ANALYSIS OF A DYNAMIC CONTACT PROBLEM FOR ELECTRO-VISCOELASTIC MATERIALS WITH TRESCA'S FRICTION

B. DOUIB ${ }^{1}$, T. HADJ AMMAR ${ }^{2 *}$, A. AZEB AHMED ${ }^{2}$, §

Abstract

We consider a mathematical model which describes the dynamic process of contact between two electro-viscoelastic bodies with damage. The contact is bilateral and is modeled with Tresca's friction law. The damage of the materials caused by elastic deformations. We derive a variational formulation for the model which is in the form of a system involving the displacement field, the electric potential and the damage. Then we provide the existence of a unique weak solution to the model. We also study the finite element approximations of the problem and derive error estimates. Finally, we present numerical simulation results in the study of a two-dimensional example.

Keywords: Dynamic process, piezoelectric, monotone operator, fixed point, weak solution, damage.

AMS Subject Classification: 74M15, 74M10, 74F05.

1. Introduction

In this paper, we study a bilateral contact problem involves viscous friction of Tresca type described in [1]. A nonlinear electro-viscoelastic constitutive law is used to model the piezoelectric material. The piezoelectricity can be described as follows: when mechanical pressure is applied to a certain classes of crystalline materials (e.g ceramics BaTiO_{3}, $\mathrm{BiFe} \mathrm{O}_{3}$), the crystalline structure produces a voltage proportional to the pressure. Conversely, when an electric field is applied, the structure changes his shape producing dimensional modifications in the material. Different models have been developed to describe the interaction between the electrical and mechanical fields see for example $[5,15]$ and the

[^0]references therein. Contact problems involving elasto-piezoelectric materials [6, 20]. Different models of viscoelastic piezoelectric problems in $[3,7,16,18,19]$ have been studied, contact problems for electro-elasto-viscoplastic materials were studied in $[2,14]$.

The damage is an extremely important topic in engineering, since it affects directly the useful life of the designed structure or component. There exists a very large engineering literature on it. Models taking into account the influence of the internal damage of the material on the contact process have been investigated mathematically. General models for damage were derived in [12] from the virtual power principle. The models of mechanical damage, which were derived from thermodynamical considerations and the principle of virtual work, can be found in [10]. The new idea of [11, 12] was the introduction of the damage function $\alpha^{\ell}=\alpha^{\ell}(x, t)$, which is the ratio between the elastic moduli of the damage and damage-free materials. In an isotropic and homogeneous elastic material, let E_{Y}^{ℓ} be the Young modulus of the original material and $E_{\text {eff }}^{\ell}$ be the current modulus, then the damage function is defined by $\alpha^{\ell}=E_{e f f}^{\ell} / E_{Y}^{\ell}$. Clearly, it follows from this definition that the damage function α^{ℓ} is restricted to have values between zero and one. When $\alpha^{\ell}=1$, there is no damage in the material, when $\alpha^{\ell}=0$, the material is completely damaged, when $0<\alpha^{\ell}<1$ there is partial damage and the system has a reduced load carrying capacity. Contact problems with damage have been investigated in [21]. The differential inclusion used for the evolution of the damage field is

$$
\begin{equation*}
\dot{\alpha}^{\ell}-\Delta \alpha^{\ell}+k^{\ell} \partial \chi_{K^{\ell}}\left(\alpha^{\ell}\right) \ni S^{\ell}\left(\varepsilon\left(u^{\ell}\right), \alpha^{\ell}\right) \quad \text { in } \Omega^{\ell} \times(0, T), \tag{1}
\end{equation*}
$$

where k^{ℓ} is a positive coefficient and K^{ℓ} the set of admissible damage defined by

$$
\begin{equation*}
K^{\ell}=\left\{\xi \in H^{1}\left(\Omega^{\ell}\right) ; 0 \leq \xi \leq 1, \text { a.e. in } \Omega^{\ell}\right\} \tag{2}
\end{equation*}
$$

The paper is structured as follows. In Section 2, we present the physical setting and describe the mechanical problem. We derive a variational formulation, list the assumptions on the data, and give the variational formulation of the problem. In Section 3, we state our main existence and uniqueness result which is based on classical result of nonlinear first order evolution inequalities and equations with monotone operators and the fixed point arguments. In Section 4, we introduce a fully discrete scheme to solve the problem numerically. Under certain solution regularity assumptions, we derive an optimal order error estimate. Finally, we present the numerical solution together with simulation result son a two-dimensional test problem.

2. Problem statement and variational formulation

Let us consider two electro-viscoelastic bodies, occupying two bounded domains Ω^{1}, Ω^{2} of the space $\mathbb{R}^{d}(d=2,3)$. For each domain Ω^{ℓ}, the boundary Γ^{ℓ} is assumed to be regular enough, and is partitioned into three disjoint measurable parts $\Gamma_{1}^{\ell}, \Gamma_{2}^{\ell}$ and Γ_{3}^{ℓ}, on one hand, and on two measurable parts Γ_{a}^{ℓ} and Γ_{b}^{ℓ}, on the other hand, such that meas $\Gamma_{1}^{\ell}>0$, meas $\Gamma_{a}^{\ell}>0$. Let $T>0$ and let $[0, T]$ be the time interval of interest. The Ω^{ℓ} body is submitted to f_{0}^{ℓ} forces and volume electric charges of density q_{0}^{ℓ}. The bodies are assumed to be clamped on Γ_{1}^{ℓ}. The surface tractions f_{2}^{ℓ} act on Γ_{2}^{ℓ}. We also assume that the electrical potential vanishes on Γ_{a}^{ℓ} and a surface electric charge of density q_{2}^{ℓ} is prescribed on Γ_{b}^{ℓ}. The two bodies can enter in contact along the common part $\Gamma_{3}^{1}=\Gamma_{3}^{2}=\Gamma_{3}$. The classical form of bilateral contact with Tresca's friction and damage between two electro-viscoelastic bodies is given by:
Problem P. For $\ell=1,2$, find a displacement field $u^{\ell}: \Omega^{\ell} \times(0, T) \rightarrow \mathbb{R}^{d}$, a stress field
$\sigma^{\ell}: \Omega^{\ell} \times(0, T) \rightarrow \mathbb{S}^{d}$, an electric potential $\varphi^{\ell}: \Omega^{\ell} \times(0, T) \rightarrow \mathbb{R}$, an electric displacement field $D^{\ell}: \Omega^{\ell} \times(0, T) \rightarrow \mathbb{R}^{d}$, and a damage $\alpha^{\ell}: \Omega^{\ell} \times(0, T) \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
& \sigma^{\ell}=\mathcal{A}^{\ell} \varepsilon\left(\dot{u}^{\ell}\right)+\mathcal{B}^{\ell}\left(\varepsilon\left(u^{\ell}\right), \alpha^{\ell}\right)+\left(\mathcal{E}^{\ell}\right)^{*} \nabla \varphi^{\ell} \text { in } \Omega^{\ell} \times(0, T) \tag{3}\\
& D^{\ell}=\mathcal{E}^{\ell} \varepsilon\left(u^{\ell}\right)+\mathcal{C}^{\ell} E\left(\varphi^{\ell}\right) \quad \text { in } \Omega^{\ell} \times(0, T) \tag{4}
\end{align*}
$$

$$
\begin{align*}
& \dot{\alpha}^{\ell}-\Delta \alpha^{\ell}+k^{\ell} \partial \chi_{K^{\ell}}\left(\alpha^{\ell}\right) \ni S^{\ell}\left(\varepsilon\left(u^{\ell}\right), \alpha^{\ell}\right) \quad \text { in } \Omega^{\ell} \times(0, T) \tag{5}\\
& \operatorname{Div} \sigma^{\ell}+f_{0}^{\ell}=\rho^{\ell} \ddot{u}^{\ell} \quad \text { in } \Omega^{\ell} \times(0, T) \tag{6}\\
& \operatorname{div} D^{\ell}-q_{0}^{\ell}=0 \quad \text { in } \Omega^{\ell} \times(0, T) \tag{7}
\end{align*}
$$

$$
\begin{align*}
& u^{\ell}=0 \quad \text { on } \Gamma_{1}^{\ell} \times(0, T) \tag{8}\\
& \sigma^{\ell} \nu^{\ell}=f_{2}^{\ell} \quad \text { on } \Gamma_{2}^{\ell} \times(0, T), \tag{9}\\
& \left\{\begin{array}{l}
{\left[u_{\nu}\right]=0, \sigma_{\tau}^{1}=-\sigma_{\tau}^{2} \equiv \sigma_{\tau}, \quad\left\|\sigma_{\tau}\right\| \leq g} \\
\left\|\sigma_{\tau}\right\|<g \Rightarrow\left[\dot{u}_{\tau}\right]=0 \\
\left\|\sigma_{\tau}\right\|=g \Rightarrow \exists \delta \geq 0 \text { such that } \sigma_{\tau}=-\delta\left[\dot{u}_{\tau}\right]
\end{array} \quad \text { on } \Gamma_{3} \times(0, T)\right. \tag{10}\\
& \frac{\partial \alpha^{\ell}}{\partial \nu^{\ell}}=0 \quad \text { on } \Gamma^{\ell} \times(0, T), \tag{11}\\
& \varphi^{\ell}=0 \quad \text { on } \Gamma_{a}^{\ell} \times(0, T), \tag{12}\\
& D^{\ell} \cdot \nu^{\ell}=q_{2}^{\ell} \quad \text { on } \Gamma_{b}^{\ell} \times(0, T), \tag{13}\\
& u^{\ell}(0)=u_{0}^{\ell}, \dot{u}^{\ell}(0)=v_{0}^{\ell}, \alpha^{\ell}(0)=\alpha_{0}^{\ell} \quad \text { in } \Omega^{\ell} \tag{14}
\end{align*}
$$

Here, Eqs (3) and (4) represent the electro-viscoelastic constitutive law. The evolution of the damage field is governed by the inclusion given by the relation (5). Next, Eqs (6) and (7) are the equations of motion written for the stress field and of balance written for the electric displacement field, respectively, in which Div and div denote the divergence operators for tensor and vector valued functions. Conditions (8) and (9) are the displacement and traction boundary conditions, respectively. The relation (11) represents a homogeneous Neumann boundary condition, (12) and (13) represent the electric boundary conditions, and (14) are the initial conditions. Conditions (10) represent the bilateral contact condition with Tresca's friction law where $\left[u_{\nu}\right]=u_{\nu}^{1}+u_{\nu}^{2}$ is the stands for the displacements in normal direction, and where the friction yield limit is g which is assumed to depend only on each point of Γ_{3}, where $\left[u_{\tau}\right]=u_{\tau}^{1}-u_{\tau}^{2}$ stands for the jump of the displacements in tangential direction.

