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ON A SUBCLASS OF MEROMORPHIC FUNCTIONS DEFINED BY

HILBERT SPACE OPERATOR

P. T. REDDY1∗, B. VENKATESWARLU2, H. NIRANJAN3, R. M. SHILPA2, §

Abstract. In this paper we introduce and study a new subclass of meromorphic func-
tions associated with a certain differential operator on Hilbert space. For this class, we
obtain several properties like the coefficient inequality, growth and distortion theorem,
radius of close-to-convexity, starlikeness and meromorphically convexity and integral
transforms. Further, it is shown that this class is closed under convex linear combina-
tions.
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1. Introduction

Let Σ be denote the class of functions of the form

f(z) =
1

z
+

∞∑
m=1

amz
m (1)

which are regular in domain E = {z : 0 < |z| < 1} with a simple pole at the origin with
residue 1 there.

Let Σs, Σ∗(α) and Σk(α), 0 ≤ α < 1 be denote the subclass of Σ that are univalent,
moromorphically starlike of order α and meromorphically convex of order α respectively.
Analytically f(z) of the form (1) is in Σ∗(α) if and only if

Re

{
−zf

′(z)

f(z)

}
> α, z ∈ E. (2)
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Similarly, f ∈ Σk(α) if and only if f(z) is of the form (1) and satisfies

Re

{
−
(

1 +
zf ′′(z)

f ′(z)

)}
> α, z ∈ E. (3)

It being understood that if α = 1 then f(z) = 1
z is the only function which is Σ∗(1) and

Σk(1).
The classes Σ∗(α) and Σk(α) have been extensively studied by Pommerenke [7], Clunie

[2], Royster [8]and others.
Since, to a certain extent the work in the meromorphic univalent case has paralleled

that of regular univalent case, it is natural to search for a subclass of Σs that has properties
analogous to those of T ∗(α). Juneja and Reddy [6] introduced the class Σp of functions of
the form

f(z) =
1

z
+

∞∑
m=1

amz
m, am ≥ 0, (4)

Σ∗p(α) = Σp ∩ Σ∗(α).

For functions f(z) in the class Σp, we define a linear operator Dn by the following form

D0f(z) = f(z)

D1f(z) =
1

z
+ 3a1z + 4a2z

2 + · · · =
(z2f(z))′

z

D2f(z) = D(D1f(z))

...

Dnf(z) = D(Dn−1f(z)) =
1

z
+

∞∑
m=1

(m+ 2)namz
m

=
(z2Dn−1f(z))′

z
, for n = 1, 2, · · · . (5)

Let H be a Hilbert space on the complex field and L(H) denote the algebra of all
bounded linear operators on H. For a complex- valued function f analytic in a domain E
of the complex plane containing the spectrum σ(T ) of the bounded linear operator T, let
f(T ) denote the operator on H defined by the Riesz-Dunford integral [3]

f(T ) =
1

2πi

∫
C

(zI − T )−1f(z)dz,

where I is the identity operator on H and C is positively oriented simple closed rectifiable
closed contour containing the spectrum σ(T ) in the interior domain [4]. The operator
f(T ) can also be defined by the following series

f(T ) =
∞∑
m=0

fm(0)

m!
Tm

which converges in the norm topology.
The class of all functions f ∈ Σ with am ≥ 0 is denoted by Σp. The object of the preset

paper is to investigate the following subclass of Σp associated with the differential operator
Dnf(z).



1432 TWMS J. APP. AND ENG. MATH. V.12, N.4, 2022

Definition 1.1. For 0 ≤ β < 1 and 0 ≤ α < 1, a function f ∈ Σp given by (1) is in the
class σp(α, β, T ) if

‖T (Dnf(T ))′ − {(β − 1)Dnf(T ) + βT (Dnf(T ))′}‖
< ‖T (Dnf(T ))′ + (1− 2α){(β − 1)Dnf(T ) + βT (Dnf(T ))′}‖.

The main object of the paper is to study some usual properties of the geometric
function theory such as coefficient bounds, growth and distortion properties, radius of
convexity, convex linear combination and convolution properties, integral operators and
δ−neighbourhoods for the class σp(α, β, T ).

2. Coefficient Bounds

We first give a characterization of the class σp(α, β, T ) by finding necessary and sufficient
condition for a functions in the class. This characterization implies coefficient estimates.

