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AMPLIFIED ECCENTRIC CONNECTIVITY INDEX OF GRAPHS

V. MATHAD1, SUJATHA H. N.1∗ PUNEETH S.1, §

Abstract. A new distance based graphical index, coined as amplified eccentric connec-
tivity index, has been established and the formulae to calculate the amplified eccentric
connectivity index of some standard graphs, Dutch windmill graph and molecular graph
of cycloalkenes has been computed. Also, in the case of boiling points of primary and
secondary amines, the study shows that the amplified eccentric connectivity index gives
a greater correlation of 98%, when compared to the Wiener and Eccentric connectivity
indices.

Keywords: Graphical index, Distance, Amplified eccentric connectivity index, Dutch wind-
mill graph, Molecular graph, Cycloalkenes.
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1. Introduction

Graphical indices play an important role in chemical graph theory, which deal with
the classification and characterization of chemical structures. A fundamental concept of
chemistry is that the structural characteristics of a molecule are responsible for its prop-
erties. Graphical indices are a convenient means of translating chemical constitution into
numerical values which can be used for correlation with various physical properties, chemi-
cal reactivity or biological activity [1, 8]. These graph invariants are also called Topological
indices as they characterize the topology of the molecular graphs [10]. The use of graphi-
cal indices in QSPR and QSAR studies has become a major interest in recent years [11].
Graphical indices have found applications in various areas of chemistry; namely, in chem-
ical documentation, isomer discrimination and pharmaceutical drug design [9]. Some of
the most widely known graphical indices are Winer index, Randić index, Reciprocal randić
index, Zagreb index, Harmonic index, ABC index etc.
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Let G be a graph with vertex set V (G) and edge set E(G). For a vertex v ∈ V (G), the
degree of v is denoted by d(v) and is defined as the number of edges incident with v. For
the vertices u, v ∈ V (G), the distance between u and v is denoted by d(u, v) and is defined
as the length of the shortest path connecting u and v in G. The eccentricity of a vertex
v is denoted by e(v) and is maximum of d(u, v) for all u ∈ V (G) [3]. We consider simple,
undirected, connected graph throughout this paper.

In 1997, the topological descriptor termed the eccentric connectivity index [7] is defined
as

ξc(G) =
∑

v∈V (G)

d(v)e(v),

which has numerous applications and studied extensively in [2, 5, 12]. Motivated by this
and considering the enormous application of graphical indices to the study of physical,
chemical and biological properties of chemical compounds, we have come up with a novel
graphical index, entitled as amplified eccentric connectivity index and it is denoted by
ξac(G).

Definition 1.1. The amplified eccentric connectivity index of a graph G with at least one
edge is defined as

ξac(G) =
∑

uv∈E(G)

[d(u)e(u) + d(v)e(v)].

2. Main Results

We obtain the amplified eccentric connectivity index for some standard graphs.

Proposition 2.1. For any complete graph Kn, ξac(Kn) = n(n− 1)2.

Proof. In Kn, d(v) = n− 1 and e(v) = 1, ∀ v ∈ V (Kn).

ξac(Kn) =
∑

uv∈E(Kn)

[d(u)e(u) + d(v)e(v)]

=[(n− 1)(1) + (n− 1)(1)] + ...+ [(n− 1)(1) + (n− 1)(1)]

=n(n− 1)2. �

Proposition 2.2. For any wheel graph Wn (n ≥ 5), ξac(Wn) = (n− 1)(n+ 17).

Proof. Let v0 be the central vertex of Wn. Then, d(v0) = n− 1, e(v0) = 1 and d(vi) = 3,
e(vi) = 2 where, i = 1, 2, 3, ..., n− 1.

