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SWITCHING OF VERTEX ON SOME GRAPHS WITH GEOMETRIC

MEAN 3-EQUITABLE LABELING

R. K. DHARSANDA1∗, P. I. ANDHARIA2, P. P. ANDHARIA3, §

Abstract. For a graph H with a vertex set P (H) and an edge set Q(H), if map g :
P (H) → {0, 1, 2} and its induced map g∗ : Q(H) → {0, 1, 2} defined by g∗(xy) =

d
√

g(x)g(y)e; ∀xy ∈ Q(H), satisfies the absolute difference of the number of vertices
(edges) with labeled x and labeled y is at most 1( where ∀x, y ∈ {0, 1, 2}) then g is called
a geometric mean 3 - equitable labeling. In this paper, we investigate a geometric mean
3-equitable labeling of the graph obtained from switching of any vertex with degree one
in path Pr for r ≡ 1 ( mod 3 ), switching of any vertex other than the support vertices
in path Pr for r ≡ 1, 2 ( mod 3 ) and switching of any vertex in cycle Cr for r ≡ 1, 2 (
mod 3 ).
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1. Introduction and Preliminaries

In this article, we deal with finite, simple, undirected graph. Consider a graph H with a
vertex set P (H) and an edge set Q(H), where |P (H)| and |Q(H)| are the cardinality of the
vertex set and edge set of a graph. For other terminology, we use Harary [5] and of graph
labeling as in Gallian [4]. Cahit [1] introduced cordial labeling in 1987. After that, Cahit
[2] generalized the concept of cordial labeling as k-equitable labeling in 1990. Similarly,
Ponraj et al. [7] presented the new concept mean cordial labeling in 2012. Inspired
from mean cordial labeling and 3 - equitable labeling, Chitra Lakshmi and Nagarajan [3]
presented geometric mean cordial labeling in 2017. After that, Kaneria et al.[6] renamed
geometric mean cordial labeling as a geometric mean 3-equitable labeling and proved that
some graphs are geometric mean 3-equitable. In 2021, Shrimali and Rathod [9] derived the
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graph obtained by switching of a vertex in path and cycle are vertex-edge neighborhood
prime graphs. In 2022, Prajapati and Patel [8] proved that the graph obtained by switching
of any vertex with degree one in path with k vertices for k ≥ 3 and odd k, switching of
vertex with degree two in path with k vertices except vertices u2 or uk−1 with k > 4 and
switching of any vertex in cycle are an edge product cordial graphs.

Definition 1.1. [3]. Let g : P (H) → {0, 1, 2} be a vertex labeling function such that the
absolute difference of the number of vertices with labeled p and labeled q is at most 1. If
the induced edge labeling function g∗ : Q(H)→ {0, 1, 2} defined by g∗(xy) = d

√
g(x)g(y)e;

∀xy ∈ Q(H) satisfies the condition that the absolute difference of the number of edges with
labeled p and labeled q is at most 1, where ∀p, q ∈ {0, 1, 2} then g is called a geometric
mean 3 - equitable labeling.

Definition 1.2. [8, 9]. A graph obtained by fetching a vertex x of H, eliminating the
adjacent edges of x and by adding new edges that are joining x to their non-adjacent
vertices in H is called vertex switching Hx of H.

2. Main Results

Theorem 2.1. The graph obtained from switching of any vertex in cycle Cr is a geometric
mean 3 - equitable for r ≡ 1, 2 ( mod 3 ).

Proof. Let x1, x2, . . . , xr−1 and xr be the vertices of a cycle Cr. Suppose Hx1 is the graph
obtained from switching of a vertex x1 in Cr. In Hx1 , every vertex xi other than x2 and
xr join to x1. We note that |P (Hx1)| = r and |Q(Hx1)| = 2r − 5.
Case (i) r ≡ 1 ( mod 3 )
Define g : P (Hx1)→ {0, 1, 2} as :
g(x1) = 1,

g(xk) =


0, if 2 ≤ k ≤ r+2

3 ;

1, if r+5
3 ≤ k ≤ 2r+1

3 ;

2, if 2r+4
3 ≤ k ≤ r

It’s induced edge map g∗ : Q(Hx1)→ {0, 1, 2} is,

g∗(x1xk) =


0, if 3 ≤ k ≤ r+2

3 ;

1, if r+5
3 ≤ k ≤ 2r+1

3 ;

2, if 2r+4
3 ≤ k ≤ r − 1

and

g∗(xkxk+1) =


0, if 2 ≤ k ≤ r+2

3 ;

1, if r+5
3 ≤ k ≤ 2r−2

3 ;

2, if 2r+1
3 ≤ k ≤ r − 1.

