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MODULAR PRODUCT OF SOFT DIRECTED GRAPHS

B. GEORGE1∗, J. JOSE2, R. K. THUMBAKARA3, §

Abstract. Soft set theory was proposed by D. Molodtsov as a mathematical frame-
work for dealing with uncertain data. Many academics are now applying soft set theory
in decision-making problems. In graph theory, a directed graph is a graph made up of
vertices connected by directed edges, also known as arcs. Using directed graphs, it is
possible to examine and find solutions to problems relating to social connections, short-
est paths, electrical circuits etc. Soft directed graphs were introduced by applying the
concept of soft set to directed graphs. They provide a parameterized point of view for
directed graphs. In this work, we introduce the modular product and the restricted mod-
ular product of soft directed graphs. We prove that these products are also soft directed
graphs and we develop the formulas for determining the vertex count, the arc count and
the sum of degrees in them.
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1. Introduction

D. Molodtsov [15] presented the innovative concept of soft set theory in 1999. This is
a technique in mathematics for dealing with uncertainties. Many practical problems can
be tackled using soft set theory. Authors like R. Biswas, P. K. Maji and A. R. Roy [13],
[14] have delved deeper into the idea of soft sets and applied it to various decision-making
situations. In 2014, R. K. Thumbakara and B. George [19] introduced the concept of soft
graphs to provide a parameterized point of view for graphs. M. Akram and S. Nawas [1]
updated R. K. Thumbakara and B. George’s notion of the soft graph in 2015. They [2]
also defined many varieties of soft graphs, such as regular soft graphs, soft trees, and soft
bridges, as well as the notions of soft cut vertex, soft cycle and so on. M. Akram and
S. Nawas [3] also introduced the notions of fuzzy soft graphs, strong fuzzy soft graphs,
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complete fuzzy soft graphs, and regular fuzzy soft graphs and investigated some of their
properties. They [4] also described some applications of fuzzy soft graphs. M. Akram and
F. Zafar introduced the notions of soft trees [5] and fuzzy soft trees [6]. More contributions
to connected soft graphs came from J. D. Thenge, R. S. Jain and B. S. Reddy[16]. They
[17] looked at the ideas of a soft graph’s radius, diameter, and centre, as well as the concept
of degree. They also addressed the notions of incidence and adjacency matrices of a soft
graph in 2020 [18]. B. George, R. K. Thumbakara and J. Jose [7],[8], [20] discussed some
soft graph operations and introduced notions such as soft semigraphs and soft hypergraphs.

Directed graphs arise in a natural way in many applications of graph theory. They can
be used to analyze and resolve problems with electrical circuits, project timelines, shortest
routes, social links, and many other issues. J. Jose, B. George and R.K. Thumbakara [12]
introduced the notion of the soft directed graph by applying the concepts of soft set in a di-
rected graph. They also introduced the concepts of indegree, outdegree, degree, adjacency
matrix and incidence matrix in soft directed graphs and investigated their properties. The
directed graph product [10] is a binary operation on directed graphs. It is a process that
takes two directed graphs, D1 = (V1, A1) and D2 = (V2, A2) and creates a directed graph
D having the characteristics listed below: The vertex set of D is the Cartesian product
V1 × V2. Two vertices (v1, v2) and (v′1, v

′
2) of D are joined by an arc, if and only if some

conditions about v1, v
′
1 in D1 and/or v2, v

′
2 in D2 are satisfied. Analogous to the definitions

of directed graph products, we can define product operations in soft directed graphs. In
[12], some product operations of soft directed graphs like the cartesian product, restricted
cartesian product, lexicographic product and restricted lexicographic product are studied.
In this paper, we introduce the modular product and restricted modular product of soft
directed graphs. We prove that these products are also soft directed graphs and we develop
the formulas for determining the vertex count, the arc count and the sum of indegrees,
outdegrees and degrees in them.

2. Preliminaries

2.1. Directed Graphs. [9],[11] A directed graph or digraph D∗ consists of a non-empty
finite set V of elements called vertices and a finite set A of ordered pairs of distinct vertices
called arcs. We often write D∗ = (V,A) to represent a directed graph. The number of
vertices and arcs in a directed graph D∗ are called order and size respectively. The first
vertex u of an arc (u, v) is called its tail and the second vertex v is called its head. If (u, v)
is an arc then v is adjacent from u and u is adjacent to v. A vertex u is incident to an
arc a if u is the head or tail of a. A directed graph D∗∗ = (U,F ) is called a subdigraph of
D∗ = (V,A) if U ⊆ V and F ⊆ A. The in-degree of a vertex v denoted by ideg v is the
number of vertices in D∗ from which v is adjacent and out-degree of v denoted by odeg v
is the number of vertices in D∗ to which v is adjacent. The sum ideg v + odeg v is called
the degree of the vertex v and is denoted by deg v. In a directed graph D∗ = (V,A),∑

v∈V ideg(v) =
∑

v∈V odeg(v) =Number of arcs in D∗ and
∑

v∈V deg(v) = 2(Number of
arcs in D∗).