Theorem 2.1. A function f ∈ Σp given by (4) is in the class σp(α, β, T ) for all contraction
T with T 6= θ if and only if

∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)nam ≤ (1− α). (6)

The result is sharp for the function

f(z) =
1

z
+

1− α
[m+ α− αβ(m+ 1)](m+ 2)n

zm, m ≥ 1. (7)

Proof. Suppose that (6) is true for 0 ≤ β < 1 and 0 ≤ α < 1. Then∥∥T (Dnf(T ))′ − {(β − 1)Dnf(T ) + βT (Dnf(T ))′}
∥∥

−
∥∥T (Dnf(T ))′ + (1− 2α){(β − 1)Dnf(T ) + βT (Dnf(T ))′}

∥∥
=

∥∥∥∥∥
∞∑
m=1

(m+ 1)(1− β)(m+ 2)namT
m

∥∥∥∥∥
−

∥∥∥∥∥2(1− α)T−1 −
∞∑
m=1

[m+ (1− 2α)(β − 1 + βm)](m+ 2)namT
m

∥∥∥∥∥
≤

∞∑
m=1

(m+ 1)(1− β)(m+ 2)nam‖T‖m − 2(1− α)‖T−1‖

+

∞∑
m=1

[m+ (1− 2α)(β − 1 + βm)](m+ 2)nam‖Tm‖

= 2

∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)nam‖Tm‖ − 2(1− α)‖T−1‖

≤ 2(1− α)− 2(1− α) = 0, by using (6)

and so f ∈ Σp is in the class σp(α, β, T ).
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Conversely suppose that f ∈ σp(α, β, T ) satisfies the coefficients inequality (6).
Since f ∈ σp(α, β, T ) then∥∥T (Dnf(T ))′ − {(β − 1)Dnf(T ) + βT (Dnf(T ))′}

∥∥
<
∥∥T (Dnf(T ))′ + (1− 2α){(β − 1)Dnf(T ) + βT (Dnf(T ))′}

∥∥ .
From this inequality, it is obtained that∥∥∥∥∥

∞∑
m=1

(m+ 1)(1− β)(m+ 2)namT
m−1

∥∥∥∥∥
<

∥∥∥∥∥2(1− α)−
∞∑
m=1

[m+ (1− 2α)(β − 1 + βm)](m+ 2)namT
m+1

∥∥∥∥∥ .
By choosing T = rI(0 < r < 1) in above inequality, we get

∞∑
m=1

(m+ 1)(1− β)(m+ 2)namr
m+1

2(1− α)−
∞∑
m=1

[m+ (1− 2α)(β − 1 + βm)](m+ 2)namrm+1

< 1.

Letting r → 1 in the above inequality, we obtain the assertion (6).
This completes the proof of the theorem. �

From Theorem 2.1, we have the following result.

Corollary 2.1. If a function f(z) ∈ Σp given by (4) is in the class σp(α, β, T ) then

am ≤
(1− α)

∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)n
, (m ≥ 1). (8)

The result is sharp for the function f of the form (7).

3. Distortion Bounds

In this section, we obtain growth and the distortion bounds for the class σp(α, β, T ).

Theorem 3.1. If f ∈ σp(α, β, T ) then 0 < |z| = r < 1,

‖f(T )‖ ≥ 1

‖T‖
− (1− α)

3n[1 + α− 2αβ]
‖T‖,

‖f(T )‖ ≤ 1

‖T‖
+

(1− α)

3n[1 + α− 2αβ]
‖T‖. (9)

The result is sharp for

f(z) =
1

z
+

(1− α)

3n[1 + α− 2αβ]
z. (10)

Proof. Suppose f(z) is in σp(α, β, T ). By Theorem 2.1, we have

3n[1 + α− 2αβ]
∞∑
m=1

am ≤
∞∑
m=1

(m+ 2)n[m+ α− αβ(m+ 1)]am ≤ (1− α).