We now proceed to obtain a variational formulation of Problem \mathbf{P}. For this purpose, we introduce additional notation and assumptions on the problem data. Here and in what follows the indices i and j run between 1 and d, the summation convention over repeated indices is adopted and the index that follows a comma indicates a partial derivative with respect to the corresponding component of the independent variable. Let $E_{0}=L^{2}\left(\Omega^{1}\right) \times$ $L^{2}\left(\Omega^{2}\right), H^{\ell}=\left[L^{2}\left(\Omega^{\ell}\right)\right]^{d}, H_{1}^{\ell}=\left[H^{1}\left(\Omega^{\ell}\right)\right]^{d}, \mathcal{H}^{\ell}=\left[L^{2}\left(\Omega^{\ell}\right)\right]_{s}^{d \times d}, E_{1}=H^{1}\left(\Omega^{1}\right) \times H^{1}\left(\Omega^{2}\right), H=$ $H^{1} \times H^{2}, \mathcal{H}=\mathcal{H}^{1} \times \mathcal{H}^{2}$ and define the following spaces: $V^{\ell}=\left\{v^{\ell} \in\left[H^{1}\left(\Omega^{\ell}\right)\right]^{d} ;\left.\quad v^{\ell}\right|_{\Gamma_{1}^{\ell}}=\right.$ $0\}, \quad W^{\ell}=\left\{\psi^{\ell} \in H^{1}\left(\Omega^{\ell}\right) ;\left.\psi^{\ell}\right|_{\Gamma_{a}^{\ell}}=0\right\}, \mathcal{W}^{\ell}=\left\{\mathbf{D}^{\ell} \in H^{\ell} ; \operatorname{div} \mathbf{D}^{\ell} \in L^{2}\left(\Omega^{\ell}\right)\right\}, W=$ $W^{1} \times W^{2}, \mathcal{W}=\mathcal{W}^{1} \times \mathcal{W}^{2}, \mathbf{V}=\left\{v \in V^{1} \times V^{2} ;\left.\quad\left[v_{\nu}\right]\right|_{\Gamma_{3}}=0\right\}$.
Since mes $\Gamma_{1}^{\ell}>0$, Korn's inequality holds and there exists a constant $C_{K}>0$ depending only on Ω^{ℓ} and Γ_{1}^{ℓ}, such that

$$
\begin{equation*}
\left\|\varepsilon\left(v^{\ell}\right)\right\|_{\mathcal{H}^{\ell}} \geq C_{K}\left\|v^{\ell}\right\|_{H_{1}^{\ell}}, \quad \forall v^{\ell} \in V^{\ell} \tag{15}
\end{equation*}
$$

On the space V^{ℓ}, we consider the inner product and the associated norm given by

$$
\begin{equation*}
\left(u^{\ell}, v^{\ell}\right)_{V^{\ell}}=\left(\varepsilon\left(u^{\ell}\right), \varepsilon\left(v^{\ell}\right)\right)_{\mathcal{H}^{\ell}}, \quad \forall u^{\ell}, v^{\ell} \in V^{\ell} \tag{16}
\end{equation*}
$$

and let $\left\|v^{\ell}\right\|_{V^{\ell}}$ the associated norm given by

$$
\begin{equation*}
\left\|v^{\ell}\right\|_{V^{\ell}}=\left\|\varepsilon\left(v^{\ell}\right)\right\|_{\mathcal{H}^{\ell},} \quad \forall v^{\ell} \in V^{\ell} \tag{17}
\end{equation*}
$$

Notice also that, since $\operatorname{mes}\left(\Gamma_{a}^{\ell}\right)>0$, the following Friedrichs-Poincaré inequality holds:

$$
\begin{equation*}
\left\|\nabla \zeta^{\ell}\right\|_{L^{2}\left(\Omega^{\ell}\right)^{d}} \geq C_{F}\left\|\zeta^{\ell}\right\|_{H^{1}\left(\Omega^{\ell}\right)}, \quad \forall \zeta^{\ell} \in W^{\ell} \tag{18}
\end{equation*}
$$

where $C_{F}>0$ is a constant which depends only on Ω^{ℓ} and Γ_{a}^{ℓ} and $\nabla \xi^{\ell}=\left(\xi_{i}^{\ell}\right)$. A proof of Friedrichs-Poincaré inequality may be found in ([17, p.188]).
Further, we denote by X^{\prime} the dual space of X, and we use the notation $\langle., .\rangle_{X^{\prime} \times X}$ to represent the duality pairing between X^{\prime} and X.
For the convenience of the reader, we recall the following standard result for parabolic variational inequalities and the abstract result (see, e.g., [21, p.47-48]).

Theorem 2.1. Let $X \subset Y=Y^{\prime} \subset X^{\prime}$ be a Gelfand triple. Let K be a nonempty, closed and convex set of X. Assume that $A: X \rightarrow X^{\prime}$ is a continuous and symmetric linear operator which satisfies, there exists $C_{2} \in \mathbb{R}$ and $C_{3}>0$ such that

$$
\begin{equation*}
\langle A v, v\rangle_{X^{\prime} \times X}+C_{2}\|v\|_{Y}^{2} \geq C_{3}\|v\|_{X}^{2}, \quad \forall v \in X \tag{19}
\end{equation*}
$$

Then, for all $u_{0} \in K$ et $f \in L^{2}(0, T ; Y)$, there exists a unique function u which satisfies

$$
\begin{align*}
& u \in W^{1,2}(0, T ; X) \cap L^{2}(0, T ; Y) \tag{20}\\
& u(t) \in K, \quad \forall t \in[0, T], \tag{21}\\
& \quad\langle\dot{u}(t), v-u(t)\rangle_{V^{\prime} \times V}+\langle A u(t), v-u(t)\rangle_{V^{\prime} \times V} \\
& \geq\langle f(t), v-u(t)\rangle_{V^{\prime} \times V}, \quad \forall v \in K, \text { a.e.t }(0, T), \tag{22}\\
& u(0)=u_{0} . \tag{23}
\end{align*}
$$

Theorem 2.2. Let $X \subset Y=Y^{\prime} \subset X^{\prime}$ be a Gelfand triple. Assume that $A: X \rightarrow X^{\prime}$ is a hemicontinuous and monotone operator which satisfies

$$
\begin{align*}
& \langle A v, v\rangle_{X^{\prime} \times X} \geq \omega\|v\|_{X}^{2}+\lambda, \quad \forall v \in X, \tag{24}\\
& \|A v\|_{X^{\prime}} \leq C_{1}\left(\|v\|_{X}+1\right), \quad \forall v \in X \tag{25}
\end{align*}
$$

for some constants $\omega>0, C_{1}>0$, and $\lambda \in \mathbb{R}$. Then, for every $u_{0} \in Y$ and $f \in$ $L^{2}\left(0, T ; X^{\prime}\right)$, there exists a unique function u which satisfies

$$
\begin{aligned}
& u \in L^{2}(0, T ; X) \cap C([0, T] ; Y), \quad \dot{u} \in L^{2}\left(0, T ; X^{\prime}\right) \\
& \dot{u}(t)+A u(t)=f(t) \text { a.e. } t \in(0, T) \\
& \quad u(0)=u_{0}
\end{aligned}
$$

We now list assumptions on the data. Assume the operators $\mathcal{A}^{\ell}, \mathcal{B}^{\ell}, \mathcal{E}^{\ell}, \mathcal{C}^{\ell}$ and S^{ℓ} satisfy the following conditions ($L_{\mathcal{A}^{\ell}}, m_{\mathcal{A}^{\ell}}, L_{\mathcal{B}^{\ell}}, m_{\mathcal{C}^{\ell}}$ and $L_{S^{\ell}}$ being positive constants).
(a) $\mathcal{A}^{\ell}: \Omega^{\ell} \times \mathbb{S}^{d} \rightarrow \mathbb{S}^{d}$.
(b) $\left\|\mathcal{A}^{\ell}\left(x, \varepsilon_{1}\right)-\mathcal{A}^{\ell}\left(x, \varepsilon_{2}\right)\right\| \leq L_{\mathcal{A}^{\ell}}\left\|\varepsilon_{1}-\varepsilon_{2}\right\| \quad \forall \varepsilon_{1}, \varepsilon_{2} \in \mathbb{S}^{d}$, a.e. $x \in \Omega^{\ell}$.
(c) $\left(\mathcal{A}^{\ell}\left(x, \varepsilon_{1}\right)-\mathcal{A}^{\ell}\left(x, \varepsilon_{2}\right)\right) \cdot\left(\varepsilon_{1}-\varepsilon_{2}\right) \geq m_{\mathcal{A}^{\ell}}\left\|\varepsilon_{1}-\varepsilon_{2}\right\|^{2}$

$$
\forall \varepsilon_{1}, \varepsilon_{2} \in \mathbb{S}^{d} \text { a.e } x \in \Omega^{\ell}
$$

(d) For any $\xi \in \mathbb{S}^{d}, x \mapsto \mathcal{A}^{\ell}(x, \xi)$ is measurable on Ω^{ℓ},
(e) The mapping $x \mapsto \mathcal{A}^{\ell}(x, 0) \in \mathcal{H}^{\ell}$.
(a) $\mathcal{B}^{\ell}: \Omega^{\ell} \times \mathbb{S}^{d} \times \mathbb{R} \rightarrow \mathbb{S}^{d}$.
(b) $\left\|\mathcal{B}^{\ell}\left(x, \varepsilon_{1}, \alpha_{1}\right)-\mathcal{B}^{\ell}\left(x, \varepsilon_{2}, \alpha_{2}\right)\right\| \leq L_{\mathcal{B}^{\ell}}\left(\left\|\varepsilon_{1}-\varepsilon_{2}\right\|+\left|\alpha_{1}-\alpha_{2}\right|\right)$ $\forall \varepsilon_{1}, \varepsilon_{2} \in \mathbb{S}^{d}, \forall \alpha_{1}, \alpha_{2} \in \mathbb{R}$, a.e. $x \in \Omega^{\ell}$.
(c) The mapping $x \mapsto \mathcal{B}^{\ell}(x, \varepsilon, \alpha)$ is measurable in $\Omega^{\ell} \forall \varepsilon \in \mathbb{S}^{d}, \forall \alpha \in \mathbb{R}$.
(d) The mapping $x \mapsto \mathcal{B}^{\ell}(x, 0,0) \in \mathcal{H}^{\ell}$.
(a) $\mathcal{E}^{\ell}: \Omega^{\ell} \times \mathbb{S}^{d} \rightarrow \mathbb{R}^{d}$.
(b) $\mathcal{E}^{\ell}(x, \tau)=\left(e_{i j k}^{\ell}(x) \tau_{j k}\right) \quad$ where $e_{i j k}^{\ell}=e_{i k j}^{\ell} \in L^{\infty}\left(\Omega^{\ell}\right)$. $\}$
(a) $\mathcal{C}^{\ell}: \Omega^{\ell} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.
(b) $\mathcal{C}^{\ell}(x, E)=\left(c_{i j}^{\ell}(x) E_{j}\right) \quad \forall E=\left(E_{i}\right) \in \mathbb{R}^{d}$, a.e. $x \in \Omega^{\ell}$.
(c) $c_{i j}^{\ell}=c_{j i}^{\ell}, c_{i j}^{\ell} \in L^{\infty}\left(\Omega^{\ell}\right), \quad 1 \leq i, j \leq d$.
(d) $\mathcal{C}^{\ell} E . E \geq m_{\mathcal{C}^{\ell}}|E|^{2}, \quad \forall E=\left(E_{i}\right) \in \mathbb{R}^{d}$, a.e. $x \in \Omega^{\ell}$.
(a) $S^{\ell}: \Omega^{\ell} \times \mathbb{S}^{d} \times \mathbb{R} \rightarrow \mathbb{R}$.
(b) $\left|S^{\ell}\left(x, \xi_{1}, d_{1}\right)-S^{\ell}\left(x, \xi_{2}, d_{2}\right)\right| \leq L_{S^{\ell}}\left(\left|\xi_{1}-\xi_{2}\right|+\left|d_{1}-d_{2}\right|\right)$,

$$
\begin{equation*}
\forall \xi_{1}, \xi_{2} \in \mathbb{S}^{d}, \forall d_{1}, d_{2} \in \mathbb{R} \text { a.e. } \mathbf{x} \in \Omega^{\ell} \tag{30}
\end{equation*}
$$