Some directed graph products can be defined in a manner that is similar to how the
corresponding graph products are defined [10]. Let D∗1 = (V1, A1) and D∗2 = (V2, A2) be
two directed graphs. Their modular product D∗1 © D∗2 is a directed graph with vertex
set V (D∗1 ©D∗2) = V1 × V2 and arc set A(D∗1 ©D∗2) where ((v1, v

′
1), (v2, v

′
2)) is an arc in

D∗1©D∗2 if and only if

(1) (v1, v2) is an arc in D∗1 and (v′1, v
′
2) is an arc in D∗2 or

(2) (v1, v2) is not an arc in D∗1 and (v′1, v
′
2) is not an arc in D∗2.
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2.2. Soft Set. [20],[12] Let R be a set of parameters and U be an initial universe set.
Then a pair (F,R) is called a soft set (over U) if and only F is a mapping of R into the
power set of U . That is, F : R→ P(V ).

2.3. Soft Directed Graphs. [12] We have defined a soft directed graph in a manner
similar to how a soft graph is defined [1]. Let D∗ = (V,A) be a directed graph having
vertex set V and arc set A and let P be a non-empty set. Let a subset R of P × V be
an arbitrary relation from P to V . Define a mapping J : P → P(V ) by J(x) = {u ∈
V |xRu} where P(V ) denotes the powerset of V . Define another mapping L : P → P(A)
by L(x) = {(u, v) ∈ A|{u, v} ⊆ J(x)} where P(A) denotes the powerset of E. Then
D = (D∗, J, L, P ) is called a soft directed graph if it satisfies the following conditions:

(1) D∗ = (V,A) is a directed graph having vertex set V and arc set A,
(2) P is a nonempty set of parameters,
(3) (J, P ) is a soft set over the vertex set V ,
(4) (L,P ) is a soft set over the arc set A,
(5) (J(x), L(x)) is a subdigraph of D∗ for all x ∈ P .

If we represent (J(x), L(x)) by M(x) then the soft directed graph D is also given by
{M(x) : x ∈ P}. Then M(x) corresponding to a parameter x in P is called a directed part
or simply dipart of the soft directed graph D.

Let D = (D∗, J, L, P ) be a soft directed graph and let M(x) be a dipart of D for
some x ∈ P . Let v be a vertex of M(x). Then dipart indegree of v in M(x) denoted
by ideg v[M(x)] is defined as the number of vertices of M(x) from which v is adjacent.
That is, ideg v[M(x)] is the number of arcs of M(x) that have v as its head. Similarly,
dipart outdegree of v in M(x) denoted by odeg v[M(x)] is defined as the number of
vertices of M(x) to which v is adjacent. That is, odeg v[M(x)] is the number of arcs
of M(x) that have v as its tail. The dipart degree of v in M(x) is defined as the sum,
ideg v[M(x)] + odeg v[M(x)] and is denoted by deg v[M(x)].

3. Modular Product of Soft Directed Graphs

Definition 3.1. Let D∗1 = (V1, A1) and D∗2 = (V2, A2) be two directed graphs and D1 =
(D∗1, J1, L1, P1) = {M1(x) : x ∈ P1} and D2 = (D∗2, J2, L2, P2) = {M2(x) : x ∈ P2} be two
soft directed graphs of D∗1 and D∗2 respectively. Then the modular product of D1 and D2,
which is represented by D1©D2 is defined as D1©D2 = {M1(x1)©M2(x2) : (x1, x2) ∈
P1 × P2}. Here M1(x1)©M2(x2) denotes the modular product of the diparts M1(x1) of
D1 and M2(x2) of D2 which is defined as follows: M1(x1)©M2(x2) is a directed graph
with vertex set V (M1(x1)©M2(x2)) = J1(x1)× J2(x2) and arc set A(M1(x1)©M2(x2)),
where ((v1, v

′
1), (v2, v

′
2)) is an arc in M1(x1)©M2(x2) if and only if

(1) (v1, v2) is an arc in M1(x1) and (v′1, v
′
2) is an arc in M2(x2) or

(2) (v1, v2) is not an arc in M1(x1) and (v′1, v
′
2) is not an arc in M2(x2).

