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A TWO PHASE AGE DEPENDENT AND TWO-MUTATION

STOCHASTIC MODEL OF CARCINOGENESIS

G. VENKITESWARAN1∗, S. UDAYABASKARAN2, C. T. D. PRAVINA2, S. SREELAKSHMI3, §

Abstract. An age dependent and two-mutation stochastic model of carcinogenesis is
formulated and studied. In this model, we introduce a fitness age T, (a positive constant)
for each cell to divide into two cells. A normal cell if its age is not greater than T either
divides into two normal cells or divides into one normal cell and one intermediate cell
or dies. A normal cell if its age is greater than T either divides into one normal cell
and one intermediate cell, or divides into two intermediate cells or dies. An intermediate
cell if its age is not greater than T divides into two intermediate cells or divides into
one intermediate cell and one malignant cell or dies. An intermediate cell if its age is
greater than T divides into one intermediate cell and one malignant cell or divides into
two malignant cells or dies. It is assumed that, once a malignant cell is produced, it gen-
erates a malignant tumor with probability 1. We obtain the mean numbers of normal,
intermediate and malignant cells. It is shown that the production of malignant cells in
one-mutation model is faster than that in two-mutation model. A numerical illustration
is presented to highlight the performance of the model.

Keywords: Carcinogenesis, Fitness age, Malignant cell, Age-dependence, Two-stage mu-
tation.
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1. Introduction

Cancer is the result of accumulation of genetic and epigenetic mutations in genes which
regulate cell proliferation (see You and Jones [1]). Mutations in the genes occur spon-
taneously or due to DNA-damage when exposed to environment. The mutations are
irreversible and the mutated cells have increased rate of growth and increased probability
of survival over the normal cells which lead to the above mentioned accumulation, called
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the evolution of a tumor (tumorigenesis) (see Rivlin et al. [2]).

Mathematical models of cancer growth were first developed by Nordling [3], and Armitage
and Doll ([4],[5],[6]). These models were laid down on the assumption that the degenera-
tion of a normal cell to a malignant cell occurs as a result of a finite number of intermediate
stages. A series of papers (Knudson et al. [7], Moolgavkar and Venzon [8], Moolgavkar and
Knudson [9]) emerged emphasizing that at least two mutations are needed to adequately
explain the qualitative and epidemiological features of many tumors such as breast cancer,
colorectal cancer and retinoblastoma occurring in human populations. An excellent and
exhaustive review of mathematical models of carcinogenesis can be found in Whittemore
and Keller [10]. Serio [11] did a generalization of Moolgavkar-Venzon model (see Mool-
gavkar and Venzon [8]) by considering time-dependent parameters.

In recent times, the studies on carcinogenesis have digressed towards evolutionary models.
Sun et al. [12] have observed that tumorigenesis can be regarded as an evolutionary pro-
cess and they have formulated a new model of time scheme for progression of colorectal
cancer based upon maturity. Random mutations arising during DNA replication in nor-
mal, noncancerous stem cells have been taken into account by Tomasetti and Vogelstein
[13] in their studies on cancer risk. Rozhok and DeGregori [14] have considered evolution
of lifespan and age-dependent cancer risk. Rozhok et al. [15] have studied age-dependent
incidence of cancer. Rozhok and DeGregori [16] have made simulation studies on a gener-
alized theory of age-dependent carcinogenesis to demonstrate the impact of key somatic
evolutionary parameters on the performance of multistage model of carcinogenesis. Wolf
et al. [17] have considered multi-stage carcinogenesis models to assess the effect of car-
cinogenicity of chemicals in the production of malignant cells.