Thus vg(0) = r−1
3 = vg(1)− 1 = vg(2) and eg(0) = 2r−5

3 = eg(1) = eg(2).
Case (ii) r ≡ 2 ( mod 3 )
Define g : P (Hx1)→ {0, 1, 2} as :
g(x1) = 1, g(xr) = 0,

g(xk) =


0, if 2 ≤ k ≤ r+1

3 ;

1, if r+4
3 ≤ k ≤ 2r−1

3 ;

2, if 2r+2
3 ≤ k ≤ r − 1
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It’s induced edge map g∗ : Q(Hx1)→ {0, 1, 2} is,
g∗(xr−1xr) = 0,

g∗(x1xk) =


0, if 3 ≤ k ≤ r+1

3 ;

1, if r+4
3 ≤ k ≤ 2r−1

3 ;

2, if 2r+2
3 ≤ k ≤ r − 1

and

g∗(xkxk+1) =


0, if 2 ≤ k ≤ r+1

3 ;

1, if r+4
3 ≤ k ≤ 2r−4

3 ;

2, if 2r−1
3 ≤ k ≤ r − 2.

Thus vg(0) = r+1
3 = vg(1) = vg(2) + 1 and eg(0) = 2r−4

3 = eg(1) + 1 = eg(2).
So,both the cases, |vg(p)− vg(q)| ≤ 1 and |eg(p)− eg(q)| ≤ 1; ∀p, q ∈ {0, 1, 2}. Hence, Hx1

is a geometric mean 3 - equitable for r ≡ 1, 2 ( mod 3 ). �

Example 2.1. Geometric mean 3 - equitable labeling of Hx1 obtained from C8 is in Figure
1.
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Figure 1. Hx1 obtained from C8

Theorem 2.2. The graph obtained from switching of any vertex of degree one in path Pr

is a geometric mean 3 - equitable for r ≡ 1 ( mod 3 ).

Proof. Let x1, x2, . . . , xr−1 and xr be the vertices of a path Pr. Suppose Hx1 is the
graph obtained from switching of a vertex of degree one that is x1 in Pr. In Hx1 , every
vertex xi except x2 join to x1. We note that |P (Hx1)| = r and |Q(Hx1)| = 2r − 4. Define
g : P (Hx1)→ {0, 1, 2} as :
g(x1) = 1,

g(xk) =


0, if 2 ≤ k ≤ r+2

3 ;

1, if r+5
3 ≤ k ≤ 2r+1

3 ;

2, if 2r+4
3 ≤ k ≤ r
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It’s induced edge map g∗ : Q(Hx1)→ {0, 1, 2} is,

g∗(x1xk) =


0, if 3 ≤ k ≤ r+2

3 ;

1, if r+5
3 ≤ k ≤ 2r+1

3 ;

2, if 2r+4
3 ≤ k ≤ r

and

g∗(xkxk+1) =


0, if 2 ≤ k ≤ r+2

3 ;

1, if r+5
3 ≤ k ≤ 2r−2

3 ;

2, if 2r+1
3 ≤ k ≤ r − 1.

Thus vg(0) = r−1
3 = vg(1) − 1 = vg(2) and eg(0) = 2r−5

3 = eg(1) = eg(2) − 1. So,
|vg(p) − vg(q)| ≤ 1 and |eg(p) − eg(q)| ≤ 1; ∀p, q ∈ {0, 1, 2}. Hence, Hx1 is a geometric
mean 3 - equitable for r ≡ 1 ( mod 3 ). �

Example 2.2. Geometric mean 3 - equitable labeling of Hx1 obtained from P10 is in Figure
2.
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Figure 2. Hx1 obtained from P10

Theorem 2.3. The graph obtained from switching of any vertex other than the support
vertices in path Pr is a geometric mean 3 - equitable for r ≡ 1, 2 ( mod 3 ).

