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STARLIKENESS AND CONVEXITY OF INTEGRAL OPERATORS

INVOLVING MITTAG-LEFFLER FUNCTIONS

B. A. FRASIN1, §

Abstract. In this paper, we shall find the order of starlikeness and convexity for integral
operators

Fαj ,βj ,λj ,ζ(z) =

ζ
z∫

0

tζ−1
n∏
j=1

(Eαj ,βj (t)

t

)1/λj

dt


1/ζ

,

where the functions Eαj ,βj are the normalized Mittag-Leffler functions.
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1. Introduction

Let A denote the class of functions of the form:

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U = {z : |z| < 1}. A function f(z) ∈ A is said to
be starlike of order δ if it satisfies

Re

(
zf ′(z)

f(z)

)
> δ (z ∈ U) (2)

for some δ(0 ≤ δ < 1). We denote by S∗(δ) the subclass of A consisting of functions which
are starlike of order δ in U. Clearly S∗(δ) ⊆ S∗(0) = S∗, where S∗is the class of functions
that are starlike in U. Also, a function f(z) ∈ A is said to be convex of order δ if it satisfies

Re

(
1 +

zf ′′(z)

f ′(z)

)
> δ (z ∈ U) (3)

for some δ(0 ≤ δ < 1). We denote by C(δ) the subclass of A consisting of functions which
are convex of order α in U. Clearly C(δ) ⊆ C(0) = C, the class of functions that are convex
in U.
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Let Eα(z) be the function defined by

Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
, (z ∈ C,Re(α) > 0 ).

The function Eα(z) was introduced by Mittag-Leffler [16] and is, therefore, known as the
Mittag-Leffler function. A more general function Eα,β generalizing Eα(z) was introduced

by Wiman [20, 21] and defined by

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, (z, α, β ∈ C,Re(α) > 0 ). (4)

The Mittag-Leffler function arises naturally in the solution of fractional order differential
and integral equations, and especially in the investigations of fractional generalization of
kinetic equation, random walks, Lévy flights, super-diffusive transport and in the study
of complex systems. Several properties of Mittag-Leffler function and generalized Mittag-
Leffler function can be found e.g. in ([2, 3, 4, 8, 10], [11]-[18]).

Observe that Mittag-Leffler function Eα,β does not belong to the family A. Therefore,
we consider the following normalization of the Mittag-Leffler function:

Eα,β(z) = Γ(β)zEα,β(z)

= z +
∞∑
n=2

Γ(β)

Γ(α(n− 1) + β)
zn, (5)

where z, α, β ∈ C;β 6= 0,−1,−2, · · · and Re(α) > 0.

Whilst formula (5) holds for complex-valued α, β and z ∈ C, however in this pa-
per, we shall restrict our attention to the case of real-valued α, β and z ∈ U. Ob-
serve that the function Eα,β contains many well-known functions as its special case,
for example, E2,1(z) = z cosh

√
z, E2,2(z) =

√
z sinh

√
z, E2,3(z) = 2[cosh

√
z − 1] and

E2,4(z) = 6[sinh
√
z −
√
z]/
√
z.

Geometric properties including starlikeness, convexity and close-to-convexity for the
Mittag-Leffler function Eα,β were recently investigated by Bansal and Prajapat in [5].

Recently, Srivastava et al.[19] introduced a new integral operator Fαj ,βj ,λj ,ζ involving
Mittag-Leffler functions given by

F(z) = Fαj ,βj ,λj ,ζ(z) =

ζ
z∫

0

tζ−1
n∏
j=1

(Eαj ,βj (t)
t

)1/λj

dt


1/ζ

, (6)

where the functions Eαj ,βj are the normalized Mittag-Leffler functions defined by

Eαj ,βj (z) = Γ(βj)zEαj ,βj (z).

and the parameters λ1, λ1, . . . , λn and ζ are are positive real numbers such that the inte-
grals in (6) exist. Here and throughout in the sequel every many-valued function is taken
with the principal branch.

Several authors studied univalency, starlikeness and convexity of certain integral opera-
tors, see [1, 6, 7, 9, 17, 22]. In the present paper, we will find the order of starlikeness and
convexity for the above integral operator involving Mittag-Leffler functions and defined
by (6).
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In order to prove our main results, we recall the following lemmas.

Lemma 1.1. ( [15]). Let Φ(u, v) be a complex valued function,

Φ : D→ C, (D ⊂ C2)

and let u = u1 + iu2 and v = v1 + iv2. Suppose that the function Φ(u, v) satisfies

(i) Φ(u, v) is continuous in D;
(ii) (1, 0) ∈ D and Re(Φ(1, 0)) > 0;
(iii) Re(Φ(iu2, v1)) ≤ 0 for all (iu2, v1) ∈ D and such that v1 ≤ −(1 + u22)/2.
Let p(z) = 1 + p1z + p2z

2 + · · · be analytic in U such that (p(z), zp′(z)) ∈ D for all
z ∈ U. If Re(Φ(p(z), zp′(z))) > 0 (z ∈ U), then Re(p(z)) > 0 (z ∈ U).