To our knowledge, age-dependent modeling of cell division has not been taken into account
in the study of carcinogenesis. Accordingly, we are motivated to propose an age dependent
two-mutation model of cell division process and provide mean analysis of carcinogenesis.
To be specific, we present a two phase age-dependent and two-stage stochastic model of
carcinogenesis. In this model, a normal cell if its age is not greater than a positive constant
T either divides into two normal cells with rate l11, or divides into one normal cell and one
intermediate cell with rate l12 or dies with rate d1. A normal cell if its age is greater than
T either divides into one normal cell and one intermediate cell with rate l21, or divides
into two intermediate cells with rate l22 or dies with rate d2. An intermediate cell if its age
is not greater than T either divides into two intermediate cells with rate α11, or divides
into one intermediate cell and one malignant cell with rate α12, or dies with rate µ1. An
intermediate cell if its age is greater than T either divides into one intermediate cell and
one malignant cell with rate α21, or divides into two malignant cells with rate α22, or
dies with rate µ2. It is assumed that, once a malignant cell is produced, it generates a
malignant tumor with probability 1. Based upon the model, we obtain the mean numbers
of normal, intermediate and malignant cells.

The paper is organized as follows: In section 2, we describe the two phase age-dependent
and two stage mutation model of carcinogenesis. In section 3, we write the integral equa-
tions satisfied by the conditional probability generating functions of the number of normal,
intermediate and malignant cells. Section 4 obtains the mean number of normal, inter-
mediate and malignant cells in the population. In section 5, a numerical illustration is
provided. Section 6 provides conclusion.
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2. Model Formulation

We begin with a single normal cell at time t = 0. As time progresses, stochastic mutation
and cell division processes take place and a cell population consisting of normal, interme-
diate and malignant cells is generated. Let X(t), Y (t) and Z(t) be the random variables
denoting the number of normal, intermediate and malignant cells at time t.

2.1. Assumptions. The following assumptions are made. In what follows, o(h) denotes

a function of h satisfying lim
h→0

o(h)

h
= 0.

(i) The age of a cell at time t is the time elapsed since the time of its birth.
(ii) A normal cell existing at time t splits into two normal cells in a small interval (t, t+∆t)

with probability l11∆t + o(∆t), if the age of the cell is not greater than a positive
constant T.

(iii) A normal cell existing at time t splits into one normal cell and one intermediate cell
in a small interval (t, t+ ∆t) with probability l12∆t+ o(∆t), if the age of the cell is
not greater than a positive constant T.

(iv) A normal cell existing at time t dies in a small interval (t, t + ∆t) with probability
d1∆t+ o(∆t), if the age of the cell is not greater than a positive constant T.

(v) A normal cell existing at time t splits into one normal cell and one intermediate cell
in a small interval (t, t+ ∆t) with probability l21∆t+ o(∆t), if the age of the cell is
greater than a positive constant T.

(vi) A normal cell existing at time t splits into two intermediate cells in a small interval
(t, t + ∆t) with probability l22∆t + o(∆t), if the age of the cell is greater than a
positive constant T.

(vii) A normal cell existing at time t dies in a small interval (t, t + ∆t) with probability
d2∆t+ o(∆t), if the age of the cell is greater than a positive constant T.

(viii) An intermediate cell existing at time t splits into two intermediate cells in a small
interval (t, t+∆t) with probability α11∆t+o(∆t), if the age of the cell is not greater
than a positive constant T.

(ix) An intermediate cell existing at time t splits into one intermediate cell and one
malignant cell in a small interval (t, t + ∆t) with probability α12∆t + o(∆t), if the
age of the cell is not greater than a positive constant T.

(x) An intermediate cell existing at time t dies in a small interval (t, t+ ∆t) with prob-
ability µ1∆t + o(∆t), if the age of the cell is not greater than a positive constant
T.

(xi) An intermediate cell existing at time t splits into one intermediate cell and one
malignant cell in a small interval (t, t + ∆t) with probability α21∆t + o(∆t), if the
age of the cell is greater than a positive constant T.

(xii) An intermediate cell existing at time t splits into two malignant cells in a small
interval (t, t + ∆t) with probability α22∆t + o(∆t), if the age of the cell is greater
than a positive constant T.

(xiii) An intermediate cell existing at time t dies in a small interval (t, t+ ∆t) with prob-
ability µ2∆t+ o(∆t), if the age of the cell is greater than a positive constant T.