Proof. Let x1, x2, . . . , xr−1 and xr be the vertices of a path Pr. Suppose Hxi (3 ≤ i ≤ r−2)
is the graph obtained from switching of a vertex of degree two that is xi in Pr. In Hxi ,
every vertex xk except xi−1, xi or xi+1 join to xi. We note that |P (Hxi)| = r and
|Q(Hxi)| = 2r − 6. In this proof we consider only xi, 3 ≤ i ≤ d r2e as rest of xi proof is
same.
Case (i) r ≡ 1 ( mod 3 )
Subcase (a) 3 ≤ i < d r2e
Define g : P (Hxi)→ {0, 1, 2} as :

g(xk) =



2, if 1 ≤ k ≤ i− 2;

0, if k = i− 1;

1, if k = i;

0, if i + 1 ≤ k ≤ r−4+3i
3 ;

2, if r−1+3i
3 ≤ k ≤ 2r+1

3 ;

1, if 2r+4
3 ≤ k ≤ r.
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It’s induced edge map g∗ : Q(Hxi)→ {0, 1, 2} is,

g∗(xixk) =


2, if 1 ≤ k ≤ i− 2;

0, if i + 2 ≤ k ≤ r−4+3i
3 ;

2, if r−1+3i
3 ≤ k ≤ 2r+1

3 ;

1, if 2r+4
3 ≤ k ≤ r

and

g∗(xkxk+1) =



2, if 1 ≤ k ≤ i− 3;

0, if k = i− 2;

0, if i + 1 ≤ k ≤ r−4+3i
3 ;

2, if r−1+3i
3 ≤ k ≤ 2r+1

3 ;

1, if 2r+4
3 ≤ k ≤ r − 1.

Subcase (b) i = d r2e
Subcase (b - 1) r is odd
Define g : P (Hxi)→ {0, 1, 2} as :

g(xk) =



2, if 1 ≤ k ≤ r−1
3 ;

0, if r+2
3 ≤ k ≤ r−1

2 ;

1, if k = i = r+1
2 ;

0, if r+3
2 ≤ k ≤ 2r+1

3 ;

1, if 2r+4
3 ≤ k ≤ r.

It’s induced edge map g∗ : Q(Hxi)→ {0, 1, 2} is,

g∗(xixk) =


2, if 1 ≤ k ≤ r−1

3 ;

0, if r+2
3 ≤ k ≤ r−3

2 ;

0, if r+5
2 ≤ k ≤ 2r+1

3 ;

1, if 2r+4
3 ≤ k ≤ r

and

g∗(xkxk+1) =


2, if 1 ≤ k ≤ r−4

3 ;

0, if r−1
3 ≤ k ≤ r−3

2 ;

0, if r+3
2 ≤ k ≤ 2r+1

3 ;

1, if 2r+4
3 ≤ k ≤ r − 1.

Subcase (b - 2) r is even
Define g : P (Hxi)→ {0, 1, 2} as :

g(xk) =



2, if 1 ≤ k ≤ r−1
3 ;

0, if r+2
3 ≤ k ≤ r−2

2 ;

1, if k = i = r
2 ;

0, if r+2
2 ≤ k ≤ 2r+1

3 ;

1, if 2r+4
3 ≤ k ≤ r.
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It’s induced edge map g∗ : Q(Hxi)→ {0, 1, 2} is,

g∗(xixk) =


2, if 1 ≤ k ≤ r−1

3 ;

0, if r+2
3 ≤ k ≤ r−4

2 ;

0, if r+4
2 ≤ k ≤ 2r+1

3 ;

1, if 2r+4
3 ≤ k ≤ r

and

g∗(xkxk+1) =


2, if 1 ≤ k ≤ r−4

3 ;

0, if r−1
3 ≤ k ≤ r−4

2 ;

0, if r+2
2 ≤ k ≤ 2r+1

3 ;

1, if 2r+4
3 ≤ k ≤ r − 1.

Thus in case - (i), vg(0) = r−1
3 = vg(1)−1 = vg(2) and eg(0) = 2r−8

3 = eg(1)−1 = eg(2)−1.
Case (ii) r ≡ 2 ( mod 3 )
Subcase (a) 3 ≤ i < d r2e
Define g : P (Hxi)→ {0, 1, 2} as :

g(xk) =



2, if 1 ≤ k ≤ i− 2;

0, if k = i− 1;

1, if k = i;

0, if i + 1 ≤ k ≤ r−2+3i
3 ;

2, if r+1+3i
3 ≤ k ≤ 2r+2

3 ;

1, if 2r+5
3 ≤ k ≤ r.

