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ANALYSIS OF A DYNAMIC CONTACT PROBLEM FOR

ELECTRO-VISCOELASTIC MATERIALS WITH TRESCA’S FRICTION

B. DOUIB1, T. HADJ AMMAR2∗, A. AZEB AHMED2, §

Abstract. We consider a mathematical model which describes the dynamic process of
contact between two electro-viscoelastic bodies with damage. The contact is bilateral
and is modeled with Tresca’s friction law. The damage of the materials caused by elastic
deformations. We derive a variational formulation for the model which is in the form of
a system involving the displacement field, the electric potential and the damage. Then
we provide the existence of a unique weak solution to the model. We also study the finite
element approximations of the problem and derive error estimates. Finally, we present
numerical simulation results in the study of a two-dimensional example.

Keywords: Dynamic process, piezoelectric, monotone operator, fixed point, weak solu-
tion, damage.
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1. Introduction

In this paper, we study a bilateral contact problem involves viscous friction of Tresca
type described in [1]. A nonlinear electro-viscoelastic constitutive law is used to model
the piezoelectric material. The piezoelectricity can be described as follows: when mechan-
ical pressure is applied to a certain classes of crystalline materials (e.g ceramics BaTiO3,
BiFeO3), the crystalline structure produces a voltage proportional to the pressure. Con-
versely, when an electric field is applied, the structure changes his shape producing dimen-
sional modifications in the material. Different models have been developed to describe the
interaction between the electrical and mechanical fields see for example [5, 15] and the
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references therein. Contact problems involving elasto-piezoelectric materials [6, 20]. Dif-
ferent models of viscoelastic piezoelectric problems in [3, 7, 16, 18, 19] have been studied,
contact problems for electro-elasto-viscoplastic materials were studied in [2, 14].

The damage is an extremely important topic in engineering, since it affects directly the
useful life of the designed structure or component. There exists a very large engineering
literature on it. Models taking into account the influence of the internal damage of the
material on the contact process have been investigated mathematically. General models for
damage were derived in [12] from the virtual power principle. The models of mechanical
damage, which were derived from thermodynamical considerations and the principle of
virtual work, can be found in [10]. The new idea of [11, 12] was the introduction of the
damage function α` = α`(x, t), which is the ratio between the elastic moduli of the damage
and damage-free materials. In an isotropic and homogeneous elastic material, let E`Y be

the Young modulus of the original material and E`eff be the current modulus, then the

damage function is defined by α` = E`eff/E
`
Y . Clearly, it follows from this definition that

the damage function α` is restricted to have values between zero and one. When α` = 1,
there is no damage in the material, when α` = 0, the material is completely damaged,
when 0 < α` < 1 there is partial damage and the system has a reduced load carrying
capacity. Contact problems with damage have been investigated in [21]. The differential
inclusion used for the evolution of the damage field is

α̇` −∆α` + k`∂χK`(α`) 3 S`(ε(u`), α`) in Ω` × (0, T ), (1)

where k` is a positive coefficient and K` the set of admissible damage defined by

K` = {ξ ∈ H1(Ω`); 0 ≤ ξ ≤ 1, a.e. in Ω`}. (2)

The paper is structured as follows. In Section 2, we present the physical setting and
describe the mechanical problem. We derive a variational formulation, list the assumptions
on the data, and give the variational formulation of the problem. In Section 3, we state
our main existence and uniqueness result which is based on classical result of nonlinear
first order evolution inequalities and equations with monotone operators and the fixed
point arguments. In Section 4, we introduce a fully discrete scheme to solve the problem
numerically. Under certain solution regularity assumptions, we derive an optimal order
error estimate. Finally, we present the numerical solution together with simulation result
son a two-dimensional test problem.

2. Problem statement and variational formulation

Let us consider two electro-viscoelastic bodies, occupying two bounded domains Ω1, Ω2

of the space Rd(d = 2, 3). For each domain Ω`, the boundary Γ` is assumed to be regular
enough, and is partitioned into three disjoint measurable parts Γ`1, Γ`2 and Γ`3, on one
hand, and on two measurable parts Γ`a and Γ`b, on the other hand, such that measΓ`1 > 0,

measΓ`a > 0. Let T > 0 and let [0, T ] be the time interval of interest. The Ω` body is
submitted to f `0 forces and volume electric charges of density q`0. The bodies are assumed
to be clamped on Γ`1. The surface tractions f `2 act on Γ`2. We also assume that the electrical
potential vanishes on Γ`a and a surface electric charge of density q`2 is prescribed on Γ`b. The
two bodies can enter in contact along the common part Γ1

3 = Γ2
3 = Γ3. The classical form

of bilateral contact with Tresca’s friction and damage between two electro-viscoelastic
bodies is given by:

Problem P . For ` = 1, 2, find a displacement field u` : Ω` × (0, T ) → Rd, a stress field
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σ` : Ω` × (0, T )→ Sd, an electric potential ϕ` : Ω` × (0, T )→ R, an electric displacement
field D` : Ω` × (0, T )→ Rd, and a damage α` : Ω` × (0, T )→ R such that

σ` = A`ε(u̇`) + B`(ε(u`), α`) + (E`)∗∇ϕ` in Ω` × (0, T ), (3)

D` = E`ε(u`) + C`E(ϕ`) in Ω` × (0, T ), (4)

α̇` −∆α` + k`∂χK`(α`) 3 S`(ε(u`), α`) in Ω` × (0, T ), (5)

Div σ` + f `0 = ρ`ü` in Ω` × (0, T ), (6)

divD` − q`0 = 0 in Ω` × (0, T ), (7)

u` = 0 on Γ`1 × (0, T ), (8)