(c) For any $\xi \in \mathbb{S}^{d}, d \in \mathbb{R}, \quad x \mapsto S^{\ell}(x, \xi, d)$ is measurable on Ω^{ℓ}.
(d) The mapping $x \mapsto S^{\ell}(x, 0,0)$ belongs to $L^{2}\left(\Omega^{\ell}\right)$.

The mass density and the friction yield limit g satisfies

$$
\begin{gather*}
\rho^{\ell} \in L^{\infty}\left(\Omega^{\ell}\right), \min _{\ell=1,2} \inf _{x \in \Omega^{\ell}} \rho^{\ell}(x)=\rho^{*}>0 \tag{31}\\
g \in L^{\infty}\left(\Gamma_{3}\right), \quad g \geq 0 \text { on } \Gamma_{3} \tag{32}
\end{gather*}
$$

The forces, tractions, volume and surface free charge densities have the regularity

$$
\begin{align*}
& f_{0}^{\ell} \in L^{2}\left(0, T ; H^{\ell}\right), \quad f_{2}^{\ell} \in L^{2}\left(0, T ; L^{2}\left(\Gamma_{2}^{\ell}\right)^{d}\right) \tag{33}\\
& q_{0}^{\ell} \in C\left(0, T ; L^{2}\left(\Omega^{\ell}\right)\right), \quad q_{2}^{\ell} \in C\left(0, T ; L^{2}\left(\Gamma_{b}^{\ell}\right)\right) \tag{34}\\
& q_{2}^{\ell}(t)=0 \quad \text { on } \Gamma_{3} \quad \forall t \in[0, T] \tag{35}
\end{align*}
$$

Finally, we assume that initial data satisfy the regularity

$$
\begin{equation*}
u_{0}^{\ell} \in V^{\ell}, \quad v_{0}^{\ell} \in V^{\ell}, \quad \alpha_{0}^{\ell} \in K^{\ell} \tag{36}
\end{equation*}
$$

We define the mappings $F:[0, T] \rightarrow \mathbf{V}^{\prime}, q:[0, T] \rightarrow W, a: E_{1} \times E_{1} \rightarrow \mathbb{R}$ and $j: \mathbf{V} \rightarrow \mathbb{R}$ respectively, by

$$
\left.\begin{array}{l}
\langle F(t), v\rangle_{V^{\prime} \times V}=\sum_{\ell=1}^{2} \int_{\Omega^{\ell}} f_{0}^{\ell}(t) v^{\ell} d x+\sum_{\ell=1}^{2} \int_{\Gamma_{2}^{\ell}} f_{2}^{\ell}(t) v^{\ell} d a, \quad \forall v \in V \\
(q(t), \phi)_{W}=\sum_{\ell=1}^{2} \int_{\Omega^{\ell}} q_{0}^{\ell}(t) \phi^{\ell} d x-\sum_{\ell=1}^{2} \int_{\Gamma_{b}^{\ell}} q_{2}^{\ell}(t) \phi^{\ell} d a, \quad \forall \phi \in W \tag{37}\\
a(\zeta, \xi)=\sum_{\ell=1}^{2} k^{\ell} \int_{\Omega^{\ell}} \nabla \zeta^{\ell} \cdot \nabla \xi^{\ell} d x, \quad \text { and } \quad j(v)=\int_{\Gamma_{3}} g\left\|\left[v_{\tau}\right]\right\|_{L^{2}\left(\Gamma_{3}\right)^{d}} d a .
\end{array}\right\}
$$

From the assumptions (33) and (34) it follows that

$$
\begin{equation*}
F \in L^{2}\left(0, T ; V^{\prime}\right), \quad q \in C(0, T ; W) \tag{38}
\end{equation*}
$$

We use a modified inner product on H given by

$$
\begin{equation*}
((u, v))_{H}=\sum_{\ell=1}^{2}\left(\rho^{\ell} u^{\ell}, v^{\ell}\right)_{H^{\ell}}, \quad \forall u, v \in H \tag{39}
\end{equation*}
$$

that is, it is weighted with ρ^{ℓ}. We let $\|\cdot\|_{H}$ be the associated norm, i.e.,

$$
\begin{equation*}
\|v\|_{H}=((v, v))_{H}^{\frac{1}{2}}, \quad \forall v \in H \tag{40}
\end{equation*}
$$

It follows from assumption (31), that $\|\cdot\|_{H}$ and $\|\cdot\|_{H}$ are equivalent norms on H, and also the inclusion mapping of V into H is continuous and dense. Identifying H with its own dual, we can write the Gelfand triple $V \subset H \subset V^{\prime}$, so we have

$$
\begin{equation*}
\langle u, v\rangle_{V^{\prime} \times V}=((u, v))_{H}, \quad \forall u \in H, \quad \forall v \in V \tag{41}
\end{equation*}
$$

By a standard procedure based on integration by parts and Green's formula, we obtain the following weak formulation of the piezoelectric contact problem P.
Problem $P V$. Find $u:[0, T] \rightarrow V, \varphi:[0, T] \rightarrow W$ and $\alpha:[0, T] \rightarrow E_{1}$ such that

$$
\begin{gather*}
\langle\ddot{u}(t), w-\dot{u}(t)\rangle_{V^{\prime} \times V}+\sum_{\ell=1}^{2}\left(\mathcal{A}^{\ell} \varepsilon\left(\dot{u}^{\ell}\right)+\mathcal{B}^{\ell}\left(\varepsilon\left(u^{\ell}\right), \alpha^{\ell}\right), \varepsilon\left(w^{\ell}-\dot{u}^{\ell}(t)\right)\right)_{\mathcal{H}^{\ell}}+ \tag{42}\\
\left.\left.\begin{array}{c}
\sum_{\ell=1}^{2}\left(\left(\mathcal{E}^{\ell}\right)^{*} \nabla \varphi^{\ell}, \varepsilon\left(w^{\ell}-\dot{u}^{\ell}(t)\right)\right)_{\mathcal{H}^{\ell}}+j(w)-j(\dot{u}(t)) \geq\langle F(t), w-\dot{u}(t)\rangle_{V^{\prime} \times V} \\
\forall w \in V, \text { a.e. } t \in(0, T), \\
\sum_{\ell=1}^{2}\left(\mathcal{C}^{\ell} \nabla \varphi^{\ell}(t)-\mathcal{E}^{\ell} \varepsilon\left(u^{\ell}(t)\right), \nabla \phi^{\ell}\right)_{H^{\ell}}=(q(t), \phi)_{W}, \quad \forall \phi \in W, \text { a.e. } t \in(0, T) \\
\left.\begin{array}{c}
\alpha(t) \in K=K^{1} \times K^{2}, \quad \sum_{\ell=1}^{2}\left(\dot{\alpha}^{\ell}(t), \xi^{\ell}-\alpha^{\ell}(t)\right)_{L^{2}\left(\Omega^{\ell}\right)}+a(\alpha(t), \xi-\alpha(t)) \\
\geq \sum_{\ell=1}^{2}\left(S^{\ell}\left(\varepsilon\left(u^{\ell}(t)\right), \alpha^{\ell}(t)\right), \xi^{\ell}-\alpha^{\ell}(t)\right)_{L^{2}\left(\Omega^{\ell}\right)}, \quad \forall \xi \in K, \quad \text { a.e. } t \in(0, T), \\
u(0)=u_{0}, \dot{u}(0)=w_{0}, \alpha(0)=\alpha_{0} .
\end{array}\right\}
\end{array}\right\},\right\} \tag{43}
\end{gather*}
$$

The existence of a unique solution to Problem $\mathbf{P V}$ will be presented in the next section.

3. Main existence and uniqueness Result

Now, we state and prove our existence and uniqueness result.
Theorem 3.1. Under the assumptions (26)-(36). Then there exists a unique solution $\{u, \varphi, \alpha\}$ to problem PV. Moreover, the solution satisfies

$$
\begin{array}{r}
u \in W^{1,2}(0, T ; V) \cap C^{1}(0, T ; H) \cap W^{2,2}\left(0, T ; V^{\prime}\right) \\
\varphi \in C(0, T ; W) \\
\alpha \in W^{1,2}\left(0, T ; E_{0}\right) \cap L^{2}\left(0, T ; E_{1}\right) \tag{48}
\end{array}
$$

The proof of Theorem 3.1 is carried out in several steps that we prove in what follows, everywhere in this section we suppose that assumptions of Theorem 3.1 hold, and let a $\eta \in L^{2}\left(0, T ; V^{\prime}\right)$ be given. In the first step, we consider the following variational problem.