Lemma 1.2. ([5]) Let α ≥ 1 and 0 ≤ η < 1. Suppose also that

Ψ(η) =
(3− η) +

√
5η2 − 18η + 17

2(1− η)
.

If β ≥ Ψ(η), then Eα,β is starlike function of order η.

Lemma 1.3. ( [19]) Let α ≥ 1 and β ≥ 1. Then∣∣∣∣∣zE′α,β(z)

Eα,β(z)
− 1

∣∣∣∣∣ ≤ 2β + 1

β2 − β − 1
, (z ∈ U). (7)

2. Main Results

Our first result provides the order of starlikeness for integral operator of the type (6).

Theorem 2.1. Let αj ≥ 1, 0 ≤ ηj < 1, and

βj ≥
(3− ηj) +

√
5η2j − 18ηj + 17

2(1− ηj)
,

for all j = 1, 2, 3, . . . , n. Suppose also that λ1, λ2, . . . , λn, ζ are positive real numbers such
that

n∑
j=1

1− ηj
λj

≤ ζ,

then F(z)∈ S∗(δ),where

δ =

−

(
n∑
j=1

2(1−ηj)
λj

− 2ζ + 1

)
+

√√√√( n∑
j=1

2(1−ηj)
λj

− 2ζ + 1

)2

+ 8ζ

4ζ
, 0 ≤ δ < 1. (8)

Proof. Define the function p(z) by

zF′(z)
F(z)

:= δ + (1− δ)p(z), (9)

where δ as given in (8).
Then p(z) = 1 + b1z + b2z + · · · is analytic in U. It follows from (6) and (9) that

zζ
n∏
j=1

(
Eαj,βj (z)

z

)1/λi

Fζ(z)
= δ + (1− δ)p(z). (10)
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Differentiating (10) logarithmically, we obtain

n∑
j=1

1

λj

(
zE′αj ,βj (z)
Eαj ,βj (z)

)
= ζ(1− δ)p(z) +

(1− δ)zp′(z)
δ + (1− δ)p(z)

+

n∑
j=1

1

λj
− ζ(1− δ). (11)

From Lemma 1.1, Eαj ,βj is starlike function of order ηj for all j = 1, 2, 3, . . . , n, therefore
we have

n∑
j=1

1

λj
Re

(
zE′αj ,βj (z)
Eαj ,βj (z)

)

= Re

ζ(1− δ)p(z) +
(1− δ)zp′(z)
δ + (1− δ)p(z)

+
n∑
j=1

1− ηj
λj

− ζ(1− δ)

 > 0. (12)

If we define the function Φ(u, v) by

Φ(u, v) = ζ(1− δ)u+
(1− δ)v

δ + (1− δ)u
+

n∑
j=1

1− ηj
λj

− ζ(1− δ) (13)

with u = u1 + iu2 and v = v1 + iv2, then
(i) Φ(u, v) is continuous in D = C2;

(ii) (1, 0) ∈ D and Re(Φ(1, 0)) =
n∑
j=1

1−ηj
λj

> 0;

(iii) For all (iu2, v1) ∈ D and such that v1 ≤ −(1 + u22)/2,

Re(Φ(iu2, v1)) =
δ(1− δ)v1

δ2 + (1− δ)2u22
+

n∑
j=1

1− ηj
λj

− ζ(1− δ)

≤ A+Bu22
C

(14)

where

A = δ

2ζδ2 +

 n∑
j=1

2(1− ηj)
λj

− 2ζ + 1

 δ − 1

 ,

B = (1− δ)2
 n∑
j=1

2(1− ηj)
λj

− 2ζ(1− δ)

− δ(1− δ),
and

C = 2δ2 + 2(1− δ)2u22.
The right hand side of (14) is negative if A ≤ 0 and B ≤ 0. From A ≤ 0, we have

the value of δ given by (8) and from B ≤ 0, we have 0 ≤ δ < 1. Therefore, the function
Φ(u, v) satisfies the conditions in Lemma 1.1. Thus we have Re(p(z)) > 0 (z ∈ U), that is
F(z)∈ S∗(δ). �

Let n = 1, α1 = α, β1 = β, λ1 = λ and η1 = 0 in Theorem 2.1, we have the following
result.
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Corollary 2.1. Let α ≥ 1 and β ≥ 3+
√
17

2 . Then

Fα,β,λ,ζ(z) =

ζ
z∫

0

tζ−1
(
Eα,β(t)

t

)1/λ

dt


1/ζ

∈S∗(δ)

where λ and ζ are positive real numbers such that 1
λ ≤ ζ, and

δ =
−
(
2
λ − 2ζ + 1

)
+

√(
2
λ − 2ζ + 1

)2
+ 8ζ

4ζ
, 0 ≤ δ < 1.

Putting λ = 1 and ζ = 1 in Corollary 2.1, we immediately have

Corollary 2.2. Let α ≥ 1 and β ≥ 3+
√
17

2 . Then Fα,β,1,1(z) =
z∫
0

(
Eα,β(t)

t

)
dt is starlike of

order 1/2 in U.