Therefore
∞∑
m=1

am ≤ 1−α
3n[1+α−2αβ] .
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Also, if f(T ) = T−1 +
∞∑
m=1

amT
m, then

1

‖T‖
−
∞∑
m=1

am‖T‖m ≤ ‖f(T )‖ ≤ 1

‖T‖
+

∞∑
m=1

am‖T‖m. (11)

Since ‖T‖ < 1, the above inequality becomes

1

‖T‖
− ‖T‖

∞∑
m=1

am ≤ ‖f(T )‖ ≤ 1

‖T‖
+ ‖T‖

∞∑
m=1

am. (12)

Using (11), we get the result. �

Theorem 3.2. If f(z) ∈ σp(α, β, T ) then

‖f ′(T )‖ ≥ 1

‖T‖2
− (1− α)

3n[1 + α− 2αβ]
,

‖f ′(T )‖ ≤ 1

‖T‖2
+

(1− α)

3n[1 + α− 2αβ]
. (13)

The result is sharp for

f(z) =
1

z
+

(1− α)

3n[1 + α− 2αβ]
z. (14)

4. Extreme points

In this section, we obtain extreme bounds for the class σp(α, β, T ).

Theorem 4.1. Let f0(z) = 1
z and

fm(z) =
1

z
+

(1− α)

[m+ α− αβ(m+ 1)](m+ 2)m
zm, m = 1, 2, · · · . (15)

Then f ∈ σp(α, β, T ) if and only if can be expressed in the form

f(z) =

∞∑
m=0

τmfm(z), τm ≥ 0 and

∞∑
m=0

τm = 1.

Proof. Assume that f(z) =
∞∑
m=1

τmfm(z), (τm ≥ 0,
∞∑
m=0

τm = 1, m = 0, 1, 2, · · · ).

Then we have

f(z) =

∞∑
m=0

τmfm(z)

= τ0f0(z) +

∞∑
m=1

τmfm(z)

=
1

z
+
∞∑
m=1

1− α
[m+ α− αβ(m+ 1)](m+ 2)n

zm.

Therefore
∞∑
m=1

[m+ α− α(m+ 1)](m+ 2)nτm
1−α

[m+α−αβ(m+1)](m+2)n

= (1− α)
∞∑
m=1

τm = (1− α)(1− τ0) ≤ (1− α).

Hence by Theorem 2.1, f ∈ σp(α, β, T ).
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Conversely, suppose that f ∈ σp(α, β, T ). Since, by Corollary 2.1,

am ≤
1− α

[m+ α− αβ(m+ 1)](m+ 2)n
, m ≥ 1,

setting τm = [m+α−αβ(m+1)](m+2)n

1−α am, m ≥ 1 and τ0 = 1−
∞∑
m=1

τm.

We obtain f(z) = τ0f0(z) +
∞∑
m=1

τmfm(z).

This completes the proof of the theorem. �

Theorem 4.2. The class f ∈ σp(α, β, T ) is closed under convex combination.

Proof. Let the functions f(z) = 1
z +

∞∑
m=1

amz
m and g(z) = 1

z +
∞∑
m=1

bmz
m be in the class

σp(α, β, T ). Then by Theorem 2.1, we have

∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)nam ≤ (1− α),

∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)nbm ≤ (1− α).

For 0 ≤ τ ≤ 1, define the function h(z) as h(z) = τf(z) + (1− τ)g(z).

Then we get h(z) = 1
z +

∞∑
m=1

[τam + (1− τ)bm]zm. Now we obtain

∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)n[τam + (1− τ)bm]

= τ

∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)nam + (1− τ)

∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)nbm

≤ τ(1− α) + (1− τ)(1− α)

= (1− α).

So, h ∈ σp(α, β, T ). �

5. Radii of close-to-convexity, starlikeness and convexity

Theorem 5.1. Let f ∈ σp(α, β, T ). Then f is meromorphically close-to-convex of order
γ (0 ≤ γ < 1) in the disc |z| < r1, where

r1 = inf
m∈N

[
(1− γ)[m+ α− αβ(m+ 1)](m+ 2)n

m(1− α)

] 1
m+1

. (16)

The result is sharp for the extremal function given by (7).

Proof. It sufficient to show that

‖f ′(T )T 2 + 1‖ < (1− γ). (17)

By Theorem 2.1, we have

∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)n

1− α
am ≤ 1.
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So the inequality

‖f ′(T )T 2 + 1‖ = ‖
∞∑
m=1

mamT
m+1‖ ≤

∞∑
m=1

mam‖T‖m+1 < (1− γ)

holds true if
m‖T‖m+1

1− γ
≤ [m+ α− αβ(m+ 1)](m+ 2)n

1− α
.

