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ON DIAMETER AND GIRTH OF PRODUCT OF ZERO-DIVISOR

GRAPHS

VIJAY KUMAR BHAT1∗, PRADEEP SINGH2, §

Abstract. Graph theory has become a hot topic in Mathematics due to the gradual
research done in graph theory. Product of graphs enables the combination or decompo-
sition of its elemental structures. In graph theory there are four standard products, each
with its own set of applications and theoretical interpretations. In this article, we study
these graph products of zero-divisor graphs of commutative rings and determine their
structural properties such as connectivity, diameter and girth. We also determine when
the graph product of zero-divisor graphs of ring Zn and Zm are Eulerian.
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1. Introduction

In recent days, Algebraic Graph Theory has become a very popular and rapidly growing
area for its numerous theoretical development and countless applications to practical prob-
lems. As a research area, graph theory is still relatively young, but it is maturing rapidly
with many deep results having been discovered over the last couple of decades. The con-
nection between graph theory and ring theory was established by Beck [3] in 1988. Beck’s
main interest was the chromatic number χ(G(R)) of the graph G(R). After modifying the
definition of Beck [3], Anderson and Livingston [2] defined the zero-divisor graph Γ(R) as
a graph whose vertex set is the set of zero-divisors of R, such that two distinct vertices a
and b are adjacent if and only if ab = 0. In 2006, Redmond [14] gave an algorithm to find
all commutative, reduced rings with unity which gives rise to a zero-divisor graph on n ver-
tices for any n ≥ 1 and a list of all commutative rings (up to isomorphism) which produce
zero-divisor graph for n = 6, 7, . . . , 14 vertices is also given. For further details regard-
ing zero-divisor graphs and related works the reader is referred to [5, 15, 16, 17, 19, 20, 21].
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Nowadays, many researchers focused on the structural properties of the zero-divisor graphs
of commutative rings that include diameter, girth, vertex degree, connectivity and many
more. Anderson and Livingston [2] proved that Γ(R) is connected and diam(Γ(R)) ≤ 3.
Moreover, if Γ(R) contains a cycle, then girth(Γ(R)) ≤ 7. They noticed that all of the
examples they considered had girths of 3, 4 or ∞. Based on this, they conjectured that
if a zero-divisor graph has a cycle, then its girth is 3 or 4. They were able to prove this
for Artinian ring (Theorem 2.4, [2]). The conjecture was proved independently by Mulay
[11] and DeMeyer and Schneider [7]. In 2019, Akgunes and Nacaroglu [1] calculated the
diameter and girth for Zp×Zq×Zr. For more results on diameter and girth of zero-divisor
graphs of commutative rings, readers may refer to [9, 12, 13].

By expanding small graphs, we construct many large graphs. So, it is essential to know
which properties of small graphs can be transferred to the expanded ones. In (2011), Li et
al. [10] proved that lexicograph of vertex transitive graphs is also vertex transitive as well
as the lexicographic product of edge transitive graphs. In (2008), for cartesian product of
two graphs, Spacapan [18] found the fewest number of vertices whose removal from the
graph results in a disconnected or trivial graph.

This powerful idea motivated us to consider five kinds of graph products as the expander
graphs. In this article, we discuss some structural properties: connectivity, diameter and
girth of graph products of zero-divisor graphs of commutative rings.

Rest of the paper is arranged as follows: necessary notations and terminology are discussed
in Section 2. In Section 3, we study the diameter and girth of cartesian product of
zero-divisor graphs. In section 4 and Section 5, tensor product and strong product are
investigated. Co-normal product and lexicographic product of zero-divisor graphs are
discussed in Section 6 and Section 7. Finally, the paper is concluded in Section 8.

2. Terminology

In this section, we discuss some terms that are relatable to this article. The greatest dis-
tance between any pair of vertices is termed as diameter of graph G, denoted by diam(G).
Girth of graph G is defined as the length of the shortest cycle in G, provided G contains
a cycle; otherwise girth of G = ∞. It is denoted by girth(G). A graph is said to be
connected if there is a path between any two arbitrary vertices, otherwise disconnected.
The length of the shortest path between vertex x and y is known as distance between
them denoted by d(x, y). The degree of vertex x is the number of edges of G incident on
x. The set of vertices adjacent to vertex x, is called the neighborhood of vertex x denoted
by N(x). A graph is Eulerian if it has a closed path containing every edge. In [4], it shows
that a graph is Eulerian if and only if every vertex has even degree.
“Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two graphs. Γ = (V,E), the product of them is
a graph with vertex set V = V1 × V2, and vertex (u1, u2) is adjacent to (v1, v2) in Γ if one
of the relevant conditions happen depending on the product [8]:

(1) Cartesian product. u1 is adjacent to v1 in Γ1 and u2 = v2 or u1 = v1 and u2 is
adjacent to v2 in Γ2;

(2) Tensor product. u1 is adjacent to v1 in Γ1 and u2 is adjacent to v2 in Γ2;
(3) Strong product. u1 is adjacent to v1 in Γ1 and u2 = v2 or u1 = v1 and u2 is adjacent

to v2 in Γ2 or u1 is adjacent to v1 in Γ1 and u2 is adjacent to v2 in Γ2;
(4) Lexicographic product. u1 is adjacent to v1 in Γ1 or u1 = v1 and u2 is adjacent to

v2 in Γ2;
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(5) Co-normal product. u1 is adjacent to v1 in Γ1 or u2 is adjacent to v2 in Γ2.”

In this paper, we assume that R and S are two commutative rings and Γ1 and Γ2 are their
zero-divisor graphs respectively. N(u) and N(u′) represents the neighborhood of vertex
u ∈ V (Γ1) and u′ ∈ V (Γ2).

3. Cartesian product

In this section, we study the cartesian product of zero-divisor graphs. We calculated
the upper bound for the diameter and girth of the graph. We also proved, under what
conditions the graph is Eulerian. In the following theorem, we find the neighborhood of
the vertex of cartesian product.

Theorem 3.1. Let G be the Cartesian product of Γ1 and Γ2. Then N(u, u′) = (N(u) ×
u′) ∪ (u×N(u′)), for any (u, u′) ∈ V (Γ1 × Γ2).

Proof. Let (x, y) ∈ N(u, u′). Therefore, (x, y) is adjacent to (u, u′). Thus, x is adjacent
to u in Γ1 and y = u′ or x = u and y is adjacent to u′ in Γ2. Hence, x ∈ N(u) and y = u′

or x = u and y ∈ N(u′). Hence, N(u, u′) = (N(u)× u′) ∪ (u×N(u′)). �

In the following results, we proved that the upper bound of diameter of zero-divisor
graph is 6 and that of girth is 4.

Theorem 3.2. Let G be the Cartesian product of Γ1 and Γ2. Then diam(G)) ≤ 6.

Proof. Let (x, y), (u, v) ∈ V (Γ1×Γ2) be two distinct vertices. We have the following cases:

Case 1: When x = u, y 6= v, then following cases arise. If
Case 1.1: yv = 0, then (x, y)− (a, b) is a path.
Case 1.2: yv 6= 0 and y2 = 0, v2 = 0, then (x, y)− (x, yv)− (u, v) is a path.

Case 1.3: yv 6= 0 and y2 = 0, v2 6= 0, then there exist v
′ ∈ V (Γ2) such that vv

′
= 0.

Hence (x, y)− (x, yv
′
)− (u, v) is a path.

Case 1.4: yv 6= 0 and y2 6= 0, v2 = 0, then there exist y
′ ∈ V (Γ2) such that yy

′
= 0.

Hence (x, y)− (x, y
′
v)− (u, v) is a path.

Case 1.5: yv 6= 0 and y2 6= 0, v2 6= 0, then there exist y
′
, v
′ ∈ V (Γ2) such that

yy
′

= 0, vv
′

= 0. We have two sub cases:
(A). If y

′
v
′ 6= 0, then (x, y)− (x, y

′
v
′
)− (x, v) is a path.

(B). If y
′
v
′

= 0, then (x, y)− (x, y
′
)− (x, v

′
)− (x, v) is a path.

Case 2: When x 6= u and y = v. We can proceed as in case 1.
Case 3: When x 6= u and y 6= v, then we have following cases:

Case 3.1: Let xu = 0 and yv 6= 0. Then following sub cases arise:
(A). If y2 = 0 and v2 = 0, then (x, y)− (u, y)− (u, yv)− (u, v) is a path.

(B). If y2 = 0 and v2 6= 0, then there exist v
′ ∈ V (Γ2) such that vv

′
= 0. Hence

(x, y)− (u, y)− (u, yv
′
)− (u, v) is a path.