σ`ν` = f `2 on Γ`2 × (0, T ), (9) [uν ] = 0 , σ1
τ = −σ2

τ ≡ στ , ‖στ‖ ≤ g
‖στ‖ < g ⇒ [u̇τ ] = 0
‖στ‖ = g ⇒ ∃δ ≥ 0 such that στ = −δ [u̇τ ]

on Γ3 × (0, T ), (10)

∂α`

∂ν`
= 0 on Γ` × (0, T ), (11)

ϕ` = 0 on Γ`a × (0, T ), (12)

D` · ν` = q`2 on Γ`b × (0, T ), (13)

u`(0) = u`0, u̇
`(0) = v`0, α

`(0) = α`0 in Ω`. (14)

Here, Eqs (3) and (4) represent the electro-viscoelastic constitutive law. The evolution
of the damage field is governed by the inclusion given by the relation (5). Next, Eqs (6)
and (7) are the equations of motion written for the stress field and of balance written
for the electric displacement field, respectively, in which Div and div denote the diver-
gence operators for tensor and vector valued functions. Conditions (8) and (9) are the
displacement and traction boundary conditions, respectively. The relation (11) represents
a homogeneous Neumann boundary condition, (12) and (13) represent the electric bound-
ary conditions, and (14) are the initial conditions. Conditions (10) represent the bilateral
contact condition with Tresca’s friction law where [uν ] = u1

ν + u2
ν is the stands for the

displacements in normal direction, and where the friction yield limit is g which is assumed
to depend only on each point of Γ3, where [uτ ] = u1

τ − u2
τ stands for the jump of the

displacements in tangential direction.
We now proceed to obtain a variational formulation of Problem P. For this purpose, we

introduce additional notation and assumptions on the problem data. Here and in what
follows the indices i and j run between 1 and d, the summation convention over repeated
indices is adopted and the index that follows a comma indicates a partial derivative with
respect to the corresponding component of the independent variable. Let E0 = L2(Ω1)×
L2(Ω2), H` = [L2(Ω`)]d, H`

1 = [H1(Ω`)]d, H` = [L2(Ω`)]d×ds , E1 = H1(Ω1)×H1(Ω2), H =
H1 ×H2, H = H1 ×H2 and define the following spaces: V ` =

{
v` ∈ [H1(Ω`)]d; v`

∣∣
Γ`1

=

0
}
, W ` =

{
ψ` ∈ H1(Ω`); ψ`

∣∣
Γ`a

= 0
}
, W` =

{
D` ∈ H`; divD` ∈ L2(Ω`)

}
, W =

W 1 ×W 2, W =W1 ×W2, V =
{
v ∈ V 1 × V 2; [vν ]

∣∣
Γ3

= 0
}
.

Since mesΓ`1 > 0, Korn’s inequality holds and there exists a constant CK > 0 depending
only on Ω` and Γ`1, such that

‖ε(v`)‖H` ≥ CK‖v`‖H`
1
, ∀v` ∈ V `, (15)
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On the space V `, we consider the inner product and the associated norm given by

(u`, v`)V ` = (ε(u`), ε(v`))H` , ∀u`, v` ∈ V `, (16)

and let
∥∥v`∥∥

V `
the associated norm given by∥∥∥v`∥∥∥

V `
= ‖ε(v`)‖H` , ∀v` ∈ V `. (17)

Notice also that, since mes(Γ`a) > 0, the following Friedrichs-Poincaré inequality holds:

‖∇ζ`‖L2(Ω`)d ≥ CF ‖ζ`‖H1(Ω`), ∀ ζ` ∈W `, (18)

where CF > 0 is a constant which depends only on Ω` and Γ`a and ∇ξ` = (ξ`,i). A proof of

Friedrichs-Poincaré inequality may be found in ([17, p.188]).
Further, we denote by X ′ the dual space of X, and we use the notation 〈., .〉X′×X to rep-
resent the duality pairing between X ′ and X.
For the convenience of the reader, we recall the following standard result for parabolic
variational inequalities and the abstract result (see, e.g., [21, p.47-48]).

Theorem 2.1. Let X ⊂ Y = Y ′ ⊂ X ′ be a Gelfand triple. Let K be a nonempty, closed
and convex set of X. Assume that A : X → X ′ is a continuous and symmetric linear
operator which satisfies, there exists C2 ∈ R and C3 > 0 such that

〈Av, v〉X′×X + C2‖v‖2Y ≥ C3‖v‖2X , ∀v ∈ X. (19)

Then, for all u0 ∈ K et f ∈ L2(0, T ;Y ), there exists a unique function u which satisfies

u ∈W 1,2(0, T ;X) ∩ L2(0, T ;Y ) (20)

u(t) ∈ K, ∀t ∈ [0, T ], (21)

〈u̇(t), v − u(t)〉V ′×V + 〈Au(t), v − u(t)〉V ′×V
≥ 〈f(t), v − u(t)〉V ′×V , ∀v ∈ K, a.e.t ∈ (0, T ),

(22)

u(0) = u0. (23)

Theorem 2.2. Let X ⊂ Y = Y ′ ⊂ X ′ be a Gelfand triple. Assume that A : X → X ′ is a
hemicontinuous and monotone operator which satisfies

〈Av, v〉X′×X ≥ ω‖v‖2X + λ, ∀v ∈ X, (24)

‖Av‖X′ ≤ C1(‖v‖X + 1), ∀v ∈ X, (25)

for some constants ω > 0, C1 > 0, and λ ∈ R. Then, for every u0 ∈ Y and f ∈
L2(0, T ;X ′), there exists a unique function u which satisfies

u ∈ L2(0, T ;X) ∩ C([0, T ];Y ), u̇ ∈ L2(0, T ;X ′),

u̇(t) +Au(t) = f(t) a.e.t ∈ (0, T ),

u(0) = u0.