Then (15) holds true if

‖T‖m+1 ≤ (1− γ)[m+ α− αβ(m+ 1)](m+ 2)n

m(1− α)
, m ≥ 1

which yields the close-to-convexity of the function and completes the proof. �

Theorem 5.2. Let f ∈ σp(α, β, T ). Then f is meromorphically starlike of order γ (0 ≤
γ < 1) in the disc |z| < r2, where

r2 = inf
m∈N

[
(1− γ)[m+ α− αβ(m+ 1)](m+ 2)n

(m+ 2− γ)(1− α)

] 1
m+1

. (18)

The result is sharp for the extremal function given by (7).

Proof. Let f(T ) = T−1 +
∞∑
m=1

amT
m. Since f ∈ σp(α, β, T ) is meromorphically starlike of

order γ, ∥∥∥∥Tf ′(T )

f(T )
+ 1

∥∥∥∥ ≤ (1− δ). (19)

Substituting for f, the above inequality becomes,

∞∑
m=1

(
m+ 2− γ

1− γ

)
‖T‖m+1am ≤ 1. (20)

By Theorem 2.1,
∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)n

1− α
am ≤ 1. (21)

Then, (20) will be true if
(
m+2−γ
1−γ

)
‖T‖m+1 ≤ [m+α−αβ(m+1)](m+2)n

1−α .

That is ‖T‖ ≤
[
(1−γ)[m+α−αβ(m+1)](m+2)n

(1−α)(m+2−γ)

] 1
m+1

. �

Theorem 5.3. Let f ∈ σp(α, β, T ). Then f is meromorphically convex of order γ (0 ≤
γ < 1) in the disc |z| < r3, where

r3 = inf
m∈N

[
(1− γ)[m+ α− αβ(m+ 1)](m+ 2)n

m(m+ 2− γ)(1− α)

] 1
m+1

.

The result is sharp for the extremal function given by (7).

Proof. By using the technique employed in the proof of the Theorem 5.1, we can show
that ∥∥∥∥Tf ′′(T )

f ′(T )
+ 2

∥∥∥∥ < 1− γ

for |z| < r3 and prove that the assertion of the theorem is true. �
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6. Hadamard product

Theorem 6.1. For function f, g ∈ Σp defined by (1) and (2) respectively, let f, g ∈
σp(α, β, T ). Then the Hadamard product f ∗ g ∈ σp(ρ, β, T ), where

ρ ≤ 1− (1− α)2(m+ 1)(1− β)

(1− α)2[1− β(m+ 1)] + [m+ α− αβ(m+ 1)]2(m+ 2)n
.

Proof. We need to find the largest ρ such that
∞∑
m=1

[m+ ρ− ρβ(m+ 1)](m+ 2)n

1− ρ
ambm ≤ 1.

Since f, g ∈ σp(α, β, T ), by Theorem 2.1, we have

∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)n

1− α
am ≤ 1 (22)

and
∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)n

1− α
bm ≤ 1. (23)

From (22) and (23), we find , by means of the Cauchy-Schwartz inequality, that
∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)n

1− α
√
ambm ≤ 1. (24)

We want only to show that

[m+ ρ− ρβ(m+ 1)](m+ 2)n

1− ρ
ambm ≤

[m+ α− αβ(m+ 1)](m+ 2)n

1− α
√
ambm

⇒
√
ambm ≤

(1− ρ)[m+ α− αβ(m+ 1)]

(1− α)[m+ ρ− ρβ(m+ 1)]
. (25)

On the other hand, from (24), we have√
ambm ≤

(1− α)

[m+ α− αβ(m+ 1)](m+ 2)n
. (26)

Therefore in view of (25) and (26), it is enough to find the largest ρ that

(1− α)

[m+ α− αβ(m+ 1)](m+ 2)n
≤ (1− ρ)[m+ α− αβ(m+ 1)]

(1− α)[m+ ρ− ρβ(m+ 1)]

which yields

ρ ≤ [m+ α− αβ(m+ 1)]2(m+ 2)n − n(1− α)2

[m+ α− αβ(m+ 1)]2(m+ 2)n + (1− α)2[1− β(m+ 1)]

⇒ ρ ≤ 1− (1− α)2(m+ 1)(1− β)

(1− α)2[1− β(m+ 1)] + [m+ α− αβ(m+ 1)]2(m+ 2)n
.