Example 3.1. Let D∗1 = (V1, A1) be a directed graph which is shown in Fig. 1.
Let P1 = {v2, v6} ⊆ V1 be a set of parameters. Define a mapping J1 : P1 → P(V1) by
J1(x) = {u ∈ V1 | u = x or u is adjacent from x}, ∀x ∈ P1. That is, J1(v2) = {v1, v2, v5}
and J1(v6) = {v4, v5, v6}. Here (J1, P1) is a soft set over V1. Define another map-
ping L1 : P1 → P(A1) by L1(x) = {(u, v) ∈ A1 | {u, v} ⊆ J1(x)},∀x ∈ P1. That is,
L1(v2) = {(v2, v1), (v2, v5)} and L1(v6) = {(v6, v4), (v6, v5)}. Here, (L1, P1) is a soft set
over A1. Then M1(v2) = (J1(v2), L1(v2)) and M1(v6) = (J1(v6), L1(v6)) are subdigraphs
of D∗1 as shown in Fig. 2. Therefore D1 = {M1(v2),M1(v6)} is a soft directed graph of
D∗1.
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Figure 1. Directed Graph D∗1 = (V1, A1)

Figure 2. Soft Directed Graph D1 = {M1(v2),M1(v6)}

Let D∗2 = (V2, A2) be a directed graph which is shown in Fig. 3. Consider the parameter set
P2 = {u2} ⊆ V2. Define a mapping J2 : P2 → P(V2) by J2(x) = {u ∈ V2 | u = x or u is ad-
jacent from x or u is adjacent to x},∀x ∈ P2. That is, J2(u2) = {u1, u2, u5}. Here,
(J2, P2) is a soft set over V2. Define another mapping L2 : P2 → P(A2) by L2(x) =
{(u, v) ∈ A2 | {u, v} ⊆ J2(x)},∀x ∈ P2. That is, L2(u2) = {(u2, u1), (u2, u5), (u5, u2)}.
Here, (L2, P2) is a soft set over A2. Then, M2(u2) = (J2(u2), L2(u2)) is a subdigraph of
D∗2 as shown in Fig. 4. Therefore, D2 = {M2(u2)} is a soft directed graph of D∗2. Then the
modular product of these two soft directed graphs D1 and D2 is given by D = D1©D2 =
{M1(v2)©M2(u2),M1(v6)©M2(u2)} and is shown in Fig. 5.

Theorem 3.1. Let D∗1 = (V1, A1) and D∗2 = (V2, A2) be two directed graphs and D1 and
D2 be two soft directed graphs of D∗1 and D∗2 respectively. Then the modular product of D1

and D2, which is represented by D1©D2 is a soft directed graph of D∗1©D∗2.

Proof. Let D1 = (D∗1, J1, L1, P1) = {M1(x) : x ∈ P1} be a soft directed graph of D∗1 =
(V1, A1) and D2 = (D∗2, J2, L2, P2) = {M2(x) : x ∈ P2} be a soft directed graph of
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Figure 3. Directed Graph D∗2 = (V2, A2)

Figure 4. Soft Directed Graph D2 = {M2(u2)}

D∗2 = (V2, A2). Then the modular product D1©D2 is defined as D1©D2 = {M1(x1)©
M2(x2) : (x1, x2) ∈ P1 × P2}. Here M1(x1)©M2(x2) denotes the modular product of the
diparts M1(x1) of D1 and M2(x2) of D2 which is defined as follows: M1(x1)©M2(x2)
is a directed graph with vertex set V (M1(x1)©M2(x2)) = J1(x1) × J2(x2) and arc set
A(M1(x1)©M2(x2)), where ((v1, v

′
1), (v2, v

′
2)) is an arc in M1(x1)©M2(x2) if and only if

(1) (v1, v2) is an arc in M1(x1) and (v′1, v
′
2) is an arc in M2(x2) or

(2) (v1, v2) is not an arc in M1(x1) and (v′1, v
′
2) is not an arc in M2(x2).

The modular product D∗1©D∗2 of the two directed graphs D∗1 and D∗2 is a directed graph
with vertex set V (D∗1 ©D∗2) = V1 × V2 and arc set A(D∗1 ©D∗2) where ((v1, v

′
1), (v2, v

′
2))

is an arc in D∗1©D∗2 if and only if

(1) (v1, v2) is an arc in D∗1 and (v′1, v
′
2) is an arc in D∗2 or
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Figure 5. D = D1©D2 = {M1(v2)©M2(u2),M1(v6)©M2(u2)}

(2) (v1, v2) is not an arc in D∗1 and (v′1, v
′
2) is not an arc in D∗2.