We now list assumptions on the data. Assume the operators A`,B`, E`, C` and S` satisfy
the following conditions (LA` ,mA` , LB` ,mC` and LS` being positive constants).
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(a) A` : Ω` × Sd → Sd.
(b) ‖A`(x, ε1)−A`(x, ε2)‖ ≤ LA`‖ε1 − ε2‖ ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω`.
(c) (A`(x, ε1)−A`(x, ε2)).(ε1 − ε2) ≥ mA`‖ε1 − ε2‖2

∀ε1, ε2 ∈ Sd a.e x ∈ Ω`.
(d) For any ξ ∈ Sd, x 7→ A`(x, ξ) is measurable on Ω`,
(e) The mapping x 7→ A`(x, 0) ∈ H`.


(26)

(a) B` : Ω` × Sd × R→ Sd.
(b) ‖B`(x, ε1, α1)− B`(x, ε2, α2)‖ ≤ LB`(‖ε1 − ε2‖+ |α1 − α2|)

∀ε1, ε2 ∈ Sd, ∀α1, α2 ∈ R, a.e. x ∈ Ω`.
(c) The mapping x 7→ B`(x, ε, α) is measurable in Ω` ∀ε ∈ Sd, ∀α ∈ R.
(d) The mapping x 7→ B`(x, 0, 0) ∈ H`.

 (27)

(a) E` : Ω` × Sd → Rd.
(b) E`(x, τ) = (e`ijk(x)τjk) where e`ijk = e`ikj ∈ L∞(Ω`).

}
(28)

(a) C` : Ω` × Rd → Rd.
(b) C`(x,E) = (c`ij(x)Ej) ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω`.

(c) c`ij = c`ji, c
`
ij ∈ L∞(Ω`), 1 ≤ i, j ≤ d.

(d) C`E.E ≥ mC` |E|2, ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω`.

 (29)

(a) S` : Ω` × Sd × R→ R.
(b) |S`(x, ξ1, d1)− S`(x, ξ2, d2)| ≤ LS`

(
|ξ1 − ξ2|+ |d1 − d2|

)
,

∀ ξ1, ξ2 ∈ Sd,∀d1, d2 ∈ R a.e. x ∈ Ω`.
(c) For any ξ ∈ Sd, d ∈ R, x 7→ S`(x, ξ, d) is measurable on Ω`.
(d) The mapping x 7→ S`(x, 0, 0) belongs to L2(Ω`).

 (30)

The mass density and the friction yield limit g satisfies

ρ` ∈ L∞(Ω`),min`=1,2 infx∈Ω` ρ
`(x) = ρ∗ > 0, (31)

g ∈ L∞(Γ3), g ≥ 0 on Γ3. (32)

The forces, tractions, volume and surface free charge densities have the regularity

f `0 ∈ L2(0, T ;H`), f `2 ∈ L2(0, T ;L2(Γ`2)d), (33)

q`0 ∈ C(0, T ;L2(Ω`)), q`2 ∈ C(0, T ;L2(Γ`b)), (34)

q`2(t) = 0 on Γ3 ∀t ∈ [0, T ]. (35)

Finally, we assume that initial data satisfy the regularity

u`0 ∈ V `, v`0 ∈ V `, α`0 ∈ K`. (36)

We define the mappings F : [0, T ]→ V′, q : [0, T ]→ W, a : E1 × E1 → R and j : V → R
respectively, by

〈F (t), v〉V ′×V =
2∑̀
=1

∫
Ω`
f `0(t)v`dx+

2∑̀
=1

∫
Γ`2

f `2(t)v`da, ∀v ∈ V,

(q(t), φ)W =
2∑̀
=1

∫
Ω` q

`
0(t)φ`dx−

2∑̀
=1

∫
Γ`b
q`2(t)φ`da, ∀φ ∈W,

a(ζ, ξ) =
2∑̀
=1

k`
∫

Ω` ∇ζ
`.∇ξ`dx, and j(v) =

∫
Γ3
g‖ [vτ ] ‖L2(Γ3)d da.


(37)
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From the assumptions (33) and (34) it follows that

F ∈ L2(0, T ;V ′), q ∈ C(0, T ;W ). (38)

We use a modified inner product on H given by

((u, v))H =

2∑
`=1

(ρ`u`, v`)H` , ∀u, v ∈ H, (39)

that is, it is weighted with ρ`. We let |||.|||H be the associated norm, i.e.,

|||v|||H = ((v, v))
1
2
H , ∀v ∈ H. (40)

It follows from assumption (31), that |||.|||H and ||.||H are equivalent norms on H, and also
the inclusion mapping of V into H is continuous and dense. Identifying H with its own
dual, we can write the Gelfand triple V ⊂ H ⊂ V ′, so we have

〈u, v〉V ′×V = ((u, v))H , ∀u ∈ H, ∀v ∈ V. (41)

By a standard procedure based on integration by parts and Green’s formula, we obtain
the following weak formulation of the piezoelectric contact problem P .

Problem PV . Find u : [0, T ]→ V , ϕ : [0, T ]→W and α : [0, T ]→ E1 such that

〈ü(t), w − u̇(t)〉V ′×V +
2∑̀
=1

(A`ε(u̇`) + B`(ε(u`), α`), ε(w` − u̇`(t)))H`+
2∑̀
=1

(
(
E`
)∗∇ϕ`, ε(w` − u̇`(t)))H` + j(w)− j(u̇(t)) ≥ 〈F (t), w − u̇(t)〉V ′×V

∀w ∈ V, a.e. t ∈ (0, T ),

 (42)

2∑̀
=1

(C`∇ϕ`(t)− E`ε(u`(t)),∇φ`)H` = (q(t), φ)W , ∀φ ∈W, a.e. t ∈ (0, T ), (43)

α(t) ∈ K = K1 ×K2,
2∑̀
=1

(α̇`(t), ξ` − α`(t))L2(Ω`) + a(α(t), ξ − α(t))

≥
2∑̀
=1

(S`(ε(u`(t)), α`(t)), ξ` − α`(t))L2(Ω`), ∀ξ ∈ K, a.e. t ∈ (0, T ),

 (44)

u(0) = u0, u̇(0) = w0, α(0) = α0. (45)

The existence of a unique solution to Problem PV will be presented in the next section.