�

Theorem 6.2. For function f, g ∈ Σp defined by (1) and (2) respectively, let f, g ∈

σp(α, β, T ). Then the function k(z) = 1
z +

∞∑
m=1

(a2m + b2m)zm is in the class σp(ρ, β, T ),

where

ρ ≤ 1− 2(1− α)2(m+ 2)n[1− β(m+ 1) +m]

{[m+ α− αβ(m+ 1)](m+ 2)n}2 + 2(1− α)2(m+ 2)n[1− β(m+ 1)]
.
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Proof. Since f, g ∈ σp(α, β, T ), we have

∞∑
m=1

[
[m+ α− αβ(m+ 1)](m+ 2)n

1− α
am

]2
≤ 1 (27)

and

∞∑
m=1

[
[m+ α− αβ(m+ 1)](m+ 2)n

1− α
bm

]2
≤ 1. (28)

Combining the last two inequalities, we get
∞∑
m=1

[
[m+ α− αβ(m+ 1)](m+ 2)n

1− α

]2
(a2m + b2m) ≤ 1. (29)

But we need to find the largest ρ such that
∞∑
m=1

[
[m+ ρ− ρβ(m+ 1)](m+ 2)n(a2m + b2m)

1− α

]
≤ 1. (30)

The inequality (30) would hold if

[m+ ρ− ρβ(m+ 1)](m+ 2)n

1− ρ
≤ 1

2

[
[m+ α− αβ(m+ 1)](m+ 2)n

1− α

]2
.

Then we have

ρ ≤ ([m+ α− αβ(m+ 1)](m+ 2)n)2 − 2m(1− α)2(m+ 2)n

([m+ α− αβ(m+ 1)](m+ 2)n)2 + 2(1− α)2(m+ 2)n[1− β(m+ 1)]

= 1− 2(1− α)2(m+ 2)n[1− β(m+ 1) +m]

([m+ α− αβ(m+ 1)](m+ 2)n)2 + 2(1− α)2(m+ 2)n[1− β(m+ 1)]
.

�

7. Integral operators

In this section, we consider integral transforms of functions in the class σp(α, β, T ) of
the type considered by Goel and Sohi [5].

Theorem 7.1. Let the function f ∈ Σp given by (1) be in the class σp(α, β, T ). Then the
integral operator

F (z) = c

1∫
0

ucf(uz)du, 0 < u ≤ 1, 0 < c <∞ (31)

is in the class σp(ρ, β, T ), where

ρ = 1− (1− α)(1 + 2β) + c

(1 + α− 2αβ)(c+ 2) + (1− α)(1− 2β)c
.

The result is sharp for the function

f(z) =
1

z
+

(1− α)

3n[1 + α− 2αβ]
z.

Proof. Let f ∈ Σp given by (1) be in the class σp(α, β, T ). Then

F (z) = c

1∫
0

ucf(uz)du =
1

z
+

c

c+m+ 1
amz

m. (32)
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We have to show that
∞∑
m=1

[
c[m+ ρ− ρβ(m+ 1)](m+ 2)n

(1− ρ)(c+m+ 1)

]
am ≤ 1. (33)

Since f ∈ σp(α, β, T ), we have
∞∑
m=1

[m+ α− αβ(m+ 1)](m+ 2)n

1− α
am ≤ 1.

The inequality (33) satisfied if

c[m+ ρ− ρβ(m+ 1)]

(1− ρ)(c+m+ 1)
≤ [m+ α− αβ(m+ 1)]

1− α
.

Then we get

ρ ≤ [m+ α− αβ(m+ 1)](m+ c+ 1)− (1− α)cm

[m+ α− αβ(m+ 1)](m+ c+ 1) + c(1− α)[1− β(m+ 1)]

= 1− (1− α)(1 + β(m+ 1) + cm

[m+ α− αβ(m+ 1)](m+ c+ 1) + c(1− α)[1− β(m+ 1)]
.

Since φ(m) = 1− (1− α)(1 + β(m+ 1) + cm

[m+ α− αβ(m+ 1)](m+ c+ 1) + c(1− α)[1− β(m+ 1)]
is an increasing function of m, m ≥ 1. We obtained the desired result. �
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