Let the parameter set be PD1©D2 = P1 × P2. Define a mapping JD1©D2 from PD1©D2

to P[V (D∗1 © D∗2)] by JD1©D2(x1, x2) = J1(x1) × J2(x2),∀(x1, x2) ∈ P1 × P2 where
P[V (D∗1©D∗2)] denotes the power set of V (D∗1©D∗2). Then (JD1©D2 , PD1©D2) is a soft
set over V (D∗1©D∗2). Define another mapping LD1©D2 from PD1©D2 to P[A(D∗1©D∗2)] by
LD1©D2(x1, x2) = {((u, v), (y, z)) ∈ A(D∗1©D∗2) | {(u, v), (y, z)} ∈ JD1©D2(x1, x2)},∀(x1,
x2) ∈ P1 × P2, where P[A(D∗1 © D∗2)] denotes the power set of A(D∗1 © D∗2). Then
(LD1©D2 , PD1©D2) is a soft set over A(D∗1©D∗2). Also if we denote (JD1©D2(x1, x2),
LD1©D2(x1, x2)) by MD1©D2(x1, x2), then MD1©D2(x1, x2) is a subdigraph of D∗1 ©
D∗2,∀(x1, x2) ∈ P1 × P2, since J1(x1) × J2(x2) ⊆ V1 × V2 and any arc in LD1©D2(x1, x2)
is also an arc in A(D∗1 ©D∗2). Then D1©D2 can be represented by the 4-tuple (D∗1 ©
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D∗2, JD1©D2 , LD1©D2 , PD1©D2) and also by {MD1©D2(x1, x2) : (x1, x2) ∈ P1 × P2} and
D1©D2 is a soft directed graph of D∗1©D∗2 since the following conditions are satisfied:

(1) D∗1 © D∗2 = (V (D∗1 © D∗2), A(D∗1 © D∗2)) is a directed graph having vertex set
V (D∗1©D∗2) and arc set A(D∗1©D∗2),

(2) PD1©D2 = P1 × P2 is the set of parameters which is nonempty,
(3) (JD1©D2 , PD1©D2) is a soft set over V (D∗1©D∗2),
(4) (LD1©D2 , PD1©D2) is a soft set over A(D∗1©D∗2),
(5) MD1©D2(x1, x2) = (JD1©D2(x1, x2), LD1©D2(x1, x2)) is a subdigraph of D∗1 ©

D∗2,∀(x1, x2) ∈ PD1©D2 = P1 × P2.

�

Theorem 3.2. Let D∗1 = (V1, A1) and D∗2 = (V2, A2) be two directed graphs and D1 =
(D∗1, J1, L1, P1) and D2 = (D∗2, J2, L2, P2) be two soft directed graphs of D∗1 and D∗2 respec-
tively. Then the modular product of D1 and D2, which is represented by D1©D2 contains∑

(xi,xj)∈P1×P2
|J1(xi)||J2(xj)| vertices and

∑
(xi,xj)∈P1×P2

(|J1(xi)|(|J1(xi)| − 1)− |L1(xi)|)
(|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|) +

∑
(xi,xj)∈P1×P2

|L1(xi)||L2(xj)| arcs, if we count the

vertices and arcs as many times they appear in different diparts of D1©D2.

Proof. By definition, D1©D2 = {M1(x1)©M2(x2) : (x1, x2) ∈ P1×P2}. The parameter
set ofD1©D2 is P1×P2. Consider the dipartM1(xi)©M2(xj) ofD1©D2 corresponding to
the parameter (xi, xj) ∈ P1×P2. The vertex set ofM1(xi)©M2(xj) is J1(xi)×J2(xj) which
contains |J1(xi)||J2(xj)| elements. This is true for all diparts of D1©D2. Therefore total
number of vertices in D1©D2 is

∑
(xi,xj)∈P1×P2

|J1(xi)||J2(xj)|, if we count the vertices as

many times they appear in different diparts of D1©D2. Also we know, ((vq, vr), (vs, vt))
is an arc in M1(xi)©M2(xj) if and only if

(1) (vq, vs) is an arc in M1(xi) and (vr, vt) is an arc in M2(xj) or
(2) (vq, vs) is not an arc in M1(xi) and (vr, vt) is not an arc in M2(xj).