It’s induced edge map g∗ : Q(Hxi)→ {0, 1, 2} is,

g∗(xixk) =


2, if 1 ≤ k ≤ i− 2;

0, if i + 2 ≤ k ≤ r−2+3i
3 ;

2, if r+1+3i
3 ≤ k ≤ 2r+2

3 ;

1, if 2r+5
3 ≤ k ≤ r

and

g∗(xkxk+1) =



2, if 1 ≤ k ≤ i− 3;

0, if k = i− 2;

0, if i + 1 ≤ k ≤ r−2+3i
3 ;

2, if r+1+3i
3 ≤ k ≤ 2r+2

3 ;

1, if 2r+5
3 ≤ k ≤ r − 1.

Subcase (b) i = d r2e
Subcase (b - 1) r is odd
Define g : P (Hxi)→ {0, 1, 2} as :

g(xk) =



2, if 1 ≤ k ≤ r−2
3 ;

0, if r+1
3 ≤ k ≤ r−1

2 ;

1, if k = i = r+1
2 ;

0, if r+3
2 ≤ k ≤ 2r+2

3 ;

1, if 2r+5
3 ≤ k ≤ r.
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It’s induced edge map g∗ : Q(Hxi)→ {0, 1, 2} is,

g∗(xixk) =


2, if 1 ≤ k ≤ r−2

3 ;

0, if r+1
3 ≤ k ≤ r−3

2 ;

0, if r+5
2 ≤ k ≤ 2r+2

3 ;

1, if 2r+5
3 ≤ k ≤ r

and

g∗(xkxk+1) =


2, if 1 ≤ k ≤ r−5

3 ;

0, if r−2
3 ≤ k ≤ r−3

2 ;

0, if r+3
2 ≤ k ≤ 2r+2

3 ;

1, if 2r+5
3 ≤ k ≤ r − 1.

Subcase (b - 2) r is even
Define g : P (Hxi)→ {0, 1, 2} as :

g(xk) =



2, if 1 ≤ k ≤ r−2
3 ;

0, if r+1
3 ≤ k ≤ r−2

2 ;

1, if k = i = r
2 ;

0, if r+2
2 ≤ k ≤ 2r+2

3 ;

1, if 2r+5
3 ≤ k ≤ r.

It’s induced edge map g∗ : Q(Hxi)→ {0, 1, 2} is,

g∗(xixk) =


2, if 1 ≤ k ≤ r−2

3 ;

0, if r+1
3 ≤ k ≤ r−4

2 ;

0, if r+4
2 ≤ k ≤ 2r+2

3 ;

1, if 2r+5
3 ≤ k ≤ r

and

g∗(xkxk+1) =


2, if 1 ≤ k ≤ r−5

3 ;

0, if r−2
3 ≤ k ≤ r−2

2 ;

0, if r+2
2 ≤ k ≤ 2r+2

3 ;

1, if 2r+5
3 ≤ k ≤ r − 1.

Thus in case -(ii), vg(0) = r+1
3 = vg(1) = vg(2) + 1 and eg(0)− 1 = 2r−7

3 = eg(1) = eg(2).
So, in both cases |vg(p)− vg(q)| ≤ 1 and |eg(p)− eg(q)| ≤ 1; ∀p, q ∈ {0, 1, 2}. Hence, Hxi

is a geometric mean 3 - equitable for r ≡ 1, 2 ( mod 3 ). �

Example 2.3. Geometric mean 3 - equitable labeling of Hx3 obtained from P8 is in Figure
3.
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Figure 3. Hx3 obtained from P8

Example 2.4. Geometric mean 3 - equitable labeling of Hx7 obtained from P14 is in Figure
4.
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Figure 4. Hx7 obtained from P14

3. Conclusions

We have derived three results on the graph obtained by switching of any vertex in cycle,
switching of any vertex with degree one in path and switching of any vertex other than
the support vertices in path are geometric mean 3-equitable graphs with some constraints.
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