(xiv) Once a malignant cell is born, it generates a malignant tumor with probability 1.
(xv) All events are independent.
(xvi) The probability of occurrence of more than one event in a small interval (t, t + ∆t)

is o(∆t).

In the above assumptions, the parameters l11, l12, l21, l22, d1, and d2 are positive constants
and they are rates for a normal cell to divide. Similarly, α11, α12, α21, α22, µ1, and µ2
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are positive constants and they are rates for an intermediate cell to divide. Further, the
parameters l12, l21, α12 and α21 arise due to cross mutations. Estimated values of these
parameters have been reported (see Tomasetti et al. [18]).

3. Governing Equations

We begin our study with 1 newly born normal cell and no other cells. Then , we have the
condition X(0) = 1, Y (0) = 0, Z(0) = 0. We define the conditional probability generating
function for the number of normal, intermediate and malignant cells at time t as follows:

ψ(x, y, z, t) = E
[
xX(t)yY (t)zZ(t)|X(0) = 1, Y (0) = 0, Z(0) = 0

]
. (1)

The above function describes the two-mutation model.
In the same manner, we define the conditional probability generating function for the

number of intermediate and malignant cells at time t as follows:

φ(y, z, t) = E
[
yY (t)zZ(t)|Y (0) = 1, Z(0) = 0

]
. (2)

The above function describes one-mutation model.

Considering various possible events happening in the time interval (0, t] and using the
invariant imbedding technique (see Bellmann et al. [19]), we obtain an integral equations
for ψ(x, y, z, t) and φ(y, z, t). As a short-hand notation, we denote ψ(x, y, z, t) and φ(y, z, t)
respectively by ψ(t) and φ(t). The following diagrams clarify the mechanism of cancer
progression (N, I and M denote respectively normal, intermediate and malignant cells):
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Case t ≤ T : The following mutually exclusive and exhaustive events occur. The normal
cell with which we started at time t = 0

(i) neither splits nor dies before t.
(ii) splits before t.
(iii) dies before t.

Consequently, we have

ψ(t) = xe−at + l11

∫ t

0
e−au{ψ(t− u)}2du+ l12

∫ t

0
e−auψ(t− u)φ(t− u)du

+
d1
a

(
1− e−at

)
, (3)

where a = l11 + l12 + d1. The term xe−at corresponds to the possible event (i). The event

(ii) leads to the term, l11
∫ t
0 e
−au{ψ(t− u)}2du+ l12

∫ t
0 e
−auψ(t− u)φ(t− u)du. The term

d1
a

(
1− e−at

)
is the contribution of the occurrence of the event (iii).

Similarly, the following mutually exclusive and exhaustive events occur. The intermediate
cell with which we started at time t = 0

(iv) neither splits nor dies before t.
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(v) splits before t.
(vi) dies before t.

Consequently, we have

φ(t) = ye−bt + α11

∫ t

0
e−bu{φ(t− u)}2du+ α12z

∫ t

0
e−buφ(t− u)du

+
µ1
b

(
1− e−bt

)
, (4)

where b = α11 + α12 + +µ1. The term ye−bt corresponds to the possible event (iv). The

event (v) leads to the term, α11

∫ t
0 e
−bu{φ(t− u)}2du+ α12z

∫ t
0 e
−buφ(t− u)du. The term

µ1
b

(
1− e−bt

)
is the contribution by the occurrence of the event (vi).

Case t > T : The following mutually exclusive and exhaustive events occur. The normal
cell with which we started at time t = 0

(vii) neither split nor die before t.
(viii) splits before t.
(ix) dies before t.