Now, each arc in M1(xi)©M2(xj) was made by just one of these two requirements and
both of them can not be true at the same time. So to get the total number of arcs in
M1(xi)©M2(xj), we add the number of arcs generated by each condition. Consider the
first condition for adjacency, i.e.,(vq, vs) is an arc in M1(xi) and (vr, vt) is an arc in M2(xj).
There are |L1(xi)| arcs in M1(xi) and |L2(xj)| arcs in M2(xj). So we can choose a pair of
arcs ak and al such that one is from M1(xi) and the other is from M2(xj) in |L1(xi)||L2(xj)|
different ways. Suppose that ak is the arc (vq, vs) in M1(xi) and al is the arc (vr, vt) in
M2(xj) . Then this pair of arcs gives an arc ((vq, vr), (vs, vt)) in M1(xi)©M2(xj). That
is, we get |L1(xi)||L2(xj)| arcs such that the first condition of adjacency is satisfied. Now
consider the second condition for adjacency, i.e., (vq, vs) is not an arc in M1(xi) and
(vr, vt) is not an arc in M2(xj). We can choose two different vertices vq and vs in M1(xi)
such that (vq, vs) is not an arc in M1(xi) in (|J1(xi)|(|J1(xi)| − 1)− |L1(xi)|) different
ways. Similarly we can choose two different vertices vr and vt in M2(xj) such that (vr, vt)
is not an arc in M2(xj) in (|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|) different ways. Let vq and
vs be two vertices in M1(xi) such that (vq, vs) is not an arc in M1(xi) and let vr and
vt be two vertices in M2(xj) such that (vr, vt) is not an arc in M2(xj). From this we
get an arc ((vq, vr), (vs, vt)) in M1(xi)©M2(xj). Hence totally the second condition for
adjacency gives (|J1(xi)|(|J1(xi)| − 1)− |L1(xi)|) (|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|) arcs in
M1(xi)©M2(xj). Hence the total number of arcs in M1(xi)©M2(xj) is (|J1(xi)|(|J1(xi)|−
1)−|L1(xi)|)(|J2(xj)|(|J2(xj)|−1)−|L2(xj)|)+ |L1(xi)||L2(xj)|. This is true for all diparts
of D1©D2. Therefore total number of arcs in D1©D2 is

∑
(xi,xj)∈P1×P2

(|J1(xi)|(|J1(xi)|−
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1)−|L1(xi)|)(|J2(xj)|(|J2(xj)|−1)−|L2(xj)|)+
∑

(xi,xj)∈P1×P2
|L1(xi)||L2(xj)|, if we count

the arcs as many times they appear in different diparts of D1©D2. �

Corollary 3.1. Let D∗1 = (V1, A1) and D∗2 = (V2, A2) be two directed graphs and D1 =
(D∗1, J1, L1, P1) and D2 = (D∗2, J2, L2, P2) be two soft directed graphs of D∗1 and D∗2 respec-
tively. Then

(i)
∑

(xi,xj)∈P1×P2

∑
(u,v)∈JD1©D2

(xi,xj)

ideg(u, v)[MD1©D2(xi, xj)] =

∑
(xi,xj)∈P1×P2

∑
(u,v)∈JD1©D2

(xi,xj)

odeg(u, v)[MD1©D2(xi, xj)] =

∑
(xi,xj)∈P1×P2

(|J1(xi)|(|J1(xi)| − 1)− |L1(xi)|) (|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|)

+
∑

(xi,xj)∈P1×P2

|L1(xi)||L2(xj)|

(ii)
∑

(xi,xj)∈P1×P2

∑
(u,v)∈JD1©D2

(xi,xj)

deg(u, v)[MD1©D2(xi, xj)] =

∑
(xi,xj)∈P1×P2

2 (|J1(xi)|(|J1(xi)| − 1)− |L1(xi)|) (|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|)

+
∑

(xi,xj)∈P1×P2

2|L1(xi)||L2(xj)|,

where ideg(u, v)[MD1©D2(xi, xj)], odeg(u, v)[MD1©D2(xi, xj)] and deg(u, v)[MD1©D2(xi,
xj)] denote the dipart in-degree, dipart out-degree and dipart degree respectively, of the
vertex (u, v), in the dipart MD1©D2(xi, xj) of D1©D2.

Proof. (i) Consider any dipart MD1©D2(xi, xj) = (JD1©D2(xi, xj), LD1©D2(xi, xj)) of
D1©D2 which is given by M1(xi)×M2(xj). By theorem 3.2, we have number of arcs in
M1(xi) ×M2(xj) is (|J1(xi)|(|J1(xi)| − 1) − |L1(xi)|)(|J2(xj)|(|J2(xj)| − 1) − |L2(xj)|) +
|L1(xi)||L2(xj)|. Hence, we have∑

(u,v)∈JD1©D2
(xi,xj)

ideg(u, v)[MD1©D2(xi, xj)] =

∑
(u,v)∈JD1©D2

(xi,xj)

odeg(u, v)[MD1©D2(xi, xj)] =

∑
(xi,xj)∈P1×P2

(|J1(xi)|(|J1(xi)| − 1)− |L1(xi)|) (|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|) +

∑
(xi,xj)∈P1×P2

|L1(xi)||L2(xj)|,

since each arc in MD1©D2(xi, xj) contributes 1 each to the sums∑
(u,v)∈JD1©D2

(xi,xj)
ideg(u, v)[MD1©D2(xi, xj)] and∑

(u,v)∈JD1©D2
(xi,xj)

odeg(u, v)[MD1©D2(xi, xj)].