Therefore,

ξac(Wn) =[(n− 1)(1) + (3)(2)] + ...+ [(n− 1)(1) + (3)(2)]

+ [(3)(2) + (3)(2)] + ...+ [(3)(2) + (3)(2)]

=(n− 1)(n+ 17). �

Proposition 2.3. For any complete bipartite graph Km,n (m,n ≥ 2),

ξac(Km,n) = 2mn(m+ n).
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Proof. In Km,n, we have d(ui) = n, e(ui) = 2 where, i = 1, 2, 3, ...,m and d(vj) = m,
e(vj) = 2 where, j = 1, 2, 3, ..., n. Then,

ξac(Km,n) =[(n)(2) + (m)(2)] + ...+ [(n)(2) + (m)(2)]

+[(n)(2) + (m)(2)] + ...+ [(n)(2) + (m)(2)]

...

+[(n)(2) + (m)(2)] + ...+ [(n)(2) + (m)(2)]

=2mn(m+ n). �

Proposition 2.4. For any star K1,n (n ≥ 2), ξac(K1,n) = n(n+ 2).

Proof. Let v0 be the central vertex of the star graph K1,n. Then, d(v0) = n, e(v0) = 1
and d(vi) = 1, e(vi) = 2 where, i = 1, 2, 3, ..., n.

By the definition of ξac, we have,

ξac(K1,n) =[(n)(1) + (1)(2)] + ...+ [(n)(1) + (1)(2)]

=n(n+ 2). �

Proposition 2.5. For any cycle Cn (n ≥ 3),

ξac(Cn) =

{
2n2, if n is even;

2n2 − 2n, if n is odd.

Proof. In Cn, d(vi) = 2, i = 1, 2, 3, ..., n. We consider the following cases.

Case(i): If n is even, then e(vi) = n
2 , i = 1, 2, 3, ..., n. We have

ξac(Cn) =
[
(2)
(n

2

)
+ (2)

(n
2

)]
+ ...+

[
(2)
(n

2

)
+ (2)

(n
2

)]
=2n2.

Case(ii): If n is odd, then e(vi) = n−1
2 , i = 1, 2, 3, ..., n. We have

ξac(Cn) =

[
(2)

(
n− 1

2

)
+ (2)

(
n− 1

2

)]
+ ...+

[
(2)

(
n− 1

2

)
+ (2)

(
n− 1

2

)]
=2n2 − 2n. �

Proposition 2.6. For any path Pn,

ξac(Pn) =

{
3n2 − 8n+ 6, if n is even;

3n2 − 8n+ 5, if n is odd.

Proof. In a path Pn with V (Pn) = {v1, v2, v3, ..., vn}, we have d(v1) = d(vn) = 1 and
d(vi) = 2, 2 ≤ i ≤ n− 1. We consider the following cases.

Case(i): If n is even, then e(v1) = e(vn) = n − 1, e(v2) = e(vn−1) = n − 2, ...,

e
(
vn

2

)
= e

(
vn

2
+1

)
= n

2 . We have
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ξac(Pn) =[(1)(n− 1) + (2)(n− 2)] + [(2)(n− 2) + (2)(n− 3)]

+ ...+
[
(2)
(n

2

)
+ (2)

(n
2

)]
+ ...

+ [(2)(n− 3) + (2)(n− 2)] + [(2)(n− 2) + (1)(n− 1)]

=3n2 − 8n+ 6.

Case(ii): If n is odd, then e(v1) = e(vn) = n − 1, e(v2) = e(vn−1) = n − 2, ...,

e
(
vn+1

2
−1

)
= e

(
vn+1

2
+1

)
= n−3

2 and e
(
vn+1

2

)
= n−1

2 . We have

ξac(Pn) =[(1)(n− 1) + (2)(n− 2)] + [(2)(n− 2) + (2)(n− 3)] + ...

+

[
(2)

(
n− 3

2

)
+ (2)

(
n− 1

2

)]
+

[
(2)

(
n− 1

2

)
+ (2)

(
n− 3

2

)]
+ ...