Consequently, we have

ψ(t) = xe−aT e−A(t−T ) + l11

∫ T

0
e−au{ψ(t− u)}2du+ l12

∫ T

0
e−auψ(t− u)φ(t− u)du

+e−aT l21

∫ t

T
e−A(u−T )ψ(t− u)φ(t− u)du+ e−aT l22

∫ t

T
e−A(u−T ){φ(t− u)}2du

+
d1
a

(
1− e−aT

)
+ e−aT

d2
A

(
1− e−A(t−T )

)
, (5)

where A = l21 + l22 + d2. The term xe−aT e−A(t−T ) arises due to the occurrence of the
possible event (vii). The event (viii) leads to the term,

l11

∫ T

0
e−au{ψ(t− u)}2du+ l12

∫ T

0
e−auψ(t− u)φ(t− u)du

+e−aT l21

∫ t

T
e−A(u−T )ψ(t− u)φ(t− u)du+ e−aT l22

∫ t

T
e−A(u−T ){φ(t− u)}2du.

The term d1
a

(
1− e−aT

)
+ e−aT d2A

(
1− e−A(t−T )

)
is the contribution by the occurrence of

the event (ix).

Similarly, the following mutually exclusive and exhaustive events occur. The intermediate
cell with which we started at time t = 0

(x) neither splits nor dies before t.
(xi) splits before t.

(xii) dies before t.

Consequently, we have

φ(t) = ye−bT e−B(t−T ) + α11

∫ T

0
e−bu{φ(t− u)}2du+ α12z

∫ T

0
e−bu{φ(t− u)}du

+α21e
−bT z

∫ t

T
e−B(u−T )φ(t− u)du+ e−bT

α22

B
z2
(

1− e−B(t−T )
)

+
µ1
b

(
1− e−bT

)
+ e−bT

µ2
B

(
1− e−B(t−T )

)
, (6)
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where B = α21 + α22 + µ2. The term ye−bT e−B(t−T ) arises due to the occurrence of the
possible event (x). The event (xi) leads to the term,

α11

∫ T

0
e−bu{φ(t− u)}2du+ α12z

∫ T

0
e−bu{φ(t− u)}du

+α21e
−bT z

∫ t

T
e−B(u−T )φ(t− u)du+ e−bT

α22

B
z2
(

1− e−B(t−T )
)
.

The term µ1
b

(
1− e−bT

)
+ e−bT µ2B

(
1− e−B(t−T )) is the contribution by the occurrence of

the event (xii).

4. Mean Number of Cells

We define the mean numbers of normal, intermediate and malignant cells in the two-stage
model respectively as follows:

m
(2)
X (t) = E[X(t)|X(0) = 1, Y (0) = 0, Z(0) = 0],

m
(2)
Y (t) = E[Y (t)|X(0) = 1, Y (0) = 0, Z(0) = 0],

m
(2)
Z (t) = E[Z(t)|X(0) = 1, Y (0) = 0, Z(0) = 0].

We define the mean numbers of normal (intermediate) and malignant cells in the one-stage
model as follows:

m
(1)
Y (t) = E[Y (t)|Y (0) = 1, Z(0) = 0],

m
(1)
Z (t) = E[Z(t)|Y (0) = 1, Z(0) = 0].

The probability generating function of a random variable X is defined by HX(x) = E
[
xX
]

and so,

E(X) =
[
E
(
XxX−1

)]
x=1

=

[
∂

∂x
(HX(x))

]
x=1

.

Applying the above result with ψ(x, y, z, t) and φ(y, z, t), we get

m
(2)
X ((t) =

[
∂ψ(t)

∂x

]
x=1,y=1,z=1

,m
(2)
Y ((t) =

[
∂ψ(t)

∂y

]
x=1,y=1,z=1

,

m
(2)
Z ((t) =

[
∂ψ(t)

∂z

]
x=1,y=1,z=1

,

m
(1)
Y ((t) =

[
∂φ(t)

∂y

]
y=1,z=1

,m
(1)
Z ((t) =

[
∂φ(t)

∂z

]
y=1,z=1

.