3. Main existence and uniqueness result

Now, we state and prove our existence and uniqueness result.

Theorem 3.1. Under the assumptions (26)–(36). Then there exists a unique solution
{u, ϕ, α} to problem PV. Moreover, the solution satisfies

u ∈W 1,2(0, T ;V ) ∩ C1(0, T ;H) ∩W 2,2(0, T ;V ′), (46)

ϕ ∈ C(0, T ;W ), (47)

α ∈W 1,2(0, T ;E0) ∩ L2(0, T ;E1). (48)

The proof of Theorem 3.1 is carried out in several steps that we prove in what follows,
everywhere in this section we suppose that assumptions of Theorem 3.1 hold, and let a
η ∈ L2(0, T ;V ′) be given. In the first step, we consider the following variational problem.
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Problem Puη . Find a displacement field uη : [0, T ]→ V such that

〈üη(t), w − u̇η(t)〉V ′×V +
2∑̀
=1

(A`ε(u̇`η(t)), ε(w` − u̇`η(t)))H`+

j(w)− j(u̇η(t)) ≥ 〈F (t)− η(t), w − u̇η(t)〉V ′×V , ∀w ∈ V, a.e. t ∈ (0, T ).

uη(0) = u0, u̇η(0) = v0.

 (49)

We define the function A : V → V ′ by

〈Au, v〉V ′×V =
2∑
`=1

(A`ε(u`), ε(v`))H` , ∀u, v ∈ V, (50)

Using variable velocity vη = u̇η, the Problem Puη is written for a.e. t ∈ (0, T ), as follows

Problem Pvη . Find the velocity field vη : [0, T ]→ V such that

〈v̇η(t), w − vη(t)〉V ′×V + 〈Avη(t), w − vη(t)〉V ′×V + j(w)− j(vη(t))
≥ 〈Fη(t), w − vη(t)〉V ′×V , ∀w ∈ V.
vη(0) = v0.

 (51)

Where Fη = F − η.

Lemma 3.1. Assume that (26) and (32) hold, then the operator A and the functional j
defined respectively by (50) and (37) satisfy

(a) A : V → V ′ is hemicontinuous and strongly monotone,
(b) ∃ C1 ≥ 0, ∃ C2 ≥ 0,∀v ∈ V ‖Av‖V ′ ≤ C1‖v‖V + C2,
(c) for all sequence (un) and u in L2(0, T ;V ) such that
un ⇀ u weakly in L2(0, T ;V ) then Aun ⇀ Au star weakly in L2(0, T ;V ′)

and lim inf
n→+∞

∫ T
0 〈Aun(t), un(t)〉V ′×V dt ≥

∫ T
0 〈Au(t), u(t)〉V ′×V dt

(a′) j : V → R is convex and lower semi-continuous functional,
There exists a sequence of C1 convex functions (jn) : V → R such that

(b′) ∃ d1 ≥ 0, ∃ d2 ≥ 0, ∀n ∈ N, ‖j′n(v)‖V ′ ≤ d1‖v‖V + d2,

(c′) ∀v ∈ L2(0, T ;V ), lim
n→+∞

∫ T
0 jn(v(t))dt =

∫ T
0 j(v(t))dt,

(d′) There exists a sequence (vn) and v in L2(0, T ;V ) such that

vn ⇀ v weakly in L2(0, T ;V ) then lim inf
n→+∞

inf
∫ T

0 jn(vn(t))dt ≥
∫ T

0 j(v(t))dt.

j′n(v) denotes the Fréchet derivative of jn at v.

Proof. From the definition (50)and assumption (26), we can verify that A satisfies the
conditions (a)-(b), and applying Lebesgue theorem, we deduce the condition (c).
On the other hand, by using the continuous embedding from V into L2(Γ3)d, we find that
j is continuous and convex. To approximate the function j, we use the following functional
(jn) : V → R defined by

jn(v) =

∫
Γ3

g
√
‖vτ‖2L2(Γ3)d

+ exp(−n) da, ∀v ∈ V1, ∀n ∈ N.

We verify that the Frechet derivative of jn at v is given by

〈j′n(v), h〉V ′×V =

∫
Γ3

g
(vτ , hτ )√

‖vτ‖2L2(Γ3)d
+ e−n

da, ∀h ∈ V. (52)
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We note that jn is continuously differentiable. One may show that for all a ≥ 0, b ≥ 0,
such a+ b = 1, for all reals x, y ∈ R and n ∈ N√

(ax+ by)2 + e−n ≤ a
√
x2 + e−n + b

√
y2 + e−n. (53)

Then jn is convex for all n ∈ N. Using (52) it follows that

∃ C ≥ 0, ∀v ∈ V, ‖j′n(v)‖V ′ ≤ C‖g‖L∞(Γ3),

therefore (b′) is satisfied. From the definition of jn we have lim
n→+∞

jn(v) = j(v) and as jn

is continuous on V , applying the Lebesgue theorem, we deduce the property (c′). Finally,
(d′) is a consequence of the fact that

∀v ∈ V, ∀n ∈ N, jn(v) ≥ j(v).