This is true for all the diparts MD1©D2(xi, xj) of D1©D2. Hence,∑
(xi,xj)∈P1×P2

∑
(u,v)∈JD1©D2

(xi,xj)

ideg(u, v)[MD1©D2(xi, xj)] =
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(xi,xj)∈P1×P2

∑
(u,v)∈JD1©D2

(xi,xj)

odeg(u, v)[MD1©D2(xi, xj)] =

∑
(xi,xj)∈P1×P2

(|J1(xi)|(|J1(xi)| − 1)− |L1(xi)|) (|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|) +

∑
(xi,xj)∈P1×P2

|L1(xi)||L2(xj)|.

(ii) Since deg(u, v)[MD1©D2(xi, xj)] = ideg(u, v)[MD1©D2(xi, xj)] +
odeg(u, v)[MD1©D2(xi, xj)] and by part (i) of this theorem we have,∑

(xi,xj)∈P1×P2

∑
(u,v)∈JD1©D2

(xi,xj)

deg(u, v)[MD1©D2(xi, xj)] =

∑
(xi,xj)∈P1×P2

2 (|J1(xi)|(|J1(xi)| − 1)− |L1(xi)|) (|J2(xj)|(|J2(xj)| − 1)− |L2(xj)|)

+
∑

(xi,xj)∈P1×P2

2|L1(xi)||L2(xj)|.

�

4. Restricted Modular Product of Soft Directed Graphs

Definition 4.1. Let D∗ = (V,A) be a directed graph and D1 = (D∗, J1, L1, P1) = {M1(x) :
x ∈ P1} and D2 = (D∗, J2, L2, P2) = {M2(x) : x ∈ P2} be two soft directed graphs of D∗

such that P1 ∩ P2 6= φ. Then the restricted modular product of D1 and D2, which is
represented by D1

⊙
D2, is defined as D1

⊙
D2 = {M1(x) © M2(x) : x ∈ P1 ∩ P2}.

Here M1(x)©M2(x) denotes the modular product of the diparts M1(x) of D1 and M2(x)
of D2 which is defined as follows: M1(x) © M2(x) is a directed graph with vertex set
V (M1(x)©M2(x)) = J1(x)×J2(x) and arc set A(M1(x)©M2(x)), where ((v1, v

′
1), (v2, v

′
2))

is an arc in M1(x)©M2(x) if and only if

(1) (v1, v2) is an arc in M1(x) and (v′1, v
′
2) is an arc in M2(x) or

(2) (v1, v2) is not an arc in M1(x) and (v′1, v
′
2) is not an arc in M2(x).

Example 4.1. Let D∗ = (V,A) be a directed graph which is shown in Fig. 6. Let

Figure 6. Directed Graph D∗ = (V,A)

P1 = {v3, v6} ⊆ V be a set of parameters. Define a mapping J1 : P1 → P(V ) by
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J1(x) = {u ∈ V | u = x or u is adjacent from x or u is adjacent to x}, ∀x ∈ P1.
That is, J1(v3) = {v1, v2, v3, v4} and J1(v6) = {v5, v6, v7, v8, v9}. Here (J1, P1) is a
soft set over V . Define another mapping L1 : P1 → P(A) by L1(x) = {(u, v) ∈ A |
{u, v} ⊆ J1(x)}, ∀x ∈ P1. That is, L1(v3) = {(v3, v2), (v1, v3), (v1, v4), (v4, v1), (v3, v4)}
and L1(v6) = {(v6, v5), (v7, v5), (v6, v7), (v9, v6), (v7, v8), (v9, v8), (v6, v8), (v8, v6)}. Here,
(L1, P1) is a soft set over A. Then M1(v3) = (J1(v3), L1(v3)) and M1(v6) = (J1(v6), L1(v6))
are subdigraphs of D∗ as shown in Fig. 7. Therefore D1 = {M1(v3),M1(v6)} is a soft di-
rected graph of D∗.