+ [(2)(n− 3) + (2)(n− 2)] + [(2)(n− 2) + (1)(n− 1)]

=3n2 − 8n+ 5. �

In order to test the validity of the conceived graphical index, we examine the relationship
of amplified eccentric connectivity index with boiling points of primary and secondary
amines. For this, we consider the hydrogen-suppressed molecular graph of each amines
and calculate the value of ξac. We take the experimental values of the boiling point of a
group of 21 primary and 13 secondary amines from [7]. By subjecting these datasets to
non-linear regression analysis, we get the corresponding fitting equations along with their
correlation coefficients, average error (calculated from the percentage error of each amine),
and root mean square (RMS) errors as displayed in the Tables 2.1 and 2.2.

Boiling points ℃ Boiling points ℃
predicted predicted

Compound ξac exptl a b Compound ξac exptl a b

Primary Amines

n-propylamine 22 49 49.23 44.74 4-methylpentylamine 91 125 124.07 117.03
2-aminopropane 15 33 39.48 35.02 n-hexylamine 96 130 128.19 120.86
2-amino-2-methylpropane 20 46 46.49 42.02 3-methylpentylamine 83 114 117.15 110.54
2-aminobutane 35 63 66.19 61.50 4-aminoheptane 115 139 142.54 134.10
2-methylpropylamine 35 69 66.19 61.50 2-aminoheptane 127 142 150.63 141.46
n-butylamine 40 77 72.32 67.51 n-heptylamine 134 155 155.03 145.45
2-amino-2-methylbutane 52 78 86.23 81.04 n-octylamine 176 180 177.37 165.65
2-aminopentane 59 92 93.81 88.35 n-nonylamine 226 201 198.02 185.33
3-methylbutylamine 59 96 93.81 88.35 2-aminoundecane 323 237 237.83 233.28
2-methylbutylamine 50 96 83.99 78.87 3-aminopentane 53 91 87.34 82.11
n-pentylamine 66 104 101.04 94.28

Secondary Amines

N-(methyl)ethylamine 22 36 35.69 44.74 N-methyl-1-methylbutylamine 85 105 100.52 112.20
N-methyl-1-methylethylamine 35 50 51.92 61.49 dipropylamine 96 109.5 108.77 120.86
diethylamine 40 56 57.72 67.51 bis(2-methylpropyl)amine 158 139 144.21 157.66
N-methyl-1-methylpropylamine 53 78.5 71.76 82.11 dibutylamine 176 159 152.28 165.65
N-(ethyl)propylamine 66 80.5 84.38 95.28 bis(3-methylbutyl)amine 262 187.5 191.65 199.99
bis(1-methylethyl)amine 78 84 94.87 106.27 dipentylamine 280 205 202.32 208.34
N-(methyl)butylamine 66 90.5 84.38 95.28

Here ‘a’ represents the predicted value of each compound for primary and secondary amines as different datasets and ‘b’

represents the predicted value of each compound for the combined datasets.

Table 2.1: Relationship of Amplified eccentric connectivity index (ξac) with Boiling
Points of Primary and Secondary Amines.
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cc av RMS
Boiling point n Equations (%) (%) (%)

Of primary amines 21 bp = 17.04 + 1.569 ξac - 4.93×10−3(ξac)2 + 6.779×10−6(ξac)3 99.60 4.16 6.26

Of secondary amines 13 bp = 4.228 + 1.553 ξac - 5.775×10−3(ξac)2 + 9.845×10−6(ξac)3 99.48 4.40 5.49

Of both primary and

secondary amines 34 bp = 12.46 + 1.586 ξac - 5.589×10−3(ξac)2 + 8.654×10−6(ξac)3 98.11 9.13 11.31

Here ‘bp’ represents boiling point, ‘cc’ stands for correlation coefficient, ‘av’ for average error, ‘RMS’ for root mean square

error and ‘n’ is the number of amines taken into consideration.

Table 2.2: Correlation of Amplified eccentric connectivity index (ξac) with Boiling
Points of Primary and Secondary Amines.