Differentiating (3) with respect to x and putting x = 1, y = 1, z = 1, we get

m
(2)
X (t) = e−at + (2l11 + l12)

∫ t

0
e−aum

(2)
X (t− u)du, t ≤ T. (7)

Similarly, differentiating (5) with respect to x and putting x = 1, y = 1, z = 1, we get

m
(2)
X (t) = e−aT e−A(t−T ) + (2l11 + l12)

∫ T

0
e−aum

(2)
X (t− u)du

+e−aT l21

∫ t

T
e−A(u−T )m

(2)
X (t− u)du, t > T. (8)

Using Heaviside function, equations (7) and (8) are clubbed as follows:

m
(2)
X (t) = e−at[1−H(t− T )] + e(A−a)T e−AtH(t− T )
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+ (2l11 + l12)

∫ t

0
e−au[1−H(u− T )]m

(2)
X (t− u)du

+e−aT l21

∫ t

0
e−A(u−T )H(u− T )m

(2)
X (t− u)du, t > 0. (9)

Proceeding in similar lines, equations (3) and (5) lead to the following equations.

m
(2)
Y (t) = (2l11 + l12)

∫ t

0
e−au[1−H(u− T )]m

(2)
Y (t− u)du

+l12

∫ t

0
e−au[1−H(u− T )]m

(1)
Y (t− u)du+ e−aT l21

∫ t

0
e−A(u−T )H(u− T )m

(2)
Y (t− u)du

+e−aT (l21 + 2l22)

∫ t

0
e−A(u−T )H(u− T )m

(1)
Y (t− u)du, (10)

m
(2)
Z (t) = (2l11 + l12)

∫ t

0
e−au[1−H(u− T )]m

(2)
Z (t− u)du

+l12

∫ t

0
e−au[1−H(u− T )]m

(1)
Z (t− u)du+ e−aT l21

∫ t

0
e−A(u−T )H(u− T )m

(2)
Z (t− u)du

+e−aT (l21 + 2l22)

∫ t

0
e−A(u−T )H(u− T )m

(1)
Z (t− u)du. (11)

In the same manner, equations (4) and (6) give

m
(1)
Y (t) = e−bt[1−H(t− T )] + e−bT e−B(t−T )H(t− T )

+ (2α11 + α12)

∫ t

0
e−bu[1−H(u− T )]m

(1)
Y (t− u)du

+e−bTα21

∫ t

0
e−B(u−T )H(u− T )m

(1)
Y (t− u)du, (12)

m
(1)
Z (t) = (2α11 + α12)

∫ t

0
e−bu[1−H(u− T )]m

(1)
Z (t− u)du

+e−bTα21

∫ t

0
e−B(u−T )H(u− T )m

(1)
Z (t− u)du

+α12

(
1− e−bt

b

)
[1−H(t− T )] + α12

(
1− e−bT

b

)
H(t− T )

+(α21 + 2α22)e
−bT

(
1− e−B(t−T )

B

)
H(t− T ). (13)

Equations (9)- (13) can be solved explicitly by using Laplace transform technique. Denot-
ing the Laplace transform of a function η(t) by η∗(s), equations (9)- (13) lead to

m
(2)∗
X (s) =

1−e−(s+a)T

s+a + e−(s+a)T

s+A

1− y3
(
1−e−(s+a)T

s+a

)
− y4 e

−(s+a)T

s+A

, (14)

m
(2)∗
Y (s) =

[
y1

(
1−e−(s+a)T

s+a

)
+ y2

e−(s+a)T

s+A

]
m

(1)∗
Y (s)

1− y3
(
1−e−(s+a)T

s+a

)
− y4 e

−(s+a)T

s+A

, (15)

m
(2)∗
Z (s) =

[
y1

(
1−e−(s+a)T

s+a

)
+ y2

e−(s+a)T

s+A

]
m

(1)∗
Z (s)

1− y3
(
1−e−(s+a)T

s+a

)
− y4 e

−(s+a)T

s+A

, (16)
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m
(1)∗
Y (s) =

1−e−(s+b)T

s+b + e−(s+b)T

s+B

1− z3
(
1−e−(s+b)T

s+b

)
− z4 e

−(s+b)T

s+B

, (17)

m
(1)∗
Z (s) =

z1

(
1−e−(s+b)T

s(s+b)

)
+ z2

e−(s+b)T

s(s+B)

1− z3
(
1−e−(s+b)T

s+b

)
− z4 e

−(s+b)T

s+B

, (18)

where
y1 = l12, y2 = l21 + 2l22, y3 = 2l11 + l12, y4 = l21,

z1 = α12, z2 = α21 + 2α22, z3 = 2α11 + α12, z4 = α21.