Figure 7. Soft Directed Graph D1 = {M1(v3),M1(v6)}

Consider another parameter set P2 = {v3, v9} ⊆ V . Define a mapping J2 : P2 → P(V ) by
J2(x) = {u ∈ V | u = x or u is adjacent from x}, ∀x ∈ P2. That is, J2(v3) = {v2, v3, v4}
and J2(v9) = {v6, v8, v9}. Here, (J2, P2) is a soft set over V . Define another mapping
L2 : P2 → P(A) by L2(x) = {(u, v) ∈ A | {u, v} ⊆ J2(x)},∀x ∈ P2. That is, L2(v3) =
{(v3, v2), (v3, v4)} and L2(v9) = {(v9, v6), (v9, v8), (v6, v8), (v8, v6)}. Here, (L2, P2) is a
soft set over A. Then, M2(v3) = (J2(v3), L2(v3)) and M2(v9) = (J2(v9), L2(v9)) are sub-
digraphs of D∗ as shown in Fig. 8. Therefore, D2 = {M2(v3),M2(v9)} is a soft directed
graph of D∗. Then the restricted modular product of these two soft directed graphs D1 and
D2 is given by D = D1

⊙
D2 = {M1(v3)©M2(v3)} and is shown in Fig. 9.

Theorem 4.1. Let D∗ = (V,A) be a directed graph and D1 = (D∗, J1, L1, P1) = {M1(x) :
x ∈ P1} and D2 = (D∗, J2, L2, P2) = {M2(x) : x ∈ P2} be two soft directed graphs of
D∗ such that P1 ∩ P2 6= φ. Then the restricted modular product of D1 and D2, which is
represented by D1

⊙
D2 is a soft directed graph of D∗©D∗.

Proof. Let D∗ = (V,A) be a directed graph having vertex set V and arc set A. Also, let
D1 = (D∗, J1, L1, P1) = {M1(x) : x ∈ P1} and D2 = (D∗, J2, L2, P2) = {M2(x) : x ∈ P2}
be soft directed graphs of D∗ = (V,A) such that P1 ∩ P2 6= φ. Then the restricted
modular product D1

⊙
D2 is defined as D1

⊙
D2 = {M1(x)©M2(x) : x ∈ P1 ∩ P2}.

Here M1(x)©M2(x) denotes the modular product of the diparts M1(x) of D1 and M2(x)
of D2 which is defined as follows: M1(x)© M2(x) is a directed graph with vertex set
V (M1(x)©M2(x)) = J1(x)×J2(x) and arc set A(M1(x)©M2(x)), where ((v1, v

′
1), (v2, v

′
2))

is an arc in M1(x)©M2(x) if and only if
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Figure 8. Soft Directed Graph D2 = {M2(v3),M2(v9)}

Figure 9. D = D1
⊙
D2 = {M1(v3)©M2(v3)}

(1) (v1, v2) is an arc in M1(x) and (v′1, v
′
2) is an arc in M2(x) or

(2) (v1, v2) is not an arc in M1(x) and (v′1, v
′
2) is not an arc in M2(x).

The modular product D∗©D∗ is a directed graph with vertex set V (D∗©D∗) = V × V
and arc set A(D∗©D∗), where ((v1, v

′
1), (v2, v

′
2)) is an arc in D∗©D∗ if and only if
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(1) (v1, v2) as well as (v′1, v
′
2) are arcs in D∗ or

(2) (v1, v2) as well as (v′1, v
′
2) are not arcs in D∗.

Let the parameter set be PD1
⊙

D2
= P1 ∩ P2. Define a mapping JD1

⊙
D2

from PD1
⊙

D2

to P[V (D∗ © D∗)] by JD1
⊙

D2
(x) = J1(x) × J2(x), ∀x ∈ P1 ∩ P2 where P[V (D∗ ©

D∗)] denotes the power set of V (D∗©D∗). Then (JD1
⊙

D2
, PD1

⊙
D2

) is a soft set over
V (D∗ © D∗). Define another mapping LD1

⊙
D2

from PD1
⊙

D2
to P[A(D∗ © D∗)] by

LD1
⊙

D2
(x) = {((u, v), (y, z)) ∈ A(D∗©D∗) | {(u, v), (y, z)} ∈ JD1

⊙
D2
},∀x ∈ P1 ∩ P2,

where P[A(D∗©D∗)] denotes the power set of A(D∗©D∗). Then (LD1
⊙

D2
, PD1

⊙
D2

) is
a soft set over A(D∗©D∗). Also if we denote (JD1

⊙
D2

(x), LD1
⊙

D2
(x)) by MD1

⊙
D2

(x),
then MD1

⊙
D2

(x) is a subdigraph of D∗©D∗, ∀x ∈ P1∩P2, since J1(x)×J2(x) ⊆ V ×V and
any arc in LD1

⊙
D2

(x) is also an arc in A(D∗©D∗). Then D1
⊙
D2 can be represented

by the 4-tuple (D∗ © D∗, JD1
⊙

D2
, LD1

⊙
D2
, PD1

⊙
D2

) and also by {MD1
⊙

D2
(x) : x ∈

P1 ∩ P2} and D1
⊙
D2 is a soft directed graph of D∗©D∗ since the following conditions

are satisfied:

(1) D∗ © D∗ = (V (D∗ © D∗), A(D∗ © D∗)) is a directed graph having vertex set
V (D∗©D∗) and arc set A(D∗©D∗),

(2) PD1
⊙

D2
= P1 ∩ P2 is the set of parameters which is nonempty,

(3) (JD1
⊙

D2
, PD1

⊙
D2

) is a soft set over V (D∗©D∗),
(4) (LD1

⊙
D2
, PD1

⊙
D2

) is a soft set over A(D∗©D∗),
(5) MD1

⊙
D2

(x) = (JD1
⊙

D2
(x), LD1

⊙
D2

(x)) is a subdigraph of D∗ © D∗, ∀x ∈
PD1

⊙
D2

= P1 ∩ P2.