(C). If y2 6= 0 and v2 = 0, then there exist y
′ ∈ V (Γ2) such that yy

′
= 0. Hence

(x, y)− (u, y)− (u, y
′
v)− (u, v) is a path.

(D). If y2 6= 0 and v2 6= 0 then there exist y
′
, v
′ ∈ V (Γ2) such that yy

′
= 0, vv

′
= 0.

Now, if y
′
v
′ 6= 0, then (x, y)− (u, y)− (u, y

′
v
′
)− (u, v) is a path and

if y
′
v
′ 6= 0, then (x, y)− (u, y)− (u, y

′
)− (u, v

′
)− (u, v) is a path.

Case 3.2: Let xu 6= 0 and yv = 0. We can proceed as in case 3.2.
Case 3.3: Let xu 6= 0 and yv 6= 0. Then following sub cases arise:
(A). If x2 = y2 = u2 = v2 = 0, then (x, y) − (xu, y) − (u, y) − (u, yv) − (u, v) is a
path.
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(B). If y2 = u2 = v2 = 0 and x2 6= 0 then there exist x
′ ∈ V (Γ1) such that xx

′
= 0.

Hence (x, y)− (x
′
u, y)− (u, y)− (u, yv)− (u, v) is a path.

(C). If u2 = v2 = 0 and x2 6= 0, y2 6= 0 then there exist x
′ ∈ V (Γ1) and y

′ ∈ V (Γ2)

such that xx
′

= 0 = yy
′
. Hence (x, y)− (x

′
u, y)− (u, y)− (u, y

′
v)− (u, v) is a path.

(D). If y2 = v2 = 0 and x2 6= 0, u2 6= 0 then there exist x
′
, u
′ ∈ V (Γ1) such that

xx
′

= 0 = uu
′
. Now, if x

′
u
′ 6= 0, then (x, y)− (x

′
u
′
, y)− (u, y)− (u, yv)− (u, v) is

a path and if x
′
u
′

= 0, then (x, y)− (x
′
, y)− (u

′
, y)− (u, y)− (u, yv)− (u, v) is a

path.
(E). If x2 6= 0, y2 6= 0, u2 6= 0, v2 6= 0 then there exist x

′
, u
′ ∈ V (Γ1) and y

′
, v
′ ∈

V (Γ2) such that xx
′

= 0 = uu
′

and yy
′

= 0 = vv
′
.

We have following sub cases:
(a). If x

′
u
′

= 0 and y
′
v
′ 6= 0, then (x, y)− (x

′
, y)− (u

′
, y)− (u, y)− (u, y

′
v
′
)− (u, v)

is a path.
(b). If x

′
u
′ 6= 0 and y

′
v
′

= 0, then (x, y)−(x
′
u
′
, y)−(u, y)−(u, y

′
)−(u, v

′
)−(u, v)

is a path.
(c). If x

′
u
′ 6= 0 and y

′
v
′ 6= 0, then (x, y)− (x

′
u
′
, y)− (u, y)− (u, y

′
v
′
)− (u, v) is a

path.
(d). If x

′
u
′

= 0 and y
′
v
′

= 0, then (x, y) − (x
′
, y) − (u

′
, y) − (u, y) − (u, y

′
) −

(u, v
′
)− (u, v) is a path.

Hence diam(Γ) ≤ 6. �

Example 3.1. Let Γ1 and Γ2 be the zero-divisor graphs of Z20 and Z63 respectively. Let
G be the Cartesian product of Γ1 and Γ2 that is G = Γ1 × Γ2. Then d((2, 7), (5, 3)) = 6

(2, 7)− (10, 7)− (4, 7)− (5, 7)− (5, 9)− (5, 21)− (5, 3)

Theorem 3.3. Let G be the Cartesian product of Γ1 and Γ2. If G has a cycle then
girth(G) ≤ 4.