Expanding (18) as a power series, we get

m
(1)∗
Z (s) = z1

∞∑
r=0

r∑
m=0

m+1∑
i=0

∞∑
k=0

∞∑
n=0

Ei,k,m,rb
n e
−(s+b)(i+r−m)T

(s+ b)r+k+n+2

+z2

∞∑
r=0

r∑
m=0

m∑
i=0

∞∑
k=0

∞∑
n=0

Fi,k,m,rb
n e
−(s+b)(i+r−m+1)T

(s+ b)r+k+n+2
, (19)

where

Ei,k,m,r = (−1)i
(
r

m

)(
m+ 1

i

)(
−(r −m)

k

)
zm3 z

r−m
4 (B − b)k,

Fi,k,m,r = (−1)i
(
r

m

)(
m

i

)(
−(r −m+ 1)

k

)
zm3 z

r−m
4 (B − b)k.

By inverse Laplace transform, equation (19) leads explicitly

m
(1)
Z (t) = e−bt

[
z1

∞∑
r=0

r∑
m=0

m+1∑
i=0

∞∑
k=0

∞∑
n=0

Ei,k,m,rb
n×

[t− (i+ r −m)T ]r+k+n+1

(r + k + n+ 1)!
H[t− (i+ r −m)T ]

+z2

∞∑
r=0

r∑
m=0

m∑
i=0

∞∑
k=0

∞∑
n=0

Fi,k,m,rb
n×

[t− (i+ r −m+ 1)T ]r+k+n+1

(r + k + n+ 1)!
H[t− (i+ r −m+ 1)T ]

]
. (20)

Substituting (18) into (16) and then expanding (16) as a power series, we obtain

m
(2)∗
Z (s) = y1z1

∞∑
r=0

r∑
m=0

m+1∑
i=0

∞∑
k=0

∞∑
r1=0

r1∑
m1=0

m1+1∑
i1=0

∞∑
k1=0

∞∑
n1=0

∞∑
n2=0

(−1)i×

Pi,k,m,rEi1,k1,m1,r1e
−(a−b)(r−m+i)T bn1(a− b)n2

(
−(r + k + 1)

n2

)
×

e−(s+b)((r−m+i+i1+r1−m1)T

(s+ b)r+k+r1+k1+n1+n2+3

+y1z2

∞∑
r=0

r∑
m=0

m+1∑
i=0

∞∑
k=0

∞∑
r1=0

r1∑
m1=0

m1∑
i1=0

∞∑
k1=0

∞∑
n1=0

∞∑
n2=0

(−1)i×

Pi,k,m,rFi1,k1,m1,r1e
−(a−b)(r−m+i)T bn1(a− b)n2

(
−(r + k + 1)

n2

)
×
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e−(s+b)(r−m+i+i1+r1−m1+1)T

(s+ b)r+k+r1+k1+n1+n2+3

+y2z1

∞∑
r=0

r∑
m=0

m∑
i=0

∞∑
k=0

∞∑
r1=0

r1∑
m1=0

m1+1∑
i1=0

∞∑
k1=0

∞∑
n1=0

∞∑
n2=0

(−1)i×

Qi,k,m,rEi1,k1,m1,r1e
−(a−b)(r−m+i+1)T bn1(a− b)n2

(
−(r + k + 1)

n2

)
×

e−(s+b)(r−m+i+i1+r1−m1+1)T

(s+ b)r+k+r1+k1+n1+n2+3

+y2z2

∞∑
r=0

r∑
m=0

m∑
i=0

∞∑
k=0

∞∑
r1=0

r1∑
m1=0

m1∑
i1=0

∞∑
k1=0

∞∑
n1=0

∞∑
n2=0

(−1)i×

Qi,k,m,rFi1,k1,m1,r1e
−(a−b)(r−m+i+1)T bn1(a− b)n2

(
−(r + k + 1)