We conclude that the operator A, the functional j and jn satisfy the conditions of the
lemma 52. �

Lemma 3.2. Under assumptions (26) and (32), for all η ∈ L2(0, T ;V ′), the Problem
Pvη has a unique solution with the regularity

vη ∈ C(0, T ;H) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ′).

Proof. Using the conditions of the lemma 3.1, it is deduced that the operator A + j′n is
hemicontinu and strongly monotone. Thus, (see, e.g., [21, p.48]), for any n ∈ N exists a
unique function vnη ∈ L2(0, T ;V ) ∩ C(0, T ;H) ∩W 1,2(0, T ;V ′) such as{

v̇nη (t) +Avnη (t) + j′n(vnη (t)) = Fη(t), a.e. t ∈ (0, T ),
vnη (0) = v0.

Then, we obtain

〈v̇nη (t), w − vnη (t)〉V ′×V + 〈Avnη (t), w − vnη (t)〉V ′×V + j(w)− j(vnη (t))
≥ 〈Fη(t), w − vnη (t)〉V ′×V , ∀w ∈ V, a.e. t ∈ (0, T ).

We have

〈v̇nη (t), vnη (t)〉V ′×V + 〈Avnη (t), vnη (t)〉V ′×V + 〈j′n(vnη (t)), (vnη (t))〉V ′×V
= 〈Fη(t), vnη (t)〉V ′×V , a.e. t ∈ (0, T ).

Integrating the latest equality on [0, t], t ∈ [0, T ], using (26) and monotony of j′n to infer
that

∃ C > 0, ∀n ∈ N, ∀t ∈ [0, T ], ‖vnη (t)‖H ≤ C,
∫ T

0
‖vnη (t)‖2V dt ≤ C.

We have

∃ C > 0, ∀n ∈ N
∫ T

0
‖v̇nη (t)‖2V ′dt ≤ C.

We can therefore extract a subsequence still denoted (vnη ) to find that{
vnη ⇀ vη weakly in L2(0, T ;V ) and star weakly in L∞(0, T ;H),
v̇nη ⇀ v̇η star weakly in L2(0, T ;V ′).

It follows that

vη ∈ C([0, T ];H) and vnη (t) ⇀ vη(t) star weakly in H, ∀t ∈ [0, T ]. (54)
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Then, we obtain∫ T
0 〈v̇

n
η (t), w〉V ′×V dt+

∫ T
0 〈Av

n
η (t), w〉V ′×V dt+

∫ T
0 jn(w)dt

≥
∫ T

0 〈v̇
n
η (t), vnη (t)〉V ′×V dt+

∫ T
0 〈Av

n
η (t), vnη (t)〉V ′×V dt+

∫ T
0 jn(vnη (t))dt

+
∫ T

0 〈Fη(t), w − v
n
η (t)〉V ′×V dt, ∀w ∈ L2(0, T ;V )

and we find ∫ T
0 〈v̇

n
η (t), w〉V ′×V dt+

∫ T
0 〈Av

n
η (t), w〉V ′×V dt+

∫ T
0 jn(w)dt

≥ 1
2‖v

n
η (T )‖2H −

1
2‖v

n
η (0)‖2H +

∫ T
0 〈Av

n
η (t), vnη (t)〉V ′×V dt (55)

+
∫ T

0 jn(vnη (t))dt+
∫ T

0 〈Fη(t), w − v
n
η (t)〉V ′×V dt,

using the assumptions of the lemma 3.2 and the weak lower-semi-continuity, we obtain
that ∫ T

0 〈v̇η, w − vη〉V ′×V dt+
∫ T

0 〈Avη, w − vη〉V ′×V dt+
∫ T

0 (j(w)− j(vη))dt (56)

≥
∫ T

0 〈Fη, w − vη〉V ′×V dt, ∀w ∈ L2(0, T ;V1).

The above inequality implies that

〈v̇η(t), w − vη(t)〉V ′×V + 〈Avη(t), w − vη(t)〉V ′×V + j(w)− j(vη(t))
≥ 〈Fη(t), w − vη(t)〉V ′×V ∀w ∈ V, a.e. t ∈ (0, T ).

We conclude that Pvη has at least a solution vη ∈ C(0, T ;H)∩L2(0, T ;V )∩W 1,2(0, T ;V ′).
For the uniqueness, let v1η, v2η be two solutions of Pvη . We use (51) to obtain

〈v̇2η(t)− v̇1η(t), v2η(t)− v1η(t)〉V ′×V + 〈Av2η(t)−Av1η(t), v2η(t)− v1η(t)〉V ′×V ≥ 0.

Integrating the previous inequality, using (50) and (26), we find

1

2
‖v2η(t)− v1η(t)‖2H +

∫ t

0
‖v2η(s)− v1η(s)‖2V ds ≤ 0, ∀t ∈ [0, T ],

which implies v1η = v2η. �

Let now uη : [0, T ]→ V be the function defined by

uη(t) =

∫ t

0
vη(s)ds+ u0, ∀t ∈ [0, T ]. (57)

In the study of Problem Puη , we have the following result.

Lemma 3.3. Puη has a unique solution satisfying the regularity expressed in (46).

Proof. The proof of lemma 3.3 is a consequence of lemma 3.2 and the relation (57). �

In the second step, let (η, µ) ∈ L2(0, T ;V ′×E0) be given, we use the displacement field
uη obtained in Lemma 3.3 to consider the following variational problem.

Problem Pηµ. Find a ϕη : [0, T ]→W and αµ : [0, T ]→ E1 such that

2∑̀
=1

(C`∇ϕ`η(t),∇φ`)H` −
2∑̀
=1

(E`ε(u`η(t)),∇φ`)H` = (q(t), φ)W ,

∀φ ∈W, a.e. t ∈ (0, T )

αµ(t) ∈ K,
2∑̀
=1

(α̇`µ(t)− µ`(t), ξ` − α`µ)L2(Ω`) + a(αµ(t), ξ − αµ(t)) ≥ 0 ,

∀ξ ∈ K a.e.t ∈ (0, T ),


(58)

where K = K1 ×K2. We have the following result for the problem.