Proof. Suppose Γ1 has a cycle of length 3. Let a, b, c ∈ V (Γ1) and x ∈ V (Γ2) such that
a− b− c− a is cycle of length 3 in Γ1. Then (a, x), (b, x), (c, x) ∈ V (G) and

(a, x)− (b, x)− (c, x)− (a, x)

is a cycle of length 3 in G.
Suppose Γ1 has a cycle of length 4. Let a, b, c, d ∈ V (Γ1) and x ∈ V (Γ2) such that

a− b− c− d− a is cycle of length 4 in Γ1. Then (a, x), (b, x), (c, x), (d, x) ∈ V (G) and

(a, x)− (b, x)− (c, x)− (d, x)− (a, x)

is a cycle of length 4 in G.
Suppose, neither Γ1 nor Γ2 has a cycle. Let a, b ∈ V (Γ1) and x, y ∈ V (Γ2) with a − b

and x− y. Then (a, x), (b, x), (a, y), (b, y) ∈ V (G) and

(a, x)− (a, y)− (b, y)− (b, x)− (a, x)

is a cycle of length 4 in G.
From above cases, we conclude that girth(G) ≤ 4. �

Following theorem gives the condition, under which the cartesian product of zero-divisor
graphs of Zn and Zm is Eulerian.

Theorem 3.4. Let G be the cartesian product of zero-divisor graphs of Zn and Zm. Then
G is Eulerian if and only if Γ(Zn) and Γ(Zm) are Eulerian.
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Proof. Let G be the cartesian product of zero-divisor graphs of Zn and Zm and (u, v) ∈ G.
Then degree of (u, v) is given by

deg(u, v) = deg(u) + deg(v)

To prove that G is Eulerian we need to show that sum of degrees of u and v are even for
all u ∈ Γ(Zn), v ∈ Γ(Zm). This is possible if degrees of both the vertices are either odd
or even.

From theorem 3.1 [6], we observe that vertices of Γ(Zn) have even degree if and only
if either n is odd and square free or n = 4. Also, there does not exist any n for which
degrees of all the vertices of Γ(Zn) is odd. Hence we conclude that G is Eulerian if vertices
of Γ(Zn) and Γ(Zm) have even degree, that is Γ(Zn) and Γ(Zm) are Eulerian. �

4. Tensor product

In this section, we study the Tensor product of zero-divisor graphs. We calculated the
upper bound for the diameter and girth of the graph. We also proved, under what con-
ditions the graph is Eulerian. In the following theorem, we find the neighborhood of the
vertex of Tensor product.

Theorem 4.1. Let G be the Tensor product of Γ1 and Γ2. Then N(u, u′) = (N(u)×N(u′))
for any (u, u′) ∈ V (Γ1 × Γ2).

Proof. Assume (x, y) ∈ N(u, u′). Then, (x, y) is adjacent to (u, u′). By definition of tensor
product, x and u are adjacent and y and u′ are adjacent too. Therefore, x ∈ N(u) and
y ∈ N(u′). It leads to N(u, u′) = N(u)×N(u′). �

In the following results, we discuss diameter and girth of tensor product of zero-divisor
graphs.

Theorem 4.2. Let G be the Tensor product of Γ1 and Γ2. Then G is connected if and
only if for every pair of vertices in Γ1 and Γ2, there is a path of odd length.

Proof. Let (x, y) and (u, v) be in G. If x.u = 0 and y.v = 0 for all x, u ∈ V (Γ2) and
y, v ∈ V (Γ1), then G is connected. Let x.u 6= 0 and x − x1 − x2 − · · · − xn − u is a
connecting x and u. Then we have path

(x, y)− (x1, v)− (x2, y)− · · · − (xn, y)− (u, v), if n is even

(x, y)− (x1, v)− (x2, y)− · · · − (xn, v)− (u, y), if n is odd

Clearly, When n is odd there is no path connecting (x, y) and (u, v). That is length of
path connecting x and u must be odd. Similarly we can prove the case for x.u 6= 0 and
y.v 6= 0. �

Theorem 4.3. Let G be the Tensor product of Γ1 and Γ2. If G is connected, then diam(G)
is equal to the

Max{min(x,u)∈V (Γ1)(d(x, u)),min(y,v)∈V (Γ2)(d(y, v))},
where d(a, b) is the length of odd length path connecting vertices a and b.

Proof. From theorem 4.4, G is connected if there is a path of odd length connecting any
two vertices of Γ1 and Γ2. Let (x, y) and (u, v) ∈ G. If G is connected then length
of shortest path connecting (x, y) and (u, v) is Max{min(d(x, u)),min(d(y, v))}. Hence
diam(G) is

Max{min(x,u)∈V (Γ1)(d(x, u)),min(y,v)∈V (Γ2)(d(y, v))}.
�
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Figure 1. Zero-divisor
graph of Z6

Figure 2. Zero-divisor
graph of Z16

Example 4.1. Let Γ1 and Γ2 be the zero-divisor graphs of Z6 and Z16 respectively and G
the tensor product of Γ1 and Γ2. Then G is connected and diam(G) = 5 as d((2, 10), (3, 6)) =
5

(2, 10)− (3, 8)− (2, 4)− (3, 12)− (2, 8)− (3, 6)

Figure 3. Tensor product of zero-divisor graph of Z6 and Z16

Theorem 4.4. Let G be the Tensor product of Γ1 and Γ2. If G has a cycle then girth(G) ≤
4.