From the Table 2.2, it is noticeable that the amplified eccentric connectivity index has
a striking correlating ability due to its minimal average and RMS errors. Comparing these
correlations with that of the Eccentric connectivity and Weiner indices whose correlation
coefficients are 97% and 92% respectively, as computed in [7], we find that amplified
eccentric connectivity index has the better predicting ability in the case of boiling points
of both primary and secondary amines.

3. Cycloalkenes

Cycloalkenes are used for biological and industrial purposes in the production of molecules
essential to a broad spectrum of applications. We consider a cycloalkene having n car-
bon atoms and 2n − 2 hydrogen atoms and denoted by C2n−2

n . The molecular graph of
cycloalkenes is obtained by attaching 2n− 2 pendant vertices corresponding to hydrogen
atoms to vertices of a cycle corresponding to carbon atoms as shown in Figure 3.1 [6]. We
calculate the amplified eccentric connectivity index of this molecular graph.

C4 C5

CnC3

C2 C1

-

v v
v

vv
v
t t t t

ttttH

HH

H

H HH H

HH

2

3

4

1tt
n

5p p p p pp

Figure 3.1 A cycloalkene and it’s molecular graph

Theorem 3.1. Let n ≥ 3 be a positive integer. Then the amplified eccentric connectivity
index of the graph C2n−2

n is

ξac(C2n−2
n ) =


9n2 + 12n− 18, if n is even;

9n2 + 3n− 10, if n is odd.

Proof. Consider the molecular graph C2n−2
n of a cycloalkene. This graph has 3n−2 vertices.

Two of these vertices corresponding to carbon atoms of cycloalkenes are of degree 3, and
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n−2 vertices corresponding to carbon atoms are of degree 4. The remaining 2n−2 vertices
correspond to hydrogen atoms of cycloalkenes and they are pendant vertices. We have the
following cases.

Case (i): If n is even then, the eccentricity of each vertex corresponding to carbon atom
is n

2 + 1. The eccentricity of each vertex corresponding to hydrogen atoms is n
2 + 2. So we

have

ξac(C2n−2
n ) =

∑
uv∈E(C2n−2

n )

[d(u)e(u) + d(v)e(v)]

=(n− 3)
[
4
(n

2
+ 1
)

+ 4
(n

2
+ 1
)]

+ 2
[
4
(n

2
+ 1
)

+ 3
(n

2
+ 1
)]

+ 1
[
3
(n

2
+ 1
)

+ 3
(n

2
+ 1
)]

+ (2n− 4)
[
4
(n

2
+ 1
)

+ 1
(n

2
+ 2
)]

+ 2
[
3
(n

2
+ 1
)

+ 1
(n

2
+ 2
)]

=9n2 + 12n− 18.

Case (ii): If n is odd then, the eccentricity of each vertex corresponding to carbon atom
is n−1

2 + 1. The eccentricity of each vertex corresponding to hydrogen atoms is n−1
2 + 2.

So we have

ξac(C2n−2
n ) =(n− 3)

[
4

(
n− 1

2
+ 1

)
+ 4

(
n− 1

2
+ 1

)]
+ 2

[
4

(
n− 1

2
+ 1

)
+ 3

(
n− 1

2
+ 1

)]
+ 1

[
3

(
n− 1

2
+ 1

)
+ 3

(
n− 1

2
+ 1

)]
+ (2n− 4)

[
4

(
n− 1

2
+ 1

)
+ 1

(
n− 1

2
+ 2

)]
+ 2

[
3

(
n− 1

2
+ 1

)
+ 1

(
n− 1

2
+ 2

)]
=9n2 + 3n− 10.

�

4. Chemical compound CRr
n

CRr
n is constructed by attaching alkyl Rr instead of each hydrogen atom in the cy-

cloalkenes [6]. The molecular structure of CRr
n is as shown in the Figure 4.1. In this

section, we establish a general formula for the amplified eccentric connectivity index for
the molecular graph CRr

n .
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Figure 4.1 Molecular structure of CRr
n

Theorem 4.1. Let n and r be positive integers with n ≥ 3. Then the amplified eccentric
connectivity index of a graph CRr

n is

ξac(CRr
n ) =


(18r + 9)n2 + (54r2 + 60r + 12)n− (54r2 + 76r + 18), if n is even;

(18r + 9)n2 + (54r2 + 42r + 3)n− (54r2 + 58r + 10), if n is odd.

