(4) For the complete bipartite graph Km,n, hn(Km,n) = min{m,n}.
(5) For the wheel Wn+1 = Cn +K1, hn(Wn+1) = 1.
(6) For a disconnected graphG having k componentsG1, G2, · · · , Gk of orders n1, n2, · · · , nk,

respectively such that n1 ≤ n2 ≤ · · · ≤ nk, hn(G) = n1 +n2 + · · ·+nk−1 +hn(Gk).

Proposition 2.2. For any connected graph G, h(G) ≤ hn(G) ≤ ηc(G).

Proof. Every n-hub set is a hub set. So, h(G) ≤ hn(G). Also, since every connected
neighborhood set of G is a n-hub set, we have hn(G) ≤ ηc(G). �

Remark 2.1.

(1) A hub set of G need not be a n-hub set of G. For example, consider a cycle on
five vertices, C5 = (v1, v2, v3, v4, v5, v1). S = {v1, v3} is a hub set of C5, but it is
not a n-hub set because C5 6=

⋃
vi∈S

< N [vi] >.

(2) A n-hub set need not be a connected neighborhood set. For example, consider a
cycle on six vertices C6 = (v1, v2, v3, v4, v5, v6, v1). Here S = {v1, v3, v5} is a n-hub
set of C6, but it is not a connected neighborhood set.

Proposition 2.3. For any connected graph G, γ(G) ≤ hn(G).

Proof. Since every n-hub set is a dominating set, we have γ(G) ≤ hn(G). �

Remark 2.2. A dominating set of G need not be a n-hub set of G. For example, in a
cycle C5 = (v1, v2, v3, v4, v5, v1), {v1, v3} is a dominating set but not a n-hub set.

Theorem 2.1. Let S be a n-hub set of G. Then G/S is complete graph.

Proof. Let S be a n-hub set of G. Since every n-hub set is a hub set, it follows that S is
a hub set of G. By Theorem 1.1 it follows that G/S is complete graph. �

The converse of above Theorem is not true. For example, consider a cycle on four
vertices C4 = (v1, v2, v3, v4, v1) and let S = {v1}. Then G/S ∼= K3, the complete graph.
But S is not a n-hub set of G.

Theorem 2.2. For any connected graph G, hn(G) ≤ α1(G), where α1 is an edge covering
number of G.

Proof. Let L = {x1, x2, · · ·xk} be an edge cover for G. Then we can select a vertex vi
incident with each edge xi such that {v1, v2, · · · vk} is a n-hub set of G. Hence, hn(G) ≤
α1(G). �

Equality in above Theorem holds for G = K2.
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Theorem 2.3. For any connected graph G, η(G) ≤ hn(G).

Proof. Let S be a n-hub set of G. Let W be a set of vertices such that W ∩ S = {v} and
no vertex of W \ {v} is adjacent to any vertex of S \ {v} (nor in S themselves). If there
exist u,w ∈W , u 6= v, w 6= v such that u and w are connected only by a trivial path in G,
then either v is not adjacent to u or w or both, and G 6=

⋃
x∈S

< N [x] >, a contradiction

to the fact that S is a n-hub set. So, v must be adjacent to all vertices of W . Then
G =

⋃
x∈S

< N [x] >, so that S is a neighborhood set of G. Hence, η(G) ≤ hn(G). �

Theorem 2.4. For any connected graph G, hcn(G) ≤ ηc(G).

Proof. Let S be a connected neighborhood set of G. Then for any x, y ∈ V \ S, there
exists an S-path between them and G =

⋃
v∈S

< N [v] >. This is stronger condition than

that for a connected n-hub set. So, any connected neighborhood set is also a connected
n-hub set. �

Theorem 2.5. For any connected graph G with diameter d(G), hn(G) ≥ d(G) − 1 and
the inequality is sharp.

Proof. Since h(G) ≤ hn(G), and h(G) ≥ d(G)− 1, we have d(G)− 1 ≤ hn(G). The bound
is sharp for path Pn, n ≥ 3 for which d = n− 1 and hn(Pn) = n− 2. �

Theorem 2.6. Let G = Km1,m2,...,mk
be a complete k−partite graph. Then

(1) If mi ≥ 2, 1 ≤ i ≤ k, then hn(G) = 2.
(2) If mi = 1, for some i, 1 ≤ i ≤ k, then hn(G) = 1.