Proof. We have the following cases:

(1) When | Γ1 |=| Γ2 |= 2. Then G does not have a cycle.
(2) When | Γ2 |≥ 2 and | Γ1 |≥ 3. Let a, b, c ∈ V (Γ1) and x, y ∈ V (Γ2) with a− b− c

and x− y. Then (a, x), (b, x), (c, x), (a, y), (b, y), (c, y) ∈ V (G) and

(a, x)− (b, y)− (c, x)− (b, y)− (a, x)

is a cycle of length 4.

�
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Following theorem gives the condition, under which the Tensor product of zero-divisor
graphs of Zn and Zm is Eulerian.

Theorem 4.5. Let G be the Tensor product of zero-divisor graphs of Zn and Zm. Then
G is Eulerian if either Γ(Zn) or Γ(Zm) is Eulerian.

Proof. Let G be the Tensor product of zero-divisor graphs of Zn and Zm and (u, v) ∈ G.
Then degree of (u, v) is given by

deg(u, v) = deg(u) ∗ deg(v)

Clearly, G is Eulerian if degree of u or v is even for all u ∈ V (Γ(Zn)), v ∈ V (Γ(Zm)).
That is, G is Eulerian if either of Γ(Zn) or Γ(Zm) is Eulerian. �

5. Strong product

In this section, we study the Strong product of zero-divisor graphs. We calculated the
upper bound for the diameter and girth of the graph. We also proved, under what con-
ditions the graph is Eulerian. In the following theorem, we find the neighborhood of the
vertex of Strong product. From theorem 3.1 and 4.1, we conclude the following theorems:

Theorem 5.1. Let G be the Strong product of Γ1 and Γ2. Then, if runs for any (u, u
′
) ∈

V (G), N(u, u
′
) = (N(u)× u′) ∪ (u×N(u

′
)) ∪ (N(u)×N(u

′
)).

Proof. For any (x, y) ∈ N(u, u
′
), where (u, u

′
) ∈ V (G), x is adjacent to u in Γ1 and y = u

′

or x = u and y is adjacent to u
′

in Γ2 or x is adjacent to u in Γ1 and y is adjacent to u
′

in Γ2. Therefore, N(u, u
′
) = (N(u)× u′) ∪ (u×N(u

′
)) ∪ (N(u)×N(u

′
)). �

In the following results, we discuss diameter and girth of Strong product of zero-divisor
graphs.

Theorem 5.2. Let G be the Strong product of Γ1 and Γ2. Then diam(G) ≤ 3.

Proof. Let (x, y), (u, v) ∈ V (Γ1 × Γ2) be two distinct vertices. Suppose they are not
connected. Then we have the following cases:

Case 1: When x = u and y 6= v. Same as Case 1 of theorem 3.2.
Case 2: When x 6= u and y = v. Same as Case 2 of theorem 3.2.
Case 3: When x 6= u and y 6= v then following cases arise:

Case 3.1: Let xu = yv = 0. Then (x, y)− (u, v) is a path.
Case 3.2: Let xu = 0 and yv 6= 0. Then following sub cases arise:
(A). If y2 = v2 = 0, then (x, y)− (x, yv)− (u, v) is a path.

(B). If y2 = 0 and v2 6= 0 then there exist v
′ ∈ V (Γ2) such that vv

′
= 0. Hence

(x, y)− (x, yv
′
)− (u, v) is a path.

(C). If y2 6= 0 and v2 = 0 then there exist y
′ ∈ V (Γ2) such that yy

′
= 0. Hence

(x, y)− (x, y
′
v)− (u, v) is a path.

(D). If y2 6= 0 and v2 6= 0 then there exist y
′
, v
′ ∈ V (Γ2) such that yy

′
= 0 and

vv
′

= 0 respectively.
If y

′
v
′ 6= 0, then (x, y)− (x, y

′
v
′
)− (u, v) is a path.

If y
′
v
′

= 0, then (x, y)− (x, y
′
)− (u, v

′
)− (u, v) is a path.