Problem $P_{u_{\eta}}$. Find a displacement field $u_{\eta}:[0, T] \rightarrow V$ such that

$$
\left.\begin{array}{l}
\left\langle\ddot{u}_{\eta}(t), w-\dot{u}_{\eta}(t)\right\rangle_{V^{\prime} \times V}+\sum_{\ell=1}^{2}\left(\mathcal{A}^{\ell} \varepsilon\left(\dot{u}_{\eta}^{\ell}(t)\right), \varepsilon\left(w^{\ell}-\dot{u}_{\eta}^{\ell}(t)\right)\right)_{\mathcal{H}^{\ell}}+ \tag{49}\\
j(w)-j\left(\dot{u}_{\eta}(t)\right) \geq\left\langle F(t)-\eta(t), w-\dot{u}_{\eta}(t)\right\rangle_{V^{\prime} \times V}, \forall w \in V, \text { a.e. } t \in(0, T) \\
u_{\eta}(0)=u_{0}, \quad \dot{u}_{\eta}(0)=v_{0}
\end{array}\right\}
$$

We define the function $A: V \rightarrow V^{\prime}$ by

$$
\begin{equation*}
\langle A u, v\rangle_{V^{\prime} \times V}=\sum_{\ell=1}^{2}\left(\mathcal{A}^{\ell} \varepsilon\left(u^{\ell}\right), \varepsilon\left(v^{\ell}\right)\right)_{\mathcal{H}^{\ell}}, \quad \forall u, v \in V \tag{50}
\end{equation*}
$$

Using variable velocity $v_{\eta}=\dot{u}_{\eta}$, the Problem $P_{u_{\eta}}$ is written for a.e. $t \in(0, T)$, as follows
Problem $P_{v_{\eta}}$. Find the velocity field $v_{\eta}:[0, T] \rightarrow V$ such that

$$
\left.\begin{array}{l}
\left\langle\dot{v}_{\eta}(t), w-v_{\eta}(t)\right\rangle_{V^{\prime} \times V}+\left\langle A v_{\eta}(t), w-v_{\eta}(t)\right\rangle_{V^{\prime} \times V}+j(w)-j\left(v_{\eta}(t)\right) \tag{51}\\
\geq\left\langle F_{\eta}(t), w-v_{\eta}(t)\right\rangle_{V^{\prime} \times V}, \forall w \in V \\
v_{\eta}(0)=v_{0}
\end{array}\right\}
$$

Where $F_{\eta}=F-\eta$.
Lemma 3.1. Assume that (26) and (32) hold, then the operator A and the functional j defined respectively by (50) and (37) satisfy

> (a) $A: V \rightarrow V^{\prime}$ is hemicontinuous and strongly monotone,
> (b) $\exists C_{1} \geq 0, \exists C_{2} \geq 0, \forall v \in V\|A v\|_{V^{\prime}} \leq C_{1}\|v\|_{V}+C_{2}$,
> (c) for all sequence $\left(u_{n}\right)$ and u in $L^{2}(0, T ; V)$ such that
> $u_{n} \rightharpoonup u$ weakly in $L^{2}(0, T ; V)$ then $A u_{n} \rightharpoonup A u$ star weakly in $L^{2}\left(0, T ; V^{\prime}\right)$
> and $\liminf _{n \rightarrow+\infty}^{T} \int_{0}^{T}\left\langle A u_{n}(t), u_{n}(t)\right\rangle_{V^{\prime} \times V} d t \geq \int_{0}^{T}\langle A u(t), u(t)\rangle_{V^{\prime} \times V} d t$
$\left\{\begin{array}{l}\left(a^{\prime}\right) j: V \rightarrow \mathbb{R} \text { is convex and lower semi-continuous functional, } \\ \text { There exists a sequence of } C^{1} \text { convex functions }\left(j_{n}\right): V \rightarrow \mathbb{R} \text { such that } \\ \left(b^{\prime}\right) \exists d_{1} \geq 0, \exists d_{2} \geq 0, \forall n \in \mathbb{N}, \quad\left\|j_{n}^{\prime}(v)\right\|_{V^{\prime}} \leq d_{1}\|v\|_{V}+d_{2}, \\ \left(c^{\prime}\right) \forall v \in L^{2}(0, T ; V), \lim _{n \rightarrow+\infty} \int_{0}^{T} j_{n}(v(t)) d t=\int_{0}^{T} j(v(t)) d t, \\ \left(d^{\prime}\right) \text { There exists a sequence }\left(v_{n}\right) \text { and } v \text { in } L^{2}(0, T ; V) \text { such that } \\ v_{n} \rightharpoonup v \text { weakly in } L^{2}(0, T ; V) \text { then } \liminf _{n \rightarrow+\infty} \inf \int_{0}^{T} j_{n}\left(v_{n}(t)\right) d t \geq \int_{0}^{T} j(v(t)) d t .\end{array}\right.$

$j_{n}^{\prime}(v)$ denotes the Fréchet derivative of j_{n} at v.

Proof. From the definition (50)and assumption (26), we can verify that A satisfies the conditions (a)-(b), and applying Lebesgue theorem, we deduce the condition (c).
On the other hand, by using the continuous embedding from V into $L^{2}\left(\Gamma_{3}\right)^{d}$, we find that j is continuous and convex. To approximate the function j, we use the following functional $\left(j_{n}\right): V \rightarrow \mathbb{R}$ defined by

$$
j_{n}(v)=\int_{\Gamma_{3}} g \sqrt{\left\|v_{\tau}\right\|_{L^{2}\left(\Gamma_{3}\right)^{d}}^{2}+\exp (-n)} d a, \quad \forall v \in V_{1}, \quad \forall n \in \mathbb{N}
$$

We verify that the Frechet derivative of j_{n} at v is given by

$$
\begin{equation*}
\left\langle j_{n}^{\prime}(v), h\right\rangle_{V^{\prime} \times V}=\int_{\Gamma_{3}} g \frac{\left(v_{\tau}, h_{\tau}\right)}{\sqrt{\left\|v_{\tau}\right\|_{L^{2}\left(\Gamma_{3}\right)^{d}}^{2}+e^{-n}}} d a, \quad \forall h \in V \tag{52}
\end{equation*}
$$

We note that j_{n} is continuously differentiable. One may show that for all $a \geq 0, b \geq 0$, such $a+b=1$, for all reals $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$

$$
\begin{equation*}
\sqrt{(a x+b y)^{2}+e^{-n}} \leq a \sqrt{x^{2}+e^{-n}}+b \sqrt{y^{2}+e^{-n}} \tag{53}
\end{equation*}
$$

Then j_{n} is convex for all $n \in \mathbb{N}$. Using (52) it follows that

$$
\exists C \geq 0, \quad \forall v \in V,\left\|j_{n}^{\prime}(v)\right\|_{V^{\prime}} \leq C\|g\|_{L^{\infty}\left(\Gamma_{3}\right)}
$$

therefore $\left(b^{\prime}\right)$ is satisfied. From the definition of j_{n} we have $\lim _{n \rightarrow+\infty} j_{n}(v)=j(v)$ and as j_{n} is continuous on V, applying the Lebesgue theorem, we deduce the property $\left(c^{\prime}\right)$. Finally, $\left(d^{\prime}\right)$ is a consequence of the fact that

$$
\forall v \in V, \forall n \in \mathbb{N}, \quad j_{n}(v) \geq j(v)
$$

We conclude that the operator A, the functional j and j_{n} satisfy the conditions of the lemma 52.

Lemma 3.2. Under assumptions (26) and (32), for all $\eta \in L^{2}\left(0, T ; V^{\prime}\right)$, the Problem $P_{v_{\eta}}$ has a unique solution with the regularity

$$
v_{\eta} \in C(0, T ; H) \cap L^{2}(0, T ; V) \cap W^{1,2}\left(0, T ; V^{\prime}\right)
$$

Proof. Using the conditions of the lemma 3.1, it is deduced that the operator $A+j_{n}^{\prime}$ is hemicontinu and strongly monotone. Thus, (see, e.g., [21, p.48]), for any $n \in \mathbb{N}$ exists a unique function $v_{\eta}^{n} \in L^{2}(0, T ; V) \cap C(0, T ; H) \cap W^{1,2}\left(0, T ; V^{\prime}\right)$ such as

$$
\left\{\begin{array}{l}
\dot{v}_{\eta}^{n}(t)+A v_{\eta}^{n}(t)+j_{n}^{\prime}\left(v_{\eta}^{n}(t)\right)=F_{\eta}(t), \quad \text { a.e. } t \in(0, T) \\
v_{\eta}^{n}(0)=v_{0}
\end{array}\right.
$$

Then, we obtain

$$
\begin{aligned}
& \left\langle\dot{v}_{\eta}^{n}(t), w-v_{\eta}^{n}(t)\right\rangle_{V^{\prime} \times V}+\left\langle A v_{\eta}^{n}(t), w-v_{\eta}^{n}(t)\right\rangle_{V^{\prime} \times V}+j(w)-j\left(v_{\eta}^{n}(t)\right) \\
& \geq\left\langle F_{\eta}(t), w-v_{\eta}^{n}(t)\right\rangle_{V^{\prime} \times V}, \forall w \in V, \text { a.e. } t \in(0, T)
\end{aligned}
$$

We have

$$
\begin{aligned}
& \left\langle\dot{v}_{\eta}^{n}(t), v_{\eta}^{n}(t)\right\rangle_{V^{\prime} \times V}+\left\langle A v_{\eta}^{n}(t), v_{\eta}^{n}(t)\right\rangle_{V^{\prime} \times V}+\left\langle j_{n}^{\prime}\left(v_{\eta}^{n}(t)\right),\left(v_{\eta}^{n}(t)\right)\right\rangle_{V^{\prime} \times V} \\
& =\left\langle F_{\eta}(t), v_{\eta}^{n}(t)\right\rangle_{V^{\prime} \times V}, \quad \text { a.e. } t \in(0, T)
\end{aligned}
$$

Integrating the latest equality on $[0, t], t \in[0, T]$, using (26) and monotony of j_{n}^{\prime} to infer that

$$
\exists C>0, \quad \forall n \in \mathbb{N}, \quad \forall t \in[0, T], \quad\left\|v_{\eta}^{n}(t)\right\|_{H} \leq C, \quad \int_{0}^{T}\left\|v_{\eta}^{n}(t)\right\|_{V}^{2} d t \leq C
$$

We have

$$
\exists C>0, \quad \forall n \in \mathbb{N} \quad \int_{0}^{T}\left\|\dot{v}_{\eta}^{n}(t)\right\|_{V^{\prime}}^{2} d t \leq C
$$

We can therefore extract a subsequence still denoted $\left(v_{\eta}^{n}\right)$ to find that

$$
\left\{\begin{array}{l}
v_{\eta}^{n} \rightharpoonup v_{\eta} \text { weakly in } L^{2}(0, T ; V) \text { and star weakly in } L^{\infty}(0, T ; H) \\
\dot{v}_{\eta}^{n} \rightharpoonup \dot{v}_{\eta} \text { star weakly in } L^{2}\left(0, T ; V^{\prime}\right)
\end{array}\right.
$$

It follows that

$$
\begin{equation*}
v_{\eta} \in C([0, T] ; H) \text { and } v_{\eta}^{n}(t) \rightharpoonup v_{\eta}(t) \text { star weakly in } H, \forall t \in[0, T] \tag{54}
\end{equation*}
$$