Proof. (1) Let S = {u, v}, where u, v are any vertices of G belonging to different parts.
Then, there is a {u, v}-path between any two vertices of V (G) \ S. So, S is a hub
set of G. By the definition of complete k-partite graph, N [u] ∪N [v] = V (G) and
also, < N [u] > ∪ < N [v] >= G. So, S is a n-hub set of G. Since {w} is not a
n-hub set of G for any w ∈ V (G), it follows that S is a minimum n-hub set of G.
Hence, hn(G) = 2.

(2) Since mi = 1, for some i, 1 ≤ i ≤ k, let v be the vertex in the part of size one, then
by the definition of complete k−partite graph N [v] = V (G) and < N [v] >= G.
Hence {v} is a minimum n-hub set of G, therefore hn(G) = 1.

�

Theorem 2.7. Let T be a tree with order n ≥ 3 and l leaves. Then

hn(T ) = n− l.

Proof. Let S be the set of all nonleaf vertices and let v ∈ V (T )\S, then v is a leaf of T and
v should be adjacent to a vertex of S. Therefore N [S] = V (T ) and so T =

⋃
u∈S

< N [u] >.

Since < S > is connected and every vertex not in S is adjacent to a vertex of S, S is a
n-hub set of T . Suppose that S is not minimum, let S′ ⊂ S be a n-hub set of T , there is
a nonleaf vertex w such that w /∈ S′, so there is a leaf vertex x adjacent to w only. Now
x ∈ V (T ) and x /∈ N [S′], hence S′ is not a n-hub set of T . Therefore S is a minimum
n-hub set of T . �

Corollary 2.1. For the double star Sn,m, hn(Sn,m) = 2.

Corollary 2.2. For the star K1,n−1, n ≥ 3, hn(K1,n−1) = 1.
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Theorem 2.8. For a minimum n-hub set S of G, if there exists a vertex v ∈ V (G) \ S,
such that N(v) ⊆ S, then

hn(G) ≤ h(G) + 1.

Proof. Let S be a minimum n-hub set of G, and v ∈ V (G)\S be a vertex with NG(v) ⊆ S.
Then in G, [V (G) \ S] ⊆ NG[v], and so NG[S ∪ {v}] = V (G), where S ∪ {v} is a hub set

of G and G =
⋃

x∈S∪{v}
< N [x] >. Therefore hn(G) ≤ h(G) + 1. �

Proposition 2.4. Let S be any hub set of a graph G, if there exists a vertex u ∈ S, such
that N(u) ⊆ S. Then S is a n-hub set of G.

Proof. Let S be any hub set of a graph G, assume that there exists a vertex u ∈ S with
NG(u) ⊆ S. Then, in G, (V (G) \ S) ⊆ NG[u]. Since u ∈ S and G =

⋃
x∈S

< NG[x] >, S is

a n-hub set of G. Hence, we get the result. �

Theorem 2.9. For any graph G, hn(G) ≤ hr(G) + 1.

Proof. Let G be a graph, and S be a minimum restrained hub set of G. Let C = N [S]
and J = V (G) \C. Since J = V (G) \N [S] and by the definition of the restrained hub set
of G, any vertex v ∈ J , must be adjacent to every vertex of J , it follows that < J > is a
complete graph. Therefore N [S] ∪N [v] = V (G) and G = (

⋃
x∈S

< N [x] >)∪ < N [v] >. So

S ∪ {v} is a n-hub set of G. �

Theorem 2.10. Every nontrivial connected graph G of order n satisfies hn(G) ≤ n − 1
with equality if and only if G = K2.