Case 3.3: When xu 6= 0 and yv = 0. Same as case 3.2
Case 3.4: When xu 6= 0 and yv 6= 0. Then we have following sub cases:
(A). If x2 = y2 = u2 = v2 = 0, then (x, y)− (xu, yv)− (u, v) is a path.

(B). If y2 = u2 = v2 = 0 and x2 6= 0 then there exist x
′ ∈ V (Γ1) such that xx

′
= 0.

Hence (x, y)− (x
′
u, yv)− (u, v) is a path.
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(C). If y2 = v2 = 0 and x2 6= 0, u2 6= 0 then there exist x
′
, u
′ ∈ V (Γ1) such that

xx
′

= 0 and uu
′

= 0.
If x

′
u
′ 6= 0 then (x, y)− (x

′
u
′
, yv)− (u, v) is a path.

If x
′
u
′

= 0, then (x, y)− (x
′
, yv)− (u

′
, v)− (u, v) is a path.

(D). If u2 = v2 = 0 and x2 6= 0, y2 6= 0 then there exist x
′ ∈ V (Γ1), y

′ ∈ V (Γ2)

such that xx
′

= 0 and yy
′

= 0. Hence (x, y)− (x
′
u, y

′
v)− (u, v) is a path.

(E). If x2 6= 0, y2 6= 0, u2 6= 0, v2 6= 0 then there exist x
′
, u
′ ∈ V (Γ1) and

y
′
, v
′ ∈ V (Γ2) such that xx

′
= 0 = uu

′
and yy

′
= 0 = vv

′
.

We have following sub cases:
(a). If x

′
u
′

= 0 and y
′
v
′ 6= 0, then (x, y)− (x

′
, y)− (u

′
, y
′
v
′
)− (u, v) is a path.

(b). If x
′
u
′ 6= 0 and y

′
v
′

= 0, then (x, y)− (x
′
u
′
, y
′
)− (u, v

′
)− (u, v) is a path.

(c). If x
′
u
′ 6= 0 and y

′
v
′ 6= 0, then (x, y)− (x

′
u
′
, y
′
v
′
)− (u, v) is a path.

(d). If x
′
u
′

= 0 and y
′
v
′

= 0, then (x, y)− (x
′
, y
′
)− (u

′
, v
′
)− (u, v) is a path.

Hence diam(G) ≤ 3. �

Figure 4. Strong product of zero-divisor graph of Z6 and Z10

Theorem 5.3. Let G be the Strong product of Γ1 and Γ2. If G has a cycle then girth(G) ≤
4.

Proof. Proof follows from theorem 3.3. �

Theorem 5.4. Let G be the Strong product of zero-divisor graphs of Zn and Zm. Then
G is Eulerian if both Γ(Zn) and Γ(Zm) are Eulerian.

Proof. Let G be the Strong product of zero-divisor graphs of Zn and Zm and (u, v) ∈ G.
Then degree of (u, v) is given by

deg(u, v) = deg(u) + deg(v) + deg(u) ∗ deg(v)

Clearly, only possibility for degree of (u, v) to be even is when degrees of both vertices u and
v are even. That is, G is Eulerian if and only if both Γ(Zn) and Γ(Zm) are Eulerian. �



V. K. BHAT, P. SINGH: ON DIAMETER AND GIRTH OF PRODUCT OF ZERO-DIVISOR GRAPHS 929

6. Co-normal product

In this section, we study the Co-normal product of zero-divisor graphs. We calculated
the diameter and girth of the graph. We also proved, under what conditions the graph is
Eulerian. In the following theorem, we find the neighborhood of the vertex of Co-normal
product.

Theorem 6.1. Let G be the Co-normal product of Γ1 and Γ2. Then for any (u, u
′
) ∈

V (G), N(u, u
′
) = (N(u)× V (Γ2)) ∪ (V (Γ1)×N(u

′
)).

Proof. If (x, y) is adjacent to (u, u
′
), x, u are adjacent in Γ1 or y, u

′
are adjacent in Γ2.

Thus, N(u, u
′
) = (N(u)× V (Γ2)) ∪ (V (Γ2)×N(u

′
)). �

In the following theorems, we discuss some results on diameter and girth of Co-normal
product of zero-divisor graphs.

Theorem 6.2. Let G be the Co-normal product of Γ1 and Γ2. Then diam(G) ={
2, if diam(Γ1) = 1 or diam(Γ2) = 1

Min{diam(Γ1), diam(Γ2)}, otherwise.