B. DOUIB, T. HADJ AMMAR, A. AZEB AHMED: A DYNAMIC CONTACT PROBLEM ... 1499

Lemma 3.4. There exists a unique solution of the Problem Pηµ and satisfies the regularity
(47)–(48).

Proof. For more details about the proof of this lemma, see lemmas 4.3. and 4.6. in [13].

Since meas(Γa) > 0, it follows from (29) and the Friedrichs-Poincaré inequality (18) that
the bilinear form : b(., .) : W ×W → R such that

b(ϕ, φ) =
2∑
`=1

(C`∇ϕ`(t),∇φ`)H` ∀ϕ, φ ∈W. (59)

is continuous, symmetric and coercive on W . Moreover, keeping in mind the regularity of q
in (38), assumption (28) on the piezoelectric tensor E and the regularity uη ∈ C1(0, T ;H)
obtained in lemma 3.3, we obtain that the function Lη : [0, T ]→W given by

(Lη(t), φ)W = (q(t), φ)W +
2∑
`=1

(E`ε(u`η(t)),∇φ`)H` ∀φ ∈W (60)

is continuous. The existence and uniqueness part in lemma 3.4 is now a straight conse-
quence of the well-known Lax-Milgram theorem combined with the equalities (59)- (60).

On the other hand, the inclusion of (E1, ‖.‖E1
) into (E0, ‖.‖E0

) is continuous and its

range is dense. We denote by E′1 the dual space of E1 and, identifying the dual of E0 with
itself, we can write the Gelfand triple

E1 ⊂ E0 = E′0 ⊂ E′1.
Frome (41) we write

(ξ, ζ)E′1×E1
= (ξ, ζ)E0 , ∀ξ ∈ E0, ζ ∈ E1,

and we note that K is closed convex set in E1. Then, using the definition (37) of the
bilinear form a and the fact that α0 ∈ K in (36). Thus using the Theorem 2.1, we
deduce that there exists a unique function αµ solution of the second relation in (58),
which concludes the proof of the lemma. �

We consider the element Λ(η(t), µ(t)) = (Λ1(η(t), µ(t)),Λ2(η(t), µ(t))) ∈ V ′×E0 defined
by the equations

〈Λ1

(
η(t), µ(t)

)
, v〉V ′×V =

2∑̀
=1

(
B`(ε(u`η(t)), α`µ(t)) +

(
E`
)∗∇ϕ`η(t), ε(v`))H` (61)

Λ2(η(t), µ(t)) =
2∑̀
=1

S`(ε(u`η(t)), α
`
µ(t)). (62)

We have the following result.

Lemma 3.5. The operator Λ : L2(0, T ;V ′ × E0) → L2(0, T ;V ′ × E0) has a unique fixed
point (η∗, µ∗).

Proof. By using arguments similar to those in the proof of lemma 4.9 in [14].
Let now (η1, θ1), (η2, θ2) ∈ L2(0, T ;V ′ × E0). For simplicity, we use the notation uηi =
ui, u̇ηi = u̇i = vi, ϕηi = ϕi and αµi = αi, for i = 1, 2, we have

‖Λ1(η1(t), µ1(t))− Λ1(η2(t), µ2(t))‖2V ′ ≤
2∑
`=1

‖
(
E`
)∗
∇ϕ`1(t)−

(
E`
)∗
∇ϕ`2(t)‖2H`

+

2∑
`=1

‖B`(ε(u`1(t)), α`1(t))− B`(ε(u`2(t)), α`1(t))‖2H` .
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From the definition (61) combined with the assumptions (17), (27) on B and (28) on E ,
we conclude that there is C > 0 such that

‖Λ1(η1(t), µ1(t))− Λ1(η2(t), µ2(t))‖2V ′ ≤ C(‖u1(t)− u2(t)‖2V +

‖α1(t)− α2(t)‖2E0
+ ‖ϕ1(t)− ϕ2(t)‖2W ). (63)

Moreover, from (57), we have

‖u1(t)− u2(t)‖V ≤
∫ t

0
‖v1(s)− v2(s)‖V ds, ∀t ∈ [0, T ]. (64)

Substituting η = η1, v = v2 and η = η2, v = v1 in (49), keeping in mind (50) and combining
the resulting inequalities, we find

〈v̇1 − v̇2, v1 − v2〉V ′×V +
2∑
`=1

(A`ε(v`1)−A`ε(v`2), ε(v`1 − v`2))H` +

〈η1 − η2, v1 − v2〉V ′×V ≤ 0

We integrate this inequality with respect to time. We use the initial conditions v1(0) −
v2(0) = v0 and the relation (26) to find that,

min(mA1 ,mA2)

∫ t

0
‖v1(s)− v2(s)‖2V ds ≤ −

∫ t

0
〈η1(s)− η2(s), v1(s)− v2(s)〉V ′×V ds.

Then, using the inequality 2ab ≤ a2

m +mb2, we obtain∫ t

0
‖v1(s)− v2(s)‖2V ds ≤ C

∫ t

0
‖η1(s)− η2(s)‖2V ′ds. (65)

From (64) and (65), we deduce

‖u1(t)− u2(t)‖2V ≤ C
∫ t

0
‖η1(s)− η2(s)‖2V ′ds. (66)

We use assumptions (28) and (29) on the piezoelectric and permittivity tensors respectively
with the inequality of Friedrichs-Poincaré (18), it follows from (58) than

‖ϕ1(t)− ϕ2(t)‖2W ≤ C‖u1(t)− u2(t)‖2V , ∀t ∈ [0, T ]. (67)

Furthermore, by substituting µ = µ1, ξ = α1 and µ = µ2, ξ = α2 in (58) and subtracting
the two inequalities obtained, we find

(α̇1(t)− α̇2(t), α1(t)− α2(t))E0 + a(α1(t)− α2(t), α1(t)− α2(t))

≤ (µ1(t)− µ2(t), α1(t)− α2(t))E0 , a.e. t ∈ (0, T ).