Proof. Let G be a connected nontrivial graph of order n. Clearly, for any v ∈ V (G),
V (G) \ {v} is a n-hub set but is not minimal. So, hn(G) ≤ n − 1. Now, let V (G) =
{v1, v2, · · · , vn} and without loss of generality, S = {v2, v3, · · · , vn} be a minimum n-hub
set of G. Then V \ S = {v1} and v1 ∈ N(vi) for some vi ∈ S. Contrarily suppose n > 2,
we consider the following cases.
Case 1: N(vi) = {v1}. Since G is connected and n ≥ 3, there exists vj ∈ S \ {vi} such
that v1 ∈ N(vj) and N(vj) \ {v1} ⊆ S. Then (S \ {vi, vj}) ∪ {v1} is a n-hub set of G,
contradicting the minimality of S.
Case 2: N(vi) 6= {v1}. Then there exists vj ∈ S such that vj ∈ N(vi). Since N(vi)\{v1} ⊆
S and N(vj)\{v1, vi} ⊆ S, it folows that (S \{vi, vj})∪{v1} is a n-hub set, a contradiction
to the minimality of S.
Hence n = 2. �

Corollary 2.3. If G is a (n,m) graph with δ(G) ≥ 1 and k components G1, G2, · · · , Gk

of orders n1 ≤ n2,≤ · · · ≤ nk, respectively, then hn(G) ≤ n− 1, with equality if and only
if every component of G is K2.

Proof. Follows from Proposition 2.1 and above theorem. �

Corollary 2.4. For any nontrivial graph G of order n, hn(G) + hn(G) ≤ 2(n − 1) and
hn(G) · hn(G) ≤ (n− 1)2.

3. Neighborhub number of join and corona of graphs

Here we determine the neighborhub number of the join and corona of two graphs.

Theorem 3.1. Let G1 and G2 be two graphs such that |V (G1)| = 1. Then hn(G1 +G2) =
1.
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Proof. Let V (G1) = {v}, then by the definition of G1 +G2, v is adjacent to every vertex
of G2, < v >= G1 + G2. Also v is the only vertex in a path between any two vertices of
G2, hence {v} is a minimum neighborhub set of G1 +G2. �

Corollary 3.1. Let G1 be a graph with |V (G1)| = 1 and G2 be any graph. Then hn(G1 ◦
G2) = 1.

Proof. Suppose |V (G)| = 1, then G1◦G2 is just G1+G2, therefore by the previous theorem
hn(G1 ◦G2) = 1. �

Proposition 3.1. Let G1 and G2 be any two non complete graphs such that |V (G1)| ≥ 2
and |V (G2)| ≥ 2. Then hn(G1 +G2) = 2.

Proof. Let v ∈ V (G1), u ∈ V (G2). Let S = {u, v}, then v is adjacent to u in G1 +G2, let
w, z ∈ V (G1 +G2), we discuss the following cases:
Case 1: Let w, z ∈ V (G1). By definition of G1 + G2 the vertices w, z are adjacent to u.
So, there is a {u}-path between w and z in G1 +G2.
Case 2: Let w, z ∈ V (G2). Using similar argument as in Case 1, there is a {v}-path
between w and z in G1 +G2.
Case 3: Let w ∈ V (G1) and z ∈ V (G2). Then we observe by the definition of G1 + G2,
that w is adjacent to u, and z is adjacent to v. Since v is adjacent to u, wuvz is an
S-path in G1 +G2. Note that, by the definition of G1 +G2, v is adjacent to every vertex
of G2 and u is adjacent to every vertex of G1. So, N [v] ∪ N [u] = V (G1 + G2) and
< N [v] > ∪ < N [u] >= G1 +G2, this implies that S is a n-hub set of G1 +G2.
From all the above cases, we have hn(G1 + G2) ≤ 2. Since G1 and G2 are noncomplete
graphs, neither {u} nor {v} is a n-hub set of G1 +G2. Hence hn(G1 +G2) ≤ 2. �

Theorem 3.2. Let G1 be a connected graph of order n ≥ 2, and let G2 be any graph.
Then hn(G1 ◦G2) = n.

Proof. Let G1 be a connected graph with order n ≥ 2, and let V (G1) = {v1, v2, ..., vn},
then for a vertex vi ∈ V (G1), by the definition of corona of G1 and G2 we conclude that
Gvi

2 ⊆ N [vi], for every i, 1 ≤ i ≤ n. So, N [V (G)] = V (G1 ◦G2), now let S = V (G1), then
by Theorem 1.2, S is a minimum hub set of G1 ◦ G2 and

⋃
x∈S

< N [x] >= G1 ◦ G2, the

result follows. �
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