n2

)
×

e−(s+b)(r−m+i+i1+r1−m1+2)T

(s+ b)r+k+r1+k1+n1+n2+3
, (21)

where

Pi,k,m,r =

(
m+ 1

i

)(
r

m

)(
−(r −m)

k

)
ym3 y

r−m
4 (A− a)k,

Qi,k,m,r =

(
m

i

)(
r

m

)(
−(r −m+ 1)

k

)
ym3 y

r−m
4 (A− a)k.

By inverse Laplace transform, equation (21) gives

m
(2)
Z (t) = e−bt

y1z1 ∞∑
r=0

r∑
m=0

m+1∑
i=0

∞∑
k=0

∞∑
r1=0

r1∑
m1=0

m1+1∑
i1=0

∞∑
k1=0

∞∑
n1=0

∞∑
n2=0

(−1)i×

Pi,k,m,rEi1,k1,m1,r1e
−(a−b)(r−m+i)T bn1(a− b)n2×

H[t− (r −m+ i+ i1 + r1 −m1)T ]×(
−(r + k + 1)

n2

)
[t− (r −m+ i+ i1 + r1 −m1)T ]r+k+r1+k1+n1+n2+2

(r + k + r1 + k1 + n1 + n2 + 2)!

+y1z2

∞∑
r=0

r∑
m=0

m+1∑
i=0

∞∑
k=0

∞∑
r1=0

r1∑
m1=0

m1∑
i1=0

∞∑
k1=0

∞∑
n1=0

∞∑
n2=0

(−1)i×

Pi,k,m,rFi1,k1,m1,r1e
−(a−b)(r−m+i)T bn1(a− b)n2×

H[t− (r −m+ i+ i1 + r1 −m1 + 1)T ]×(
−(r + k + 1)

n2

)
[t− (r −m+ i+ i1 + r1 −m1 + 1)T ]r+k+r1+k1+n1+n2+2

(r + k + r1 + k1 + n1 + n2 + 2)!

+y2z1

∞∑
r=0

r∑
m=0

m∑
i=0

∞∑
k=0

∞∑
r1=0

r1∑
m1=0

m1+1∑
i1=0

∞∑
k1=0

∞∑
n1=0

∞∑
n2=0

(−1)i×

Qi,k,m,rEi1,k1,m1,r1e
−(a−b)(r−m+i+1)T bn1(a− b)n2×

H[t− (r −m+ i+ i1 + r1 −m1 + 1)T ]×(
−(r + k + 1)

n2

)
[t− (r −m+ i+ i1 + r1 −m1 + 1)T ]r+k+r1+k1+n1+n2+2

(r + k + r1 + k1 + n1 + n2 + 2)!
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+y2z2

∞∑
r=0

r∑
m=0

m∑
i=0

∞∑
k=0

∞∑
r1=0

r1∑
m1=0

m1∑
i1=0

∞∑
k1=0

∞∑
n1=0

∞∑
n2=0

(−1)i×

Qi,k,m,rFi1,k1,m1,r1e
−(a−b)(r−m+i+1)T bn1(a− b)n2×

H[t− (r −m+ i+ i1 + r1 −m1 + 2)T ]×(
−(r + k + 1)

n2

)
[t− (r −m+ i+ i1 + r1 −m1 + 2)T ]r+k+r1+k1+n1+n2+2

(r + k + r1 + k1 + n1 + n2 + 2)!

]
. (22)

Equations (20) and (22) provide the mean structure of the production of malignant cells
in one-mutation model and two-mutation model respectively.