We integrate the previous inequality and applying the inequality of Hölder and Young
with Gronwall’s lemma, we deduce that

‖α1(t)− α2(t)‖2E0
≤ C

∫ t

0
‖µ1(s)− µ2(s)‖2E0

ds. (68)

We substitute (66)-(68) in (63) we obtain∫ T
0 ‖Λ1(η1(s), µ1(s))− Λ1(η2(s), µ2(s))‖2V ′×E0

ds

≤ C
∫ T

0 (‖η1(s)− η2(s)‖2V ′ + ‖µ1(s)− µ2(s)‖2E0
)ds.

(69)
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Using the assumption (30), equality (17) with estimates (66) and (68) we obtain the
estimate of Λ1 ∫ T

0 ‖Λ2(η1(s), µ1(s))− Λ2(η2(s), µ2(s))‖2V ′×E0
ds

=
∫ T

0 ‖S(ε(u1(s)), α1(s))− S(ε(u2(s)), α2(s))‖2V ′×E0
ds

≤ C
∫ T

0 (‖η1(s)− η2(s)‖2V ′ + ‖µ1(s)− µ2(s)‖2E0
)ds.

(70)

Combining the inequalities (69) and (70) to obtain

‖Λ(η1, µ1)− Λ(η2, µ2)‖2L2(0,T ;V ′×E0) ≤ C‖η1 − µ1, η2 − µ2‖2L2(0,T ;V ′×E0). (71)

Reiterating the inequality (71) n times leads to

‖Λn(η1, µ1)− Λn(η2, µ2)‖2L2(0,T ;V ′×E0) ≤
Cn

n!
‖η1 − µ1, η2 − µ2‖2L2(0,T ;V ′×E0), (72)

Thus, for n sufficiently large, Λn is a contraction on the Banach space L2(0, T ;V ′ × E0),
and so Λ has a unique fixed point. �

Now, we have all the ingredients to prove Theorem 3.1.

Existence. Let (η∗, µ∗) ∈ L2(0, T ;V ′ × E0) be the fixed point Λ and let u and {ϕ, α}
denote the solutions of problems Puη ,Pηµ respectively, for η = η∗ and µ = µ∗. The
equalities Λ1(η∗, µ∗) = η∗ and Λ2(η∗, µ∗) = µ∗ show that (42)–(75) are satisfied. Next,
(45) and the regularity (46)–(48) follow from lemmas 3.3, and 3.4.

Uniqueness. Uniqueness of the solution is a consequence of the uniqueness of the fixed
point of the operator Λ and the unique solvability of the problems Puη and Pηµ.

4. Discrete approximations

We now introduce a finite element method to approximate solutions of Problem PV

and derive an error estimate on them. We consider finite dimensional spaces V h ⊂ V ,
W h ⊂W, and Eh ⊂ E1, approximating the spaces V , W and E1, respectively. Here, h > 0
denotes the spacial discretization parameter. Secondly, the time derivatives are discretized
by using a uniform partition of [0, T ], denoted by 0 = t0 < t1 < ... < tN = T. Let k be
the time step size, k = T/N, and for a continuous function F (t) let fn = F (tn). Finally,
for a sequence {wn}Nn=0, we denote by δwn = (wn −wn−1)/k the finite differences. In this
section, no summation is assumed over a repeated index and c denotes a positive constant
which depends on the problem data, but is independent of the discretization parameters,
h and k. Thus, using the backward Euler scheme, the fully discrete approximation of
Problem PV is the following.

Problem PV,hk. Find a discrete velocity field vhk = {(v1,hk
n ,v2,hk

n )}Nn=0 ⊂ V h, a discrete

electric potential ϕhk = {(ϕ1,hk
n , ϕ2,hk

n )}Nn=0 ⊂ W h and a discrete damage field αhk =

{(α1,hk
n , α2,hk

n )}Nn=0 ⊂ Eh∩K = Kh, such that vhk0 = wh
0 , α

hk
0 = αh0 , and for all n = 1, ..., N

(δv`,hkn ,w`,h
n − v`,h)V ′×V +

2∑
`=1

(A`ε(v`,hkn ) + B`ε(u`,hkn , α`,hkn ), ε(v`,hn −w`,h))H`+

2∑
`=1

((E`)∗∇ϕ`,hkn , ε(v`,h −w`,h))H` + j(whk)− j(vhkn ) ≥ (fn,v
h
n −wh)V ∀wh ∈ V h,

(73)
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2∑
`=1

(B`∇ϕ`,hkn ,∇φ`,h)H`−
2∑
`=1

(E`ε(u`,hkn ),∇φ`,h)H` = (qn, φ
h)W ∀φh ∈W h, (74)

2∑̀
=1

(δα`,hkn (t), ξh,` − α`,hkn (t))L2(Ω`) + a(αhkn , ξ
h − αhkn (t))

≥
2∑̀
=1

(S`(ε(u`,hkn ), α`,hkn ), ξh,` − α`,hkn )L2(Ω`), ∀ξh ∈ Kh, a.e. t ∈ (0, T ),

 (75)

where the discrete displacement field uhk = {(u1,hk
n ,u2,hk

n )}Nn=0 ⊂ V h, is given by

u`,hkn = k
n∑
j=1

v`,hkj + u`,h0 .