Then, we obtain

$$
\begin{gathered}
\int_{0}^{T}\left\langle\dot{v}_{\eta}^{n}(t), w\right\rangle_{V^{\prime} \times V} d t+\int_{0}^{T}\left\langle A v_{\eta}^{n}(t), w\right\rangle_{V^{\prime} \times V} d t+\int_{0}^{T} j_{n}(w) d t \\
\geq \int_{0}^{T}\left\langle\dot{v}_{\eta}^{n}(t), v_{\eta}^{n}(t)\right\rangle_{V^{\prime} \times V} d t+\int_{0}^{T}\left\langle A v_{\eta}^{n}(t), v_{\eta}^{n}(t)\right\rangle_{V^{\prime} \times V} d t+\int_{0}^{T} j_{n}\left(v_{\eta}^{n}(t)\right) d t \\
+\int_{0}^{T}\left\langle F_{\eta}(t), w-v_{\eta}^{n}(t)\right\rangle_{V^{\prime} \times V} d t, \forall w \in L^{2}(0, T ; V)
\end{gathered}
$$

and we find

$$
\begin{align*}
& \int_{0}^{T}\left\langle\dot{v}_{\eta}^{n}(t), w\right\rangle_{V^{\prime} \times V} d t+\int_{0}^{T}\left\langle A v_{\eta}^{n}(t), w\right\rangle_{V^{\prime} \times V} d t+\int_{0}^{T} j_{n}(w) d t \\
& \geq \frac{1}{2}\left\|v_{\eta}^{n}(T)\right\|_{H}^{2}-\frac{1}{2}\left\|v_{\eta}^{n}(0)\right\|_{H}^{2}+\int_{0}^{T}\left\langle A v_{\eta}^{n}(t), v_{\eta}^{n}(t)\right\rangle_{V^{\prime} \times V} d t \tag{55}\\
& \quad+\int_{0}^{T} j_{n}\left(v_{\eta}^{n}(t)\right) d t+\int_{0}^{T}\left\langle F_{\eta}(t), w-v_{\eta}^{n}(t)\right\rangle_{V^{\prime} \times V} d t,
\end{align*}
$$

using the assumptions of the lemma 3.2 and the weak lower-semi-continuity, we obtain that

$$
\begin{gather*}
\int_{0}^{T}\left\langle\dot{v}_{\eta}, w-v_{\eta}\right\rangle_{V^{\prime} \times V} d t+\int_{0}^{T}\left\langle A v_{\eta}, w-v_{\eta}\right\rangle_{V^{\prime} \times V} d t+\int_{0}^{T}\left(j(w)-j\left(v_{\eta}\right)\right) d t \tag{56}\\
\geq \int_{0}^{T}\left\langle F_{\eta}, w-v_{\eta}\right\rangle_{V^{\prime} \times V} d t, \quad \forall w \in L^{2}\left(0, T ; V_{1}\right) .
\end{gather*}
$$

The above inequality implies that

$$
\begin{aligned}
& \left\langle\dot{v}_{\eta}(t), w-v_{\eta}(t)\right\rangle_{V^{\prime} \times V}+\left\langle A v_{\eta}(t), w-v_{\eta}(t)\right\rangle_{V^{\prime} \times V}+j(w)-j\left(v_{\eta}(t)\right) \\
& \geq\left\langle F_{\eta}(t), w-v_{\eta}(t)\right\rangle_{V^{\prime} \times V} \forall w \in V, \quad \text { a.e. } t \in(0, T) .
\end{aligned}
$$

We conclude that $P_{v_{\eta}}$ has at least a solution $v_{\eta} \in C(0, T ; H) \cap L^{2}(0, T ; V) \cap W^{1,2}\left(0, T ; V^{\prime}\right)$. For the uniqueness, let $v_{1 \eta}, v_{2 \eta}$ be two solutions of $P_{v_{\eta}}$. We use (51) to obtain

$$
\left\langle\dot{v}_{2 \eta}(t)-\dot{v}_{1 \eta}(t), v_{2 \eta}(t)-v_{1 \eta}(t)\right\rangle_{V^{\prime} \times V}+\left\langle A v_{2 \eta}(t)-A v_{1 \eta}(t), v_{2 \eta}(t)-v_{1 \eta}(t)\right\rangle_{V^{\prime} \times V} \geq 0
$$

Integrating the previous inequality, using (50) and (26), we find

$$
\frac{1}{2}\left\|v_{2 \eta}(t)-v_{1 \eta}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|v_{2 \eta}(s)-v_{1 \eta}(s)\right\|_{V}^{2} d s \leq 0, \forall t \in[0, T]
$$

which implies $v_{1 \eta}=v_{2 \eta}$.
Let now $u_{\eta}:[0, T] \rightarrow V$ be the function defined by

$$
\begin{equation*}
u_{\eta}(t)=\int_{0}^{t} v_{\eta}(s) d s+u_{0}, \quad \forall t \in[0, T] \tag{57}
\end{equation*}
$$

In the study of Problem $P_{u_{\eta}}$, we have the following result.
Lemma 3.3. $P_{u_{\eta}}$ has a unique solution satisfying the regularity expressed in (46).
Proof. The proof of lemma 3.3 is a consequence of lemma 3.2 and the relation (57).
In the second step, let $(\eta, \mu) \in L^{2}\left(0, T ; V^{\prime} \times E_{0}\right)$ be given, we use the displacement field u_{η} obtained in Lemma 3.3 to consider the following variational problem.

Problem $P_{\eta \mu}$. Find a $\varphi_{\eta}:[0, T] \rightarrow W$ and $\alpha_{\mu}:[0, T] \rightarrow E_{1}$ such that

$$
\begin{align*}
& \sum_{\ell=1}^{2}\left(\mathcal{C}^{\ell} \nabla \varphi_{\eta}^{\ell}(t), \nabla \phi^{\ell}\right)_{H^{\ell}}-\sum_{\ell=1}^{2}\left(\mathcal{E}^{\ell} \varepsilon\left(u_{\eta}^{\ell}(t)\right), \nabla \phi^{\ell}\right)_{H^{\ell}}=(q(t), \phi)_{W}, \\
& \forall \phi \in W, \text { a.e. } t \in(0, T) \\
& \alpha_{\mu}(t) \in K, \quad \sum_{\ell=1}^{2}\left(\dot{\alpha}_{\mu}^{\ell}(t)-\mu^{\ell}(t), \xi^{\ell}-\alpha_{\mu}^{\ell}\right)_{L^{2}\left(\Omega^{\ell}\right)}+a\left(\alpha_{\mu}(t), \xi-\alpha_{\mu}(t)\right) \geq 0, \tag{58}\\
& \quad \forall \xi \in K \quad \text { a.e. } t \in(0, T),
\end{align*}
$$

where $K=K^{1} \times K^{2}$. We have the following result for the problem.

Lemma 3.4. There exists a unique solution of the Problem $P_{\eta \mu}$ and satisfies the regularity (47)-(48).

Proof. For more details about the proof of this lemma, see lemmas 4.3. and 4.6. in [13].
Since meas $\left(\Gamma_{a}\right)>0$, it follows from (29) and the Friedrichs-Poincaré inequality (18) that the bilinear form : $b(.,):. W \times W \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
b(\varphi, \phi)=\sum_{\ell=1}^{2}\left(\mathcal{C}^{\ell} \nabla \varphi^{\ell}(t), \nabla \phi^{\ell}\right)_{H^{\ell}} \quad \forall \varphi, \phi \in W \tag{59}
\end{equation*}
$$

is continuous, symmetric and coercive on W. Moreover, keeping in mind the regularity of q in (38), assumption (28) on the piezoelectric tensor \mathcal{E} and the regularity $u_{\eta} \in C^{1}(0, T ; H)$ obtained in lemma 3.3 , we obtain that the function $L_{\eta}:[0, T] \rightarrow W$ given by

$$
\begin{equation*}
\left(L_{\eta}(t), \phi\right)_{W}=(q(t), \phi)_{W}+\sum_{\ell=1}^{2}\left(\mathcal{E}^{\ell} \varepsilon\left(u_{\eta}^{\ell}(t)\right), \nabla \phi^{\ell}\right)_{H^{\ell}} \quad \forall \phi \in W \tag{60}
\end{equation*}
$$

is continuous. The existence and uniqueness part in lemma 3.4 is now a straight consequence of the well-known Lax-Milgram theorem combined with the equalities (59)- (60).

On the other hand, the inclusion of $\left(E_{1},\|\cdot\|_{E_{1}}\right)$ into $\left(E_{0},\|\cdot\|_{E_{0}}\right)$ is continuous and its range is dense. We denote by E_{1}^{\prime} the dual space of E_{1} and, identifying the dual of E_{0} with itself, we can write the Gelfand triple

$$
E_{1} \subset E_{0}=E_{0}^{\prime} \subset E_{1}^{\prime}
$$

Frome (41) we write

$$
(\xi, \zeta)_{E_{1}^{\prime} \times E_{1}}=(\xi, \zeta)_{E_{0}}, \quad \forall \xi \in E_{0}, \zeta \in E_{1}
$$

and we note that K is closed convex set in E_{1}. Then, using the definition (37) of the bilinear form a and the fact that $\alpha_{0} \in K$ in (36). Thus using the Theorem 2.1, we deduce that there exists a unique function α_{μ} solution of the second relation in (58), which concludes the proof of the lemma.

We consider the element $\Lambda(\eta(t), \mu(t))=\left(\Lambda_{1}(\eta(t), \mu(t)), \Lambda_{2}(\eta(t), \mu(t))\right) \in V^{\prime} \times E_{0}$ defined by the equations

$$
\begin{gather*}
\left\langle\Lambda_{1}(\eta(t), \mu(t)), v\right\rangle_{V^{\prime} \times V}=\sum_{\ell=1}^{2}\left(\mathcal{B}^{\ell}\left(\varepsilon\left(u_{\eta}^{\ell}(t)\right), \alpha_{\mu}^{\ell}(t)\right)+\left(\mathcal{E}^{\ell}\right)^{*} \nabla \varphi_{\eta}^{\ell}(t), \varepsilon\left(v^{\ell}\right)_{\mathcal{H}^{\ell}}\right. \tag{61}\\
\Lambda_{2}(\eta(t), \mu(t))=\sum_{\ell=1}^{2} S^{\ell}\left(\varepsilon\left(u_{\eta}^{\ell}(t)\right), \alpha_{\mu}^{\ell}(t)\right) \tag{62}
\end{gather*}
$$

We have the following result.
Lemma 3.5. The operator $\Lambda: L^{2}\left(0, T ; V^{\prime} \times E_{0}\right) \rightarrow L^{2}\left(0, T ; V^{\prime} \times E_{0}\right)$ has a unique fixed point $\left(\eta^{*}, \mu^{*}\right)$.