It is to be noted that the expressions for the means of cells are in closed form, and they
are given as infinite series. These series have been obtained after invoking the convergence
conditions in equations (14)- (18):∣∣∣∣∣y3

(
1− e−(s+a)T

s+ a

)
+ y4

e−(s+a)T

s+A

∣∣∣∣∣ < 1,∣∣∣∣∣z3
(

1− e−(s+b)T

s+ b

)
+ z4

e−(s+b)T

s+B

∣∣∣∣∣ < 1.

5. A numerical illustration

For the purpose of illustration, we assume T = 0.5 and the following values for the other
parameters of the stochastic model:

l11 = 0.3, l12 = 0, d1 = 0.5, l21 = 0, l22 = 0.5, d2 = 0.5,

α11 = 0.6, α12 = 0, µ1 = 0.2, α21 = 0, α22 = 0.7, µ2 = 0.2.

We have assumed that an intermediate cell has an higher rate of splitting into malignant
cells when its age exceeds T and also there is perfect splitting in the cell-division process.
That is, 0.6 = α11 < α22 = 0.7 and we have excluded cross-mutations (l12 = l21 = α12 =
α21 = 0). Then, equations (20) and (22) become

m
(1)
Z (t) = z2e

−bt

[ ∞∑
r=0

r∑
i=0

∞∑
k=0

∞∑
n=0

(−1)i
(
r

i

)
zr3(b−B)kbn×

[t− (i+ 1)T ]r+k+n+1

(r + k + n+ 1)!
H[t− (i+ 1)T ]

]
, (23)

m
(2)
Z (t) = y2z2e

−bt
∞∑
r=0

r∑
i=0

∞∑
k=0

∞∑
r1=0

r1∑
i1=0

∞∑
k1=0

∞∑
n1=0

∞∑
n2=0

[
(−1)i

(
r

i

)(
r1
i1

)
×

yr3(a−A)k(−1)i1zr13 (b−B)k1e−(a−b)(i+1)T bn1(a− b)n2H[t− (i+ i1 + 2)T ]×(
−(r + k + 1)

n2

)
[t− (i+ i1 + 2)T ]r+k+r1+k1+n1+n2+2

(r + k + r1 + k1 + n1 + n2 + 2)!

]
. (24)

We have computed m
(1)
Z (t) with (23) for t varying from 0.0 to 5.0 and the variation is

exhibited in Figure 1. This corresponds to one-mutation model.

When t = 1.4, we computed m
(1)
Z (t) = 0.9165 and when t = 1.5, we computed m

(1)
Z (t) =

1.0063. Since the occurrence of first malignant cell leads to a certain tumor, we find that
in the one-mutation model, for the given values of the parameters, the mean value of the
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One−mutation: Mean number of malignant cells at t

Figure 1. Graph of m
(1)
Z (t)

number of malignant cells crosses the threshold value 1 in the time interval (1.4, 1.5).

We have computed m
(2)
Z (t) with (24) for t varying from 0.0 to 5.0 and the variation is

exhibited in Figure 2. This corresponds to two-mutation model.

When t = 3.2, we have computed m
(2)
Z (t) = 0.9727 and when t = 3.3, we have computed

m
(2)
Z (t) = 1.0222. Since the occurrence of first malignant cell leads to a certain tumor, we

find that in the two-mutation model, for the given values of the parameters, the mean value
of the number of malignant cells crosses the threshold value 1 in the time interval (3.2, 3.3).
This justifies that in the two-mutation model, there is a more delay in the production of
malignant cells than in one-mutation model.

6. Conclusion

We introduced age-dependence in the cell-division process and the dependence has affected
the production of malignant cells. We found that the production of malignant cells in one-
mutation model is faster than that in two-mutation model. We justified that the behaviour
is attributed to the phase type mutation of intermediate cells. If we extend our model to
multi-stage age-dependant models with three-stage, four-stage and then multiple-stages,
then the production of malignant cells will be delayed in time. In the numerical illustration,
we assumed that no cross-mutations could occur. Even if the cross-mutations are allowed
to take place, these would further delay the production of malignant cells. The present
model enhances the literature on multi-stage modeling of carcinogenesis and it opens a
new-direction by considering age-dependent mutation.
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