Proof. Consider the graph G = CRr
n with |V (G)| = 6nr+ 3n− 6r− 2. It has n+ 2nr− 2r

vertices corresponding to the carbon atoms of CRr
n , n of them represent vertices of the

cycle, out of which two have degree 3 and the remaining n − 2 have degree 4. The other
2nr−2r vertices not on the cycle of CRr

n have the same degree 4. G also has 4nr+2n−4r−2
pendant vertices corresponding to the hydrogen atoms of CRr

n . The eccentricities of the
vertices of CRr

n are shown in the Table 4.1.

Vertex corresponding to Number of vertices
Eccentricity

for even n for odd n
carbon atom on cycle n n

2 + r + 1 n−1
2 + r + 1

carbon atom not on cycle 2nr − 2r
n
2 + r + 1 + i, n−1

2 + r + 1 + i,
1 ≤ i ≤ r 1 ≤ i ≤ r

hydrogen atom 4nr + 2n− 4r − 2
n
2 + r + i+ 2, n−1

2 + r + i+ 2,
1 ≤ i ≤ r 1 ≤ i ≤ r

Table 4.1: Eccentricities of vertices of CRr
n
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Case (i): If n is even, then

ξac(CRr
n ) =

∑
uv∈E(CRr

n )

[d(u)e(u) + d(v)e(v)]

=(n− 3)
[
4
(n

2
+ r + 1

)
+ 4

(n
2

+ r + 1
)]

+ 2
[
4
(n

2
+ r + 1

)
+ 3

(n
2

+ r + 1
)]

+ 1
[
3
(n

2
+ r + 1

)
+ 3

(n
2

+ r + 1
)]

+ (2n− 4)
[
4
(n

2
+ r + 1

)
+ 4

(n
2

+ r + 2
)]

+ 2
[
3
(n

2
+ r + 1

)
+ 4

(n
2

+ r + 2
)]

+ (2n− 2)

r−1∑
i=1

[
4
(n

2
+ r + 1 + i

)
+ 4

(n
2

+ r + 2 + i
)]

+ 2(2n− 2)

r∑
i=1

[
4
(n

2
+ r + 1 + i

)
+ 1

(n
2

+ r + 2 + i
)]

+ (2n− 2)
[
4
(n

2
+ 2r + 1

)
+ 1

(n
2

+ 2r + 2
)]

=(18r + 9)n2 + (54r2 + 60r + 12)n− (54r2 + 76r + 18).

Case (ii): If n is odd, then

ξac(CRr
n ) =(n− 3)

[
4

(
n− 1

2
+ r + 1

)
+ 4

(
n− 1

2
+ r + 1

)]
+ 2

[
4

(
n− 1

2
+ r + 1

)
+ 3

(
n− 1

2
+ r + 1

)]
+ 1

[
3

(
n− 1

2
+ r + 1

)
+ 3

(
n− 1

2
+ r + 1

)]
+ (2n− 4)

[
4

(
n− 1

2
+ r + 1

)
+ 4

(
n− 1

2
+ r + 2

)]
+ 2

[
3

(
n− 1

2
+ r + 1

)
+ 4

(
n− 1

2
+ r + 2

)]
+ (2n− 2)

r−1∑
i=1

[
4

(
n− 1

2
+ r + 1 + i

)
+ 4

(
n− 1

2
+ r + 2 + i

)]

+ 2(2n− 2)

r∑
i=1

[
4

(
n− 1

2
+ r + 1 + i

)
+ 1

(
n− 1

2
+ r + 2 + i

)]
+ (2n− 2)

[
4

(
n− 1

2
+ 2r + 1

)
+ 1

(
n− 1

2
+ 2r + 2

)]
=(18r + 9)n2 + (54r2 + 42r + 3)n− (54r2 + 58r + 10).