Proof. By using arguments similar to those in the proof of lemma 4.9 in [14].
Let now $\left(\eta_{1}, \theta_{1}\right),\left(\eta_{2}, \theta_{2}\right) \in L^{2}\left(0, T ; V^{\prime} \times E_{0}\right)$. For simplicity, we use the notation $u_{\eta_{i}}=$ $u_{i}, \dot{u}_{\eta_{i}}=\dot{u}_{i}=v_{i}, \varphi_{\eta_{i}}=\varphi_{i}$ and $\alpha_{\mu_{i}}=\alpha_{i}$, for $i=1,2$, we have

$$
\begin{aligned}
\| \Lambda_{1}\left(\eta_{1}(t),\right. & \left.\mu_{1}(t)\right)-\Lambda_{1}\left(\eta_{2}(t), \mu_{2}(t)\right)\left\|_{V^{\prime}}^{2} \leq \sum_{\ell=1}^{2}\right\|\left(\mathcal{E}^{\ell}\right)^{*} \nabla \varphi_{1}^{\ell}(t)-\left(\mathcal{E}^{\ell}\right)^{*} \nabla \varphi_{2}^{\ell}(t) \|_{\mathcal{H}^{\ell}}^{2} \\
& +\sum_{\ell=1}^{2}\left\|\mathcal{B}^{\ell}\left(\varepsilon\left(u_{1}^{\ell}(t)\right), \alpha_{1}^{\ell}(t)\right)-\mathcal{B}^{\ell}\left(\varepsilon\left(u_{2}^{\ell}(t)\right), \alpha_{1}^{\ell}(t)\right)\right\|_{\mathcal{H}^{\ell}}^{2}
\end{aligned}
$$

From the definition (61) combined with the assumptions (17), (27) on \mathcal{B} and (28) on \mathcal{E}, we conclude that there is $C>0$ such that

$$
\begin{align*}
& \left\|\Lambda_{1}\left(\eta_{1}(t), \mu_{1}(t)\right)-\Lambda_{1}\left(\eta_{2}(t), \mu_{2}(t)\right)\right\|_{V^{\prime}}^{2} \leq C\left(\left\|u_{1}(t)-u_{2}(t)\right\|_{V}^{2}+\right. \\
& \left.\quad\left\|\alpha_{1}(t)-\alpha_{2}(t)\right\|_{E_{0}}^{2}+\left\|\varphi_{1}(t)-\varphi_{2}(t)\right\|_{W}^{2}\right) \tag{63}
\end{align*}
$$

Moreover, from (57), we have

$$
\begin{equation*}
\left\|u_{1}(t)-u_{2}(t)\right\|_{V} \leq \int_{0}^{t}\left\|v_{1}(s)-v_{2}(s)\right\|_{V} d s, \quad \forall t \in[0, T] \tag{64}
\end{equation*}
$$

Substituting $\eta=\eta_{1}, v=v_{2}$ and $\eta=\eta_{2}, v=v_{1}$ in (49), keeping in mind (50) and combining the resulting inequalities, we find

$$
\begin{aligned}
\left\langle\dot{v}_{1}-\dot{v}_{2}, v_{1}-v_{2}\right\rangle_{V^{\prime} \times V}+ & \sum_{\ell=1}^{2}\left(\mathcal{A}^{\ell} \varepsilon\left(v_{1}^{\ell}\right)-\mathcal{A}^{\ell} \varepsilon\left(v_{2}^{\ell}\right), \varepsilon\left(v_{1}^{\ell}-v_{2}^{\ell}\right)\right)_{\mathcal{H}^{\ell}}+ \\
& \left\langle\eta_{1}-\eta_{2}, v_{1}-v_{2}\right\rangle_{V^{\prime} \times V} \leq 0
\end{aligned}
$$

We integrate this inequality with respect to time. We use the initial conditions $v_{1}(0)-$ $v_{2}(0)=v_{0}$ and the relation (26) to find that,

$$
\min \left(m_{\mathcal{A}^{1}}, m_{\mathcal{A}^{2}}\right) \int_{0}^{t}\left\|v_{1}(s)-v_{2}(s)\right\|_{V}^{2} d s \leq-\int_{0}^{t}\left\langle\eta_{1}(s)-\eta_{2}(s), v_{1}(s)-v_{2}(s)\right\rangle_{V^{\prime} \times V} d s
$$

Then, using the inequality $2 a b \leq \frac{a^{2}}{m}+m b^{2}$, we obtain

$$
\begin{equation*}
\int_{0}^{t}\left\|v_{1}(s)-v_{2}(s)\right\|_{V}^{2} d s \leq C \int_{0}^{t}\left\|\eta_{1}(s)-\eta_{2}(s)\right\|_{V^{\prime}}^{2} d s \tag{65}
\end{equation*}
$$

From (64) and (65), we deduce

$$
\begin{equation*}
\left\|u_{1}(t)-u_{2}(t)\right\|_{V}^{2} \leq C \int_{0}^{t}\left\|\eta_{1}(s)-\eta_{2}(s)\right\|_{V^{\prime}}^{2} d s \tag{66}
\end{equation*}
$$

We use assumptions (28) and (29) on the piezoelectric and permittivity tensors respectively with the inequality of Friedrichs-Poincaré (18), it follows from (58) than

$$
\begin{equation*}
\left\|\varphi_{1}(t)-\varphi_{2}(t)\right\|_{W}^{2} \leq C\left\|u_{1}(t)-u_{2}(t)\right\|_{V}^{2}, \quad \forall t \in[0, T] \tag{67}
\end{equation*}
$$

Furthermore, by substituting $\mu=\mu_{1}, \xi=\alpha_{1}$ and $\mu=\mu_{2}, \xi=\alpha_{2}$ in (58) and subtracting the two inequalities obtained, we find

$$
\begin{aligned}
\left(\dot{\alpha}_{1}(t)\right. & \left.-\dot{\alpha}_{2}(t), \alpha_{1}(t)-\alpha_{2}(t)\right)_{E_{0}}+a\left(\alpha_{1}(t)-\alpha_{2}(t), \alpha_{1}(t)-\alpha_{2}(t)\right) \\
& \leq\left(\mu_{1}(t)-\mu_{2}(t), \alpha_{1}(t)-\alpha_{2}(t)\right)_{E_{0}}, \quad \text { a.e. } t \in(0, T)
\end{aligned}
$$

We integrate the previous inequality and applying the inequality of Hölder and Young with Gronwall's lemma, we deduce that

$$
\begin{equation*}
\left\|\alpha_{1}(t)-\alpha_{2}(t)\right\|_{E_{0}}^{2} \leq C \int_{0}^{t}\left\|\mu_{1}(s)-\mu_{2}(s)\right\|_{E_{0}}^{2} d s \tag{68}
\end{equation*}
$$

We substitute (66)-(68) in (63) we obtain

$$
\begin{align*}
& \int_{0}^{T}\left\|\Lambda_{1}\left(\eta_{1}(s), \mu_{1}(s)\right)-\Lambda_{1}\left(\eta_{2}(s), \mu_{2}(s)\right)\right\|_{V^{\prime} \times E_{0}}^{2} d s \tag{69}\\
& \leq C \int_{0}^{T}\left(\left\|\eta_{1}(s)-\eta_{2}(s)\right\|_{V^{\prime}}^{2}+\left\|\mu_{1}(s)-\mu_{2}(s)\right\|_{E_{0}}^{2}\right) d s
\end{align*}
$$

Using the assumption (30), equality (17) with estimates (66) and (68) we obtain the estimate of Λ_{1}

$$
\begin{align*}
& \int_{0}^{T}\left\|\Lambda_{2}\left(\eta_{1}(s), \mu_{1}(s)\right)-\Lambda_{2}\left(\eta_{2}(s), \mu_{2}(s)\right)\right\|_{V^{\prime} \times E_{0}}^{2} d s \\
& =\int_{0}^{T}\left\|S\left(\varepsilon\left(u_{1}(s)\right), \alpha_{1}(s)\right)-S\left(\varepsilon\left(u_{2}(s)\right), \alpha_{2}(s)\right)\right\|_{V^{\prime} \times E_{0}}^{2} d s \tag{70}\\
& \leq C \int_{0}^{T}\left(\left\|\eta_{1}(s)-\eta_{2}(s)\right\|_{V^{\prime}}^{2}+\left\|\mu_{1}(s)-\mu_{2}(s)\right\|_{E_{0}}^{2}\right) d s .
\end{align*}
$$

Combining the inequalities (69) and (70) to obtain

$$
\begin{equation*}
\left\|\Lambda\left(\eta_{1}, \mu_{1}\right)-\Lambda\left(\eta_{2}, \mu_{2}\right)\right\|_{L^{2}\left(0, T ; V^{\prime} \times E_{0}\right)}^{2} \leq C\left\|\eta_{1}-\mu_{1}, \eta_{2}-\mu_{2}\right\|_{L^{2}\left(0, T ; V^{\prime} \times E_{0}\right)}^{2} \tag{71}
\end{equation*}
$$

Reiterating the inequality (71) n times leads to

$$
\begin{equation*}
\left\|\Lambda^{n}\left(\eta_{1}, \mu_{1}\right)-\Lambda^{n}\left(\eta_{2}, \mu_{2}\right)\right\|_{L^{2}\left(0, T ; V^{\prime} \times E_{0}\right)}^{2} \leq \frac{C^{n}}{n!}\left\|\eta_{1}-\mu_{1}, \eta_{2}-\mu_{2}\right\|_{L^{2}\left(0, T ; V^{\prime} \times E_{0}\right)}^{2} \tag{72}
\end{equation*}
$$

Thus, for n sufficiently large, Λ^{n} is a contraction on the Banach space $L^{2}\left(0, T ; V^{\prime} \times E_{0}\right)$, and so Λ has a unique fixed point.

Now, we have all the ingredients to prove Theorem 3.1.
Existence. Let $\left(\eta^{*}, \mu^{*}\right) \in L^{2}\left(0, T ; V^{\prime} \times E_{0}\right)$ be the fixed point Λ and let u and $\{\varphi, \alpha\}$ denote the solutions of problems $P_{u_{\eta}}, P_{\eta \mu}$ respectively, for $\eta=\eta^{*}$ and $\mu=\mu^{*}$. The equalities $\Lambda_{1}\left(\eta^{*}, \mu^{*}\right)=\eta^{*}$ and $\Lambda_{2}\left(\eta^{*}, \mu^{*}\right)=\mu^{*}$ show that (42)-(75) are satisfied. Next, (45) and the regularity (46)-(48) follow from lemmas 3.3, and 3.4.

Uniqueness. Uniqueness of the solution is a consequence of the uniqueness of the fixed point of the operator Λ and the unique solvability of the problems $P_{u_{\eta}}$ and $P_{\eta \mu}$.