Here u`,h0 , v`,h0 and α`,h0 are appropriate approximation of the initial condition u`0, v
`
0 and

α`0, respectively, and ϕ`,hk0 is the unique solution of the seconde quation in Problem PV,hk

for n = 0.
We notice that the fully discrete Problem PV,hk can be seen as a coupled system of

variational inequations. Using classical results of nonlinear variational inequations (see
[8]), we obtain that Problem PV,hk admits a unique solution in V h × W h × Kh. Our
interest in this section lies in estimating the numerical errors ‖un −uhkn ‖V , ‖ϕn −ϕhkn ‖W
and ‖βn − βhkn ‖L∞(Γ3). Let Vh(Ω`), Wh(Ω`) and B`

h consist of continuous and piecewise
affine functions; that is,

Vh(Ω`) =
{
v`h ∈ [C(Ω`)]d; v`h|K ∈ [P1(K)]d, ∀K ∈ T `h ; v`h|Γ`1 ≡ 0

}
,

Wh(Ω`) =
{
ϕ`h ∈ C(Ω`); ϕ`h|K ∈ P1(K), ∀K ∈ T `h ; v`h|Γ`a ≡ 0

}
,

E`h =
{
α`h ∈ C(Ω`); α`h|K ∈ P1(K), ∀K ∈ T `h

}
,

where C(Ω`) and P1(K) denote the space of continuous functions on Ω` and the space
of the polynomials with the global degree one on K, respectively, and ξ`h = {c1 =

x`0, x
`
1, ..., x

`
N`−1

, x`
N` = c2} the set of nodes on Γ3 belonging to triangulation T `h . We

define the spaces

V h = Vh(Ω1)× Vh(Ω2), W h = Wh(Ω1)×Wh(Ω2), Eh = E1
h × E2

h,

H2 = H2(Ω1)×H2(Ω2), Kh = Eh ∩K.

Then, we have the following corollary which states the linear convergence of the algorithm
under suitable regularity condition.

Theorem 4.1. Assume that (26)–(36) hold. Let {u, ϕ, α} and {uhkn , ϕhkn , αhkn } denote the
solution to Problems PV and PV,hk, respectively. Under the following regularity conditions:

u ∈ C(0, T ; [H2]d), ϕ ∈ C(0, T ;H2), α ∈ C1(0, T ;H2).

Then we obtain the estimate

max
1≤n≤N

{
‖un − uhkn ‖V + ‖ϕn − ϕhkn ‖W + ‖αn − αhkn ‖E0

}
≤ C(h+ k), (76)

where positive constant C independent of the discretization parameters h and k.
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Proof. We have the following approximation properties of the finite element spaces V h,
W h and Eh (see [9]),

max
1≤n≤N

inf
wh
n∈V h

‖un −wh
n‖V ≤ ch‖u‖C(0,T ;[H2]d),

max
1≤n≤N

inf
φhn∈Wh

‖ϕn − φhn‖W ≤ ch‖ϕn‖C(0,T ;H2),

max
1≤n≤N

inf
λhn∈Wh

‖αn − λhn‖W ≤ ch‖αn‖C(0,T ;H2).

Then, using arguments similar to those used in [4, Theorem 2], we deduce (76). �

Numerical example. For the numerical simulations, we consider the next special case:
”A dynamic process of contact between two viscoelastic bodies without damage” of two-
dimensional test problem. There, the following notation are used: Ω1 = [0, 1] × [0, 1],
Ω2 = [0, 1] × [−1, 0], Γ1

1 = [0, 1] × {1}, Γ1
2 = {0, 1} × [0, 1], Γ2

1 = [0, 1] × {−1}, Γ2
2 =

{0, 1} × [−1, 0], Γ3 = [0, 1]× {0}. We model the material’s behaviour with a constitutive
law of the form (3), in which the two bodies have the same properties and the functions
E` vanishes. The compressible material response is governed by a linearly viscoelastic
constitutive law in which the viscosity tensor A` and the elasticity tensor B`, are given by

(A`(τ))ij =
10−2Er

1− r2
(τ11 + τ22)δij +

10−2E

1 + r
τij , 1 ≤ i, j ≤ 2, ` = 1, 2, ∀τ ∈ S2,

(B`(τ))ij =
Er

1− r2
(τ11 + τ22)δij +

E

1 + r
τij , 1 ≤ i, j ≤ 2, ` = 1, 2, ∀τ ∈ S2,

where E = 20000N/m2 is the Young’s modulus, r = 0.3, is the Poisson’s ratio of the
materials and δij is the Kronecker delta. For computation we use the following data:

T = 1s, u0 = (0, 0)m, v0 = (0, 0)m/s, g = 0N/m3, ρ1 = ρ2 = 1kg/m3,

f1
0 = (0.5,−0.5)N/m3, f2

0 = (0.5, 0)N/m3, f `2 = (f `2,1, f
`
2,2), ` = 1, 2, where

f1
2,1 =

{
3× 10−2N/m on {0} × [0, 1],
−10−1N/m on {1} × [0, 1],

f1
2,2 = 10−1N/m,

f2
2,1 =

{
5× 10−2N/m on {0} × [−1, 0],
−10−2N/m on {1} × [−1, 0],

f2
2,2 = −10−2N/m.

To see the convergence behaviour of the fully discrete scheme, we compute a sequence
of numerical solutions based on uniform partitions of the time interval [0, 1], and uniform
triangulations of the domain [0, 1]×[−1, 1] of the type shown in Figure 1 which represents a
coarse discretization (h = k = 1/4). The results at the end of the simulation are illustrated
Figure 2, which represent the approximation of displacements at t = 1s.
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