Example 2.1. Let E2,4(z) = 6[sinh
√
z −
√
z]/
√
z, then

z∫
0

6[sinh
√
t−
√
t]

t3/2
dt is starlike of

order 1/2 in U.

Making use Lemma 1.3, we determine the order of convexity for integral operator of
the type (6).

Theorem 2.2. Let α1, α2, . . . , αn ≥ 1, β1, β2, . . . , βn ≥ 1
2(1 +

√
5) and consider the nor-

malized Mittag-Leffler functions Eαj ,βj defined by

Eαj ,βj (z) = Γ(βj)zEαj ,βj (z). (15)

Let β = min{β1, β2, . . . , βn} and λ1, λ2, . . . , λn be nonzero positive real numbers. Moreover,
suppose that these numbers satisfy the following inequality

0 ≤ 1− 2β + 1

β2 − β − 1

n∑
j=1

1

λj
< 1.

Then the function Fαj ,βj ,λj defined by

Fαj ,βj ,λj (z) =

z∫
0

n∏
j=1

(Eαj ,βj (t)
t

)1/λj

dt, (16)

is in C(δ), where

δ = 1− 2β + 1

β2 − β − 1

n∑
j=1

1

λj
.

Proof. We observe that Eαj ,βj ∈ A, i.e. Eαj ,βj (0) = E′αj ,βj (0) − 1 = 0, for all j ∈
{1, 2, . . . , n}. On the other hand, it is easy to see that

F′αj ,βj ,λj (z) =

n∏
j=1

(Eαj ,βj (z)
z

)1/λj

and
zF′′αj ,βj ,λj (z)
F′αj ,βj ,λj (z)

=
n∑
j=1

1

λj

(
zE′αj ,βj (z)
Eαj ,βj (z)

− 1

)
,

or, equivalently,
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1 +
zF′′αj ,βj ,λj (z)
F′αj ,βj ,λj (z)

=
n∑
j=1

1

λj

(
zE′αj ,βj (z)
Eαj ,βj (z)

)
+ 1−

n∑
j=1

1

λj
. (17)

Taking the real part of both terms of (17), we have

Re

{
1 +

zF′′αj ,βj ,λj (z)
F′αj ,βj ,λj (z)

}
=

n∑
j=1

1

λj
Re

(
zE′αj ,βj (z)
Eαj ,βj (z)

)
+

1−
n∑
j=1

1

λj

 . (18)

Now, by using the inequality (7) for each βj , where j ∈ {1, 2, . . . , n}, we obtain

Re

{
1 +

zF′′αj ,βj ,λj (z)
F′αj ,βj ,λj (z)

}
=

n∑
j=1

1

λj
Re

(
zE′αj ,βj (z)
Eαj ,βj (z)

)
+

1−
n∑
j=1

1

λj


>

n∑
j=1

1

λj

(
1− 2βj + 1

β2j − βj − 1

)
+

1−
n∑
j=1

1

λj


= 1− 2β + 1

β2 − β − 1

n∑
j=1

1

λj

for all z ∈ D and β1, β2, . . . , βn ≥ 1
2(1 +

√
5). Here we used that the function ϕ : (12(1 +√

5),∞)→ R, defined by

ϕ(x) =
2x+ 1

x2 − x− 1
,

is decreasing. Therefore, for all j ∈ {1, 2, . . . , n} we have

2βj + 1

β2j − βj − 1
≤ 2β + 1

β2 − β − 1
. (19)

Because 0 ≤ 1− 2β+1
β2−β−1

n∑
j=1

1
λj
< 1,we get Fαj ,βj ,λj (z) ∈ C(δ), where δ =1− 2β+1

β2−β−1

n∑
j=1

1
λj
.

This completes the proof. �

Let n = 1, α1 = α, β1 = β and λ1 = λ in Theorem 2.1, we have the following result.

Corollary 2.3. Let α ≥ 1, β ≥ 1
2(1 +

√
5) and λ > 0. Moreover, suppose that these

numbers satisfy the following inequality

0 ≤ 1− 2β + 1

λ(β2 − β − 1)
< 1.

Then the function Fα,β,λ defined by

Fα,β,λ(z) =

z∫
0

(
Eα,β(t)

t

)1/λ

dt,

is in C(δ), where

δ = 1− 2β + 1

λ(β2 − β − 1)
.

Example 2.2. (i) If 0 ≤ 1− 5
λ < 1, then

z∫
0

(
sinh
√
t√

t

)1/λ
dt ∈ C(δ); δ = 1− 5

λ ;λ ≥ 5.
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(ii) If 0 ≤ 1− 7
5λ < 1, then

z∫
0

(
2[cosh

√
t−1]

t

)1/λ
dt ∈ C(δ); δ = 1− 7

5λ ;λ ≥ 7/5.

(iii) If 0 ≤ 1− 9
11λ < 1, then

z∫
0

(
6[sinh

√
t−
√
t]

t3/2

)1/λ
dt ∈ C(δ); δ = 1− 9

11λ ;λ ≥ 9/11.
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