4. Discrete approximations

We now introduce a finite element method to approximate solutions of Problem $\mathbf{P}^{\mathcal{V}}$ and derive an error estimate on them. We consider finite dimensional spaces $\boldsymbol{V}^{h} \subset \boldsymbol{V}$, $W^{h} \subset W$, and $E^{h} \subset E_{1}$, approximating the spaces \boldsymbol{V}, W and E_{1}, respectively. Here, $h>0$ denotes the spacial discretization parameter. Secondly, the time derivatives are discretized by using a uniform partition of $[0, T]$, denoted by $0=t_{0}<t_{1}<\ldots<t_{N}=T$. Let k be the time step size, $k=T / N$, and for a continuous function $F(t)$ let $\mathbf{f}_{n}=F\left(t_{n}\right)$. Finally, for a sequence $\left\{w_{n}\right\}_{n=0}^{N}$, we denote by $\delta w_{n}=\left(w_{n}-w_{n-1}\right) / k$ the finite differences. In this section, no summation is assumed over a repeated index and c denotes a positive constant which depends on the problem data, but is independent of the discretization parameters, h and k. Thus, using the backward Euler scheme, the fully discrete approximation of Problem $\mathbf{P}^{\mathcal{V}}$ is the following.

Problem $\mathbf{P}^{\mathcal{V}, h k}$. Find a discrete velocity field $\boldsymbol{v}^{h k}=\left\{\left(\boldsymbol{v}_{n}^{1, h k}, \boldsymbol{v}_{n}^{2, h k}\right)\right\}_{n=0}^{N} \subset \boldsymbol{V}^{h}$, a discrete electric potential $\varphi^{h k}=\left\{\left(\varphi_{n}^{1, h k}, \varphi_{n}^{2, h k}\right)\right\}_{n=0}^{N} \subset W^{h}$ and a discrete damage field $\alpha^{h k}=$ $\left\{\left(\alpha_{n}^{1, h k}, \alpha_{n}^{2, h k}\right)\right\}_{n=0}^{N} \subset E^{h} \cap K=K^{h}$, such that $\boldsymbol{v}_{0}^{h k}=\boldsymbol{w}_{0}^{h}, \alpha_{0}^{h k}=\alpha_{0}^{h}$, and for all $n=1, \ldots, N$

$$
\begin{array}{r}
\left(\delta \boldsymbol{v}_{n}^{\ell, h k}, \boldsymbol{w}_{n}^{\ell, h}-\boldsymbol{v}^{\ell, h}\right)_{V^{\prime} \times V}+\sum_{\ell=1}^{2}\left(\mathcal{A}^{\ell} \varepsilon\left(\boldsymbol{v}_{n}^{\ell, h k}\right)+\mathcal{B}^{\ell} \varepsilon\left(\boldsymbol{u}_{n}^{\ell, h k}, \alpha_{n}^{\ell, h k}\right), \varepsilon\left(\boldsymbol{v}_{n}^{\ell, h}-\boldsymbol{w}^{\ell, h}\right)\right)_{\mathcal{H}^{\ell}}+ \\
\sum_{\ell=1}^{2}\left(\left(\mathcal{E}^{\ell}\right)^{*} \nabla \varphi_{n}^{\ell, h k}, \varepsilon\left(\boldsymbol{v}^{\ell, h}-\boldsymbol{w}^{\ell, h}\right)\right)_{\mathcal{H}^{\ell}}+j\left(\boldsymbol{w}^{h k}\right)-j\left(\boldsymbol{v}_{n}^{h k}\right) \geq\left(\mathbf{f}_{n}, \boldsymbol{v}_{n}^{h}-\boldsymbol{w}^{h}\right)_{\boldsymbol{V}} \quad \forall \boldsymbol{w}^{h} \in \boldsymbol{V}^{h}, \tag{73}
\end{array}
$$

$$
\left.\begin{array}{rl}
& \sum_{\ell=1}^{2}\left(\mathcal{B}^{\ell} \nabla \varphi_{n}^{\ell, h k}, \nabla \phi^{\ell, h}\right)_{H^{\ell}}-\sum_{\ell=1}^{2}\left(\mathcal{E}^{\ell} \varepsilon\left(\boldsymbol{u}_{n}^{\ell, h k}\right), \nabla \phi^{\ell, h}\right)_{H^{\ell}}=\left(q_{n}, \phi^{h}\right)_{W} \forall \phi^{h} \in W^{h}, \\
\sum_{\ell=1}^{2}\left(\delta \alpha_{n}^{\ell, h k}(t), \xi^{h, \ell}-\alpha_{n}^{\ell, h k}(t)\right)_{L^{2}\left(\Omega^{\ell}\right)}+a\left(\alpha_{n}^{h k}, \xi^{h}-\alpha_{n}^{h k}(t)\right) \tag{75}\\
\geq & \sum_{\ell=1}^{2}\left(S^{\ell}\left(\varepsilon\left(u_{n}^{\ell, h k}\right), \alpha_{n}^{\ell, h k}\right), \xi^{h, \ell}-\alpha_{n}^{\ell, h k}\right)_{L^{2}\left(\Omega^{\ell}\right)}, \quad \forall \xi^{h} \in K^{h}, \quad \text { a.e. } t \in(0, T),
\end{array}\right\}
$$

where the discrete displacement field $\boldsymbol{u}^{h k}=\left\{\left(\boldsymbol{u}_{n}^{1, h k}, \boldsymbol{u}_{n}^{2, h k}\right)\right\}_{n=0}^{N} \subset \boldsymbol{V}^{h}$, is given by

$$
\boldsymbol{u}_{n}^{\ell, h k}=k \sum_{j=1}^{n} \boldsymbol{v}_{j}^{\ell, h k}+\boldsymbol{u}_{0}^{\ell, h}
$$

Here $u_{0}^{\ell, h}, v_{0}^{\ell, h}$ and $\alpha_{0}^{\ell, h}$ are appropriate approximation of the initial condition $u_{0}^{\ell}, v_{0}^{\ell}$ and α_{0}^{ℓ}, respectively, and $\varphi_{0}^{\ell, h k}$ is the unique solution of the seconde quation in Problem $\mathbf{P}^{\mathcal{V}, h k}$ for $n=0$.

We notice that the fully discrete Problem $\mathbf{P}^{\mathcal{V}, h k}$ can be seen as a coupled system of variational inequations. Using classical results of nonlinear variational inequations (see [8]), we obtain that Problem $\mathbf{P}^{\mathcal{V}, h k}$ admits a unique solution in $\boldsymbol{V}^{h} \times W^{h} \times K^{h}$. Our interest in this section lies in estimating the numerical errors $\left\|\boldsymbol{u}_{n}-\boldsymbol{u}_{n}^{h k}\right\|_{\boldsymbol{V}},\left\|\varphi_{n}-\varphi_{n}^{h k}\right\|_{W}$ and $\left\|\beta_{n}-\beta_{n}^{h k}\right\|_{L^{\infty}\left(\Gamma_{3}\right)}$. Let $V_{h}\left(\Omega^{\ell}\right), W_{h}\left(\Omega^{\ell}\right)$ and B_{h}^{ℓ} consist of continuous and piecewise affine functions; that is,

$$
\begin{gathered}
V_{h}\left(\Omega^{\ell}\right)=\left\{\boldsymbol{v}_{h}^{\ell} \in\left[C\left(\overline{\Omega^{\ell}}\right)\right]^{d} ;\left.v_{h}^{\ell}\right|_{K} \in\left[P_{1}(K)\right]^{d}, \forall K \in \mathcal{T}_{h}^{\ell} ;\left.v_{h}^{\ell}\right|_{\Gamma_{1}^{\ell}} \equiv 0\right\} \\
W_{h}\left(\Omega^{\ell}\right)=\left\{\varphi_{h}^{\ell} \in C\left(\overline{\Omega^{\ell}}\right) ;\left.\varphi_{h}^{\ell}\right|_{K} \in P_{1}(K), \forall K \in \mathcal{T}_{h}^{\ell} ;\left.v_{h}^{\ell}\right|_{\Gamma_{a}^{\ell}} \equiv 0\right\} \\
E_{h}^{\ell}=\left\{\alpha_{h}^{\ell} \in C\left(\overline{\Omega^{\ell}}\right) ;\left.\alpha_{h}^{\ell}\right|_{K} \in P_{1}(K), \forall K \in \mathcal{T}_{h}^{\ell}\right\}
\end{gathered}
$$

where $C\left(\overline{\Omega^{\ell}}\right)$ and $P_{1}(K)$ denote the space of continuous functions on $\overline{\Omega^{\ell}}$ and the space of the polynomials with the global degree one on K, respectively, and $\xi_{h}^{\ell}=\left\{c_{1}=\right.$ $\left.x_{0}^{\ell}, x_{1}^{\ell}, \ldots, x_{N^{\ell}-1}^{\ell}, x_{N^{\ell}}^{\ell}=c_{2}\right\}$ the set of nodes on Γ_{3} belonging to triangulation \mathcal{T}_{h}^{ℓ}. We define the spaces

$$
\begin{gathered}
\boldsymbol{V}^{h}=V_{h}\left(\Omega^{1}\right) \times V_{h}\left(\Omega^{2}\right), \quad W^{h}=W_{h}\left(\Omega^{1}\right) \times W_{h}\left(\Omega^{2}\right), \quad E^{h}=E_{h}^{1} \times E_{h}^{2} \\
H^{2}=H^{2}\left(\Omega^{1}\right) \times H^{2}\left(\Omega^{2}\right), \quad K^{h}=E^{h} \cap K
\end{gathered}
$$

Then, we have the following corollary which states the linear convergence of the algorithm under suitable regularity condition.

Theorem 4.1. Assume that (26)-(36) hold. Let $\{\boldsymbol{u}, \varphi, \alpha\}$ and $\left\{\boldsymbol{u}_{n}^{h k}, \varphi_{n}^{h k}, \alpha_{n}^{h k}\right\}$ denote the solution to Problems $\boldsymbol{P}^{\mathcal{V}}$ and $\boldsymbol{P}^{\mathcal{V}, h k}$, respectively. Under the following regularity conditions:

$$
\boldsymbol{u} \in C\left(0, T ;\left[H^{2}\right]^{d}\right), \varphi \in C\left(0, T ; H^{2}\right), \alpha \in C^{1}\left(0, T ; H^{2}\right)
$$

Then we obtain the estimate

$$
\begin{equation*}
\max _{1 \leq n \leq N}\left\{\left\|\boldsymbol{u}_{n}-\boldsymbol{u}_{n}^{h k}\right\|_{\boldsymbol{V}}+\left\|\varphi_{n}-\varphi_{n}^{h k}\right\|_{W}+\left\|\alpha_{n}-\alpha_{n}^{h k}\right\|_{E_{0}}\right\} \leq C(h+k) \tag{76}
\end{equation*}
$$

where positive constant C independent of the discretization parameters h and k.