�
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5. Dutch Windmill graph Dn
m

Dutch windmill graph [4] Dn
m is a graph obtained by joining n copies of cycle Cm with

a common central vertex v0, as shown in the Figure 5.1. In this section, we compute the
amplified eccentric connectivity index of Dn

m.
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Figure 5.1 Dutch Windmill graph Dn
m

Theorem 5.1. Let n and m be positive integers with m ≥ 3. Then the amplified eccentric
connectivity index of Dn

m is

ξac(Dn
m) =


(2m)n2 + (3m2 − 2m)n, if n is even;

(2m− 2)n2 + (3m2 − 4m+ 1)n, if n is odd.

Proof. Consider the graph G = Dn
m with vertices (m − 1)n + 1 having common central

vertex v0 of degree, d(v0) = 2n and d(u) = 2, ∀ u ∈ V (Dn
m). We have the following cases.

Case (i): If m is even, then each cycle of Dn
m has an odd number of vertices excluding the

central vertex. Among these, each pair of vertices which are equidistant from the central
vertex have the same eccentricity.

The eccentricity of central vertex e(v0) = m
2 and for other vertex pair, it increases by

one as we move away from the central vertex. The eccentricities of the vertices of Dn
m are

shown in the Table 5.1.

Type of vertices No. of vertices Eccentricity Degree
central vertex(v0) 1 m

2 2n
vertices on each cycle other than both

(m− 2)n 2central vertex and a vertex at a m
2 + i,

distance m
2 from the central vertex 1 ≤ i ≤ m

2 − 1
vertex on each cycle at a distance

n m 2m
2 from the central vertex

Table 5.1: Eccentricities of vertices of Dn
m for even m.



1478 TWMS J. APP. AND ENG. MATH. V.12, N.4, 2022

The amplified eccentric connectivity index of Dn
m is

ξac(Dn
m) =

∑
uv∈E(Dn

m)

[d(u)e(u) + d(v)e(v)]

=(2n)
[
2n
(m

2

)
+ 2

(m
2

+ 1
)]

+ (2n)

m
2
−1∑

i=1

[
2
(m

2
+ i
)

+ 2
(m

2
+ i+ 1

)]
=(2m)n2 + (3m2 − 2m)n.

Case (ii): If m is odd, then the eccentricity of the central vertex is e(v0) = m−1
2 and

eccentricity of other vertices increase by one as we move away from the common vertex of
the half of the cycle.

When m is odd, the vertices other than the common vertex are even in number in each
cycle. The Table 5.2 shows the corresponding eccentricity and degree of the vertices, in
each cycle which are pairwise equal.

Types of vertices No. of vertices Eccentricity Degree
central vertex(v0) 1 m−1

2 2n
vertices on each cycle other than both

(m− 1)n 2central vertex and two vertices at a m−1
2 + i,

distance m−1
2 from the central vertex 1 ≤ i ≤ m−1

2 − 1
Two vertices on each cycle at a distance

n m− 1 2m−1
2 from the central vertex

Table 5.2: Eccentricities of vertices of Dn
m for odd m.

Therefore,

ξac(Dn
m) =(2n)

[
2n

(
m− 1

2

)
+ 2

(
m− 1

2
+ 1

)]

+ (2n)

m−1
2
−1∑

i=1

[
2

(
m− 1

2
+ i

)
+ 2

(
m− 1

2
+ i+ 1

)]
+ (n)[2(m− 1) + 2(m− 1)]

=(2m− 2)n2 + (3m2 − 4m+ 1)n. �

6. Conclusions

In this paper, we have proposed a new distance based graphical index named, amplified
eccentric connectivity index, which is found out to be a better predictor in the case of
boiling point of amines with more than 98% of correlation coefficient. Further, we have
formulated the amplified eccentric connectivity index of some standard graphs and few
chemical structures, by means of graph theory and mathematical derivations.
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