Proof. Let (x, y), (u, v) ∈ V (G) be two distinct vertices. Suppose they are not connected.
Then we have the following cases:

Case 1: When x = u, y 6= v, then there exist x
′ ∈ V (Γ1) such that xx

′
= 0. Hence

(x, y)− (x
′
, y)− (u, v) is a path.

Case 2: When x 6= u, y = v, then there exist y
′ ∈ V (Γ2) such that yy

′
= 0. Hence

(x, y)− (x, y
′
)− (u, v) is a path.

Case 3: When x 6= u, y 6= v, then we have following cases:
Case 3.1: If xu = 0 or yv = 0, then (x, y)− (u, v) is a path..
Case 3.2: If xu 6= 0 and yv 6= 0. Let x − x1 − · · · − xn − u is a path connecting
x and u and y − y1 − · · · − ym − v is a path connecting y and v. Without loos
of generality, let n < m. Then (x, y)− (x1, y)− (x2, y) · · · − (xn, y)− (u, v) is the
shortest path connecting (x, y) and (u, v).

Hence, diam(G) ={
2, if diam(Γ1) = 1 or diam(Γ2) = 1

Min{diam(Γ1), diam(Γ2)}, otherwise.

�

Example 6.1. Let Γ1 and Γ2 be the zero-divisor graphs of Z6 and Z8 respectively. Let
G be the conormal product of Γ1 and Γ2 that is G = Γ1 × Γ2. Then diam(Γ1) = 1,
diam(Γ2) = 2 and diam(G) = 2 as there is no path of length 1 connecting (3, 2) and (3, 6).
Shortest path connecting (3, 2) and (3, 6) is (3, 2)− (3, 4)− (3, 6).

Theorem 6.3. Let G be the Co-normal product of Γ1 and Γ2. Then girth(G) = 3.

Proof. Let a, b ∈ Γ1 and x, y ∈ Γ2 with a− b and x− y. Then (a, x), (a, y), (b, x), (b, y) ∈
V (G) and

(a, x)− (b, y)− (a, y)− (a, x)

is a cycle of length 3. �
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Figure 5. Co-normal product of Z6 and Z8

The next result discusses the Eulerian property of Co-normal product of zero-divisor
graphs.

Theorem 6.4. Let G be the Co-normal product of zero-divisor graphs of Zn and Zm.
Then G is Eulerian if:

(1) both m and n are odd;
(2) n is odd and square free and m is even;
(3) m is odd and square free and n is even;
(4) n = m = 4

Proof. LetG be the Co-normal product of zero-divisor graphs of Zn and Zm and (u, v) ∈ G.
Then degree of (u, v) is given by

deg(u, v) = deg(u)|V (Γ(Zm))|+ deg(v)|V (Γ(Zn))|
We have following cases:
a.) When |V (Γ(Zn))| and |V (Γ(Zm))| are even that is, when both n and m are odd.
Clearly in this case, deg(u, v) is even.
b.) When |V (Γ(Zn))| is even and |V (Γ(Zm))| is odd. Then deg(u, v) is even when n is
square free. So G is Eulerian when n is odd and square free and m is even.
c.) When |V (Γ(Zm))| is even and |V (Γ(Zn))| is odd. Then deg(u, v) is even when m is
square free. So G is Eulerian when m is odd and square free and n is even.
c.) When |V (Γ(Zn))| and |V (Γ(Zm))| are odd that is, n and m are even. So G is Eulerian
when degree of u and v are both odd or both even. Since n and m are even, we have
n = m = 4. �

7. Lexicographic product

In this section, we study the Lexicographic product of zero-divisor graphs. We calculated
the diameter and girth of the graph. We also proved, under what conditions the graph is
Eulerian. In the following theorem, we find the neighborhood of the vertex of Lexicographic
product.

Theorem 7.1. Let G be the Lexicographic product of two zero-divisor graphs Γ1 and Γ2

of the rings R and S, respectively. Then, N(u, u
′
) = (N(u) × V (Γ2)) ∪ (u × N(u

′
)), for

any (u, u
′
) ∈ V (G).