Proof. We have the following approximation properties of the finite element spaces \boldsymbol{V}^{h}, W^{h} and E^{h} (see [9]),

$$
\begin{aligned}
& \max _{1 \leq n \leq N} \inf _{\boldsymbol{w}_{n}^{h} \in \boldsymbol{V}^{h}}\left\|\boldsymbol{u}_{n}-\boldsymbol{w}_{n}^{h}\right\|_{\boldsymbol{V}} \leq c h\|\boldsymbol{u}\|_{C\left(0, T ;\left[H^{2}\right]^{d}\right)}, \\
& \max _{1 \leq n \leq N} \inf _{\phi_{n}^{h} \in W^{h}}\left\|\varphi_{n}-\phi_{n}^{h}\right\|_{W} \leq c h\left\|\varphi_{n}\right\|_{C\left(0, T ; H^{2}\right)}, \\
& \max _{1 \leq n \leq N \lambda_{n}^{h} \in W^{h}}\left\|\alpha_{n}-\lambda_{n}^{h}\right\|_{W} \leq c h\left\|\alpha_{n}\right\|_{C\left(0, T ; H^{2}\right)} .
\end{aligned}
$$

Then, using arguments similar to those used in [4, Theorem 2], we deduce (76).
Numerical example. For the numerical simulations, we consider the next special case: "A dynamic process of contact between two viscoelastic bodies without damage" of twodimensional test problem. There, the following notation are used: $\Omega^{1}=[0,1] \times[0,1]$, $\Omega^{2}=[0,1] \times[-1,0], \Gamma_{1}^{1}=[0,1] \times\{1\}, \Gamma_{2}^{1}=\{0,1\} \times[0,1], \Gamma_{1}^{2}=[0,1] \times\{-1\}, \Gamma_{2}^{2}=$ $\{0,1\} \times[-1,0], \Gamma_{3}=[0,1] \times\{0\}$. We model the material's behaviour with a constitutive law of the form (3), in which the two bodies have the same properties and the functions \mathcal{E}^{ℓ} vanishes. The compressible material response is governed by a linearly viscoelastic constitutive law in which the viscosity tensor \mathcal{A}^{ℓ} and the elasticity tensor \mathcal{B}^{ℓ}, are given by

$$
\begin{gathered}
\left(\mathcal{A}^{\ell}(\tau)\right)_{i j}=\frac{10^{-2} E r}{1-r^{2}}\left(\tau_{11}+\tau_{22}\right) \delta_{i j}+\frac{10^{-2} E}{1+r} \tau_{i j}, \quad 1 \leq i, j \leq 2, \quad \ell=1,2, \quad \forall \tau \in \mathbb{S}^{2}, \\
\left(\mathcal{B}^{\ell}(\tau)\right)_{i j}=\frac{E r}{1-r^{2}}\left(\tau_{11}+\tau_{22}\right) \delta_{i j}+\frac{E}{1+r} \tau_{i j}, \quad 1 \leq i, j \leq 2, \quad \ell=1,2, \quad \forall \tau \in \mathbb{S}^{2}
\end{gathered}
$$

where $E=20000 \mathrm{~N} / \mathrm{m}^{2}$ is the Young's modulus, $r=0.3$, is the Poisson's ratio of the materials and $\delta_{i j}$ is the Kronecker delta. For computation we use the following data:

$$
\begin{aligned}
& T=1 s, \quad \boldsymbol{u}_{0}=(0,0) m, \quad \boldsymbol{v}_{0}=(0,0) m / s, \quad g=0 N / m^{3}, \quad \rho^{1}=\rho^{2}=1 \mathrm{~kg} / \mathrm{m}^{3}, \\
& f_{0}^{1}=(0.5,-0.5) N / m^{3}, \quad f_{0}^{2}=(0.5,0) N / m^{3}, \quad f_{2}^{\ell}=\left(f_{2,1}^{\ell}, f_{2,2}^{\ell}\right), \ell=1,2 \text {, where } \\
& f_{2,1}^{1}=\left\{\begin{array}{rl}
3 \times 10^{-2} N / m & \text { on }\{0\} \times[0,1], \\
-10^{-1} N / m & \text { on }\{1\} \times[0,1],
\end{array} \quad f_{2,2}^{1}=10^{-1} N / m,\right. \\
& f_{2,1}^{2}=\left\{\begin{array}{rl}
5 \times 10^{-2} N / m & \text { on }\{0\} \times[-1,0], \\
-10^{-2} N / m & \text { on }\{1\} \times[-1,0],
\end{array} \quad f_{2,2}^{2}=-10^{-2} N / m .\right.
\end{aligned}
$$

To see the convergence behaviour of the fully discrete scheme, we compute a sequence of numerical solutions based on uniform partitions of the time interval $[0,1]$, and uniform triangulations of the domain $[0,1] \times[-1,1]$ of the type shown in Figure 1 which represents a coarse discretization ($h=k=1 / 4$). The results at the end of the simulation are illustrated Figure 2, which represent the approximation of displacements at $t=1 \mathrm{~s}$.

References

[1] Amassad, A., Sofonea, M., (1998), Analysis of a quasistatic viscoplastic problem involving tresca friction law, Discrete and Continuous Dynamical Systems, (4), 1, pp. 55-72.
[2] Azeb Ahmed, A., Boutechebak, S., (2013), Analysis of a dynamic electro-elastic-viscoplastic contact problem, Wulfenia Journal Klagenfurt Austria, 3, (20), pp. 43-63.
[3] Barboteu, M., Fernandez, J. R., Ouafik, Y., (2008), Numerical analysis of a frictionless viscoelastic piezoelectric contact problem, Math. Model. Numer. Anal., 42, (4), pp. 667-682.
[4] Barboteu, M., Fernández, J. R., Tarraf, R.,(2008) Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity, Comput. Methods Appl. Mech. Engrg. 197, pp. 3724-3732.
[5] Batra, R. C., Yang, J. S., (1995), Saint-Venant's principle in linear piezoelectricity, J. Elast., 38, pp. 209-218.

Figure 1. Discretization of the bodies Ω^{1}, Ω^{2}.

The approximation of \boldsymbol{u}_{1}^{1}. The approximation of \boldsymbol{u}_{2}^{1}.
The approximation of \boldsymbol{u}_{1}^{2}. The approximation of \boldsymbol{u}_{2}^{2}.
Figure 2. The approximation of displacements $\boldsymbol{u}=\left(\boldsymbol{u}^{1}, \boldsymbol{u}^{2}\right)$ at $t=1 s$.
[6] Bisenga, P., Lebon, F., Maceri, F., (2002), The unilateral frictional contact of a piezoelectric body with a rigid support, In: Martins, J. A .C., Monteiro Marques, M. D. P. (eds.), Contact Mechanics, pp. 347-354. Kluwer, Dordrecht.
[7] Boutechebak, S., Azeb Ahmed, A., (2018), Analysis of a Dynamic Contact Problem for Electroviscoelastic Materials, Milan J. Math., , 86, pp. 105-124.
[8] Ciarlet, P. G., (1978), The Finite element method for elliptic problems, North-Holland, Amsterdam.
[9] Ciarlet, P. G., (1991), The finite element method for elliptic problems, In: P. G. Ciarlet, J. L. Lions.(eds.) Handbook of Numerical Analysis, Volume II. North Holland, pp. 17-352.
[10] Dai, H.L., Wang, X., (2005), Thermo-electro-elastic transient responses in piezoelectric hollow structures, Inter. J. Soli. Struct., 42, pp. 1151-1171.
[11] Frémond, M., Nedjar, B., (1996), Damage, gradient of damage and principle of virtual work, Internat. J. Solids Struct., 33, (8), pp. 1083-1103.
[12] Frémond, M., Nedjar, B., (1995), Damage in concrete: The unilateral phenomenon, Nucl. Eng. Des., 156, pp. 323-335.
[13] Hadj ammar, T., Benabderrahmane, B., Drabla, S., (2014), Frictional contact problem for electroviscoelastic materials with long-term memory, damage, and adhesion, Elec. J. Dif. Eq., 222, pp. 01-21.
[14] Hadj ammar, T., (2016), A dynamic problem with adhesion and damage in electro-elasto-viscoplasty, Palest. J. Math., , 5, pp. 1-22.
[15] Mindlin, R. D., (1968), Polarisation gradient in elastic dielectrics, Int. J. Solids Struct., 4, pp. 637-663.
[16] Kabbaj, M., Essoufi, EL-H., (2010), Slip-dependent friction in dynamic electro-visco-elasticity, Glasnik Matematicki, 45, (65), pp. 125-137.
[17] Rektorys, K., (1977), Variational Methods in Mathematics, Science and Engineering, Reidel Publishing Company, second ed., P.O. Box 17, 3300 Dordrecht-Holland, New York.
[18] Said Ameur, M., Hadj Ammar, T., Maiza, L., (2020), Analysis of a frictional contact problem for viscoelastic piezoelectric materials, Aust. J. Math. Anal. Appl., 17, (1), Art.6, pp. 1-20.
[19] Selmani, M., (2009), Dynamic problem with adhesion and damage electro-viscoelastic material with long-term memory, Journal of Inequalities in Pure and Applied Mathematics, 10, (1), Art.6, pp. 1-19.
[20] Sofonea, M., Ouafik, Y., (2005), A piezoelectric contact problem with normal compliance, Appl. Math., 32, pp. 425-442
[21] Sofonea, M. Han, W., Shillor, M., (2006), Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics., 276, Chapman-Hall/CRC Press, New York.

Bachir Douib is an assistant professor in Department of Mathematics, Exact Sciences Faculty, University of El-Oued, Algeria. His research area is in modeling of various problems in mechanics, dynamic or quasistatic contact, viscoelastic contact problems and piezoelectric materials.

Tedjani Hadj Ammar is a lecturer in the Department of Mathematics, Exact Sciences Faculty, University of El-Oued, Algeria. His research area is in modeling of various problems in mechanics, dynamic or quasistatic contact, viscoelastic contact problems, material damage and piezoelectric materials. He has published a number of research papers in various journals.

Abdelaziz Azeb Ahmed is a lecturer in Department of Mathematics, Exact Sciences Faculty, University of El-Oued, Algeria. His research area is in modeling of various problems in mechanics, dynamic or quasistatic contact, viscoelastic contact problems, material damage and piezoelectric materials.

[^0]: ${ }^{1}$ Department of Mathematics, University of El-Oued, P.O. Box 789, 39000, El-Oued, Algeria. Department of Mathematics, University of Biskra, P.O. Box 145, 07000 Biskra, Algeria. e-mail: bachir-douib@univ-eloued.dz; ORCID: https://orcid.org/0000-0001-8452-7472.
 ${ }^{2}$ Department of Mathematics, University of El-Oued, P.O. Box 789, 39000, El-Oued, Algeria. e-mail: hadjammar-tedjani@univ-eloued.dz; ORCID: https://orcid.org/0000-0002-5302-4845.

 * Corresponding author.
 e-mail: aziz-azebahmed@univ-eloued.dz; ORCID: https://orcid.org/0000-0002-0561-2044.
 § Manuscript received: August 13, 2020; accepted: January 07, 2021. TWMS Journal of Applied and Engineering Mathematics, Vol.12, No. 4 (C) Işık University, Department of Mathematics, 2022; all rights reserved.
 The authors are supported by the "Laboratory of Operators Theory and PDE Foundations and Applications".