Proof. Assume (x, y) ∈ N(u, u
′
). Therefore, x and u are adjacent in Γ1 or x = u in Γ1

and y and u
′

are adjacent in Γ1. Therefore, N(u, u
′
) = (N(u)× V (Γ2))∪ (u×N(u

′
)), for

any (u, u
′
) ∈ V (G). �



V. K. BHAT, P. SINGH: ON DIAMETER AND GIRTH OF PRODUCT OF ZERO-DIVISOR GRAPHS 931

In the following results, we discuss some results on diameter and girth of Lexicographic
product of zero-divisor graphs.

Theorem 7.2. Let G be the Lexicographic product of Γ1 and Γ2. Then diam(G) ≤ 3.

Proof. Let (x, y), (u, v) ∈ V (Γ1 × Γ2) be two distinct vertices. Suppose they are not
connected then xu 6= 0. Now we have the following cases:

Case 1: When x = u and yv 6= 0. Then following cases arise:
Case 1.1: If y2 = 0 = v2, then (x, y)− (x, yv)− (u, v) is a path.

Case 1.2: If y2 = 0, v2 6= 0 then there exist v
′ ∈ V (Γ2) such that vv

′
= 0. Hence

(x, y)− (x, yv
′
)− (u, v) is a path.

Case 1.3: If y2 6= 0, v2 = 0 then there exist y
′ ∈ V (Γ2) such that yy

′
= 0. Hence

(x, y)− (x, y
′
v)− (u, v) is a path.

Case 1.4: If y2 6= 0, v2 6= 0 then there exist y
′
, v
′ ∈ V (Γ2) such that yy

′
= 0 and

vv
′

= 0.
If y

′
v
′ 6= 0, then (x, y)− (x, y

′
v
′
)− (u, v) is a path.

If y
′
v
′

= 0. Then (x, y)− (x, y
′
)− (u, v

′
)− (u, v) is a path.

Case 2: When x 6= u and yv = 0.
Case 2.1: If x2 = 0 = u2, then (x, y)− (xu, y)− (u, v) is a path.

Case 2.2: If x2 = 0, u2 6= 0 then there exist u
′ ∈ V (Γ1) such that uu

′
= 0. Hence

(x, y)− (xu
′
, y)− (u, v) is a path.

Case 2.3: If x2 6= 0, u2 = 0 then there exist x
′ ∈ V (Γ1) such that xx

′
= 0. Hence

(x, y)− (x
′
u, y)− (u, v) is a path.

Case 2.4: If x2 6= 0, u2 6= 0 then there exist x
′
, u
′ ∈ V (Γ1) such that xx

′
= 0 and

uu
′

= 0.
If x

′
u
′ 6= 0, then (x, y)− (x

′
u
′
, y)− (u, v) is a path.

If x
′
u
′

= 0. Then (x, y)− (x
′
, y)− (u

′
, v)− (u, v) is a path.

Case 3: When x 6= u and yv 6= 0, then from Case 2, there is a path connecting (x, y)
and (u, v) of length at most 3.

�

Theorem 7.3. Let G be the Lexicographic product of Γ1 and Γ2. Then girth(G) = 3.

Proof. Proof follows from theorem 6.3. �

In the following result, we find the value of m and n for which the zero-divisor graph
of Zn and Zm is Eulerian.

Theorem 7.4. Let G be the Lexicographic product of zero-divisor graphs of Zn and Zm.
Then G is Eulerian if:

(1) m is odd and square free;
(2) n = m = 4

Proof. Let G be the Lexicographic product of zero-divisor graphs of Zn and Zm and
(u, v) ∈ G. Then degree of (u, v) is given by

deg(u, v) = deg(u)|V (Γ(Zm))|+ deg(v)

We have two cases:
a.) When |V (Γ(Zm))| is even. We know that |V (Γ(Zm))| is even for odd m and in this
case degree of v is even when m is square free. So G is Eulerian when m is odd and square
free and n is arbitrary.
b.) When |V (Γ(Zm))| is odd. We know that |V (Γ(Zm))| is odd for even m. So G is
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Eulerain when degree of u and v are both odd or both even. Since m is even, we have
m = 4 and hence n = 4. So G is Eulerian, when n = m = 4 and in this case G have only
one vertex namely (2, 2). �

8. Conclusion

We have studied the graph products namely, cartesian product, tensor product, strong
product, co-normal product and lexicographic product, of zero-divisor graphs of commu-
tative rings. Some structural properties: connectivity, diameter and girth of these graph
products are discussed. We also discussed when the graph product of zero-divisor graphs
of Zn and Zm are Eulerian.
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