�

Theorem 4.2. Let D∗1 = (V,A) be a directed graph and D1 = (D∗, J1, L1, P1) and D2 =
(D∗, J2, L2, P2) be two soft directed graphs of D∗. Then D1

⊙
D2 contains

∑
x∈P1∩P2

|J1(x)|
|J2(x)| vertices and

∑
x∈P1∩P2

|L1(x)||L2(x)|+
∑

x∈P1∩P2
(|J1(x)|(|J1(x)| − 1)− |L1(x)|)

(|J2(x)|(|J2(x)| − 1)− |L2(x)|) arcs, if we count the vertices and arcs as many times they
appear in different diparts of D1

⊙
D2.

Proof. By the definition of the restricted modular product, D1
⊙
D2 = {M1(x)©M2(x) :

x ∈ P1∩P2}. The parameter set of D1
⊙
D2 is P1∩P2. Consider the dipart M1(x)©M2(x)

of D1
⊙
D2 corresponding to the parameter x ∈ P1∩P2. The vertex set of M1(x)©M2(x)

is J1(x) × J2(x) which contains |J1(x)||J2(x)| elements. This is true for all diparts of
D1

⊙
D2. Therefore, total number of vertices in D1

⊙
D2 is

∑
x∈P1∩P2

|J1(x)||J2(x)|, if
we count the vertices as many times they appear in different diparts of D1

⊙
D2. Also we

know, ((vq, vr), (vs, vt)) is an arc in M1(x)©M2(x) if and only if

(1) (vq, vs) is an arc in M1(x) and (vr, vt) is an arc in M2(x) or
(2) (vq, vs) is not an arc in M1(x) and (vr, vt) is not an arc in M2(x).

Now, each arc in M1(x)©M2(x) was made by just one of these two requirements and
both of them can not be true at the same time. So to get the total number of arcs
in M1(x)©M2(x), we add the number of arcs generated by each condition. Consider
the first condition for adjacency, i.e.,(vq, vs) is an arc in M1(x) and (vr, vt) is an arc in
M2(x). There are |L1(x)| arcs in M1(x) and |L2(x)| arcs in M2(x). So we can choose
a pair of arcs ak and al such that one is from M1(x) and the other is from M2(x) in
|L1(x)||L2(x)| different ways. Suppose that ak is the arc (vq, vs) in M1(x) and al is the arc
(vr, vt) in M2(x) . Then this pair of arcs gives an arc ((vq, vr), (vs, vt)) in M1(x)©M2(x).
That is, we get |L1(x)||L2(x)| arcs such that the first condition of adjacency is satisfied.
Now consider the second condition for adjacency, i.e., (vq, vs) is not an arc in M1(x)
and (vr, vt) is not an arc in M2(x). We can choose two different vertices vq and vs in
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M1(x) such that (vq, vs) is not an arc in M1(x) in (|J1(x)|(|J1(x)| − 1)− |L1(x)|) differ-
ent ways. Similarly we can choose two different vertices vr and vt in M2(x) such that
(vr, vt) is not an arc in M2(x) in (|J2(x)|(|J2(x)| − 1)− |L2(x)|) different ways. Let vq
and vs be two vertices in M1(x) such that (vq, vs) is not an arc in M1(x) and let vr and
vt be two vertices in M2(x) such that (vr, vt) is not an arc in M2(x). From this we get
an arc ((vq, vr), (vs, vt)) in M1(x)©M2(x). Hence totally the second condition for adja-
cency gives (|J1(x)|(|J1(x)| − 1)− |L1(x)|) (|J2(x)|(|J2(x)| − 1)− |L2(x)|) arcs in M1(x)©
M2(x). Hence the total number of arcs inM1(x)©M2(x) is (|J1(x)|(|J1(x)| − 1)− |L1(x)|)
(|J2(x)|(|J2(x)| − 1)− |L2(x)|) + |L1(x)||L2(x)|. This is true for all diparts of D1

⊙
D2.

Therefore total number of arcs in D1
⊙
D2 is

∑
x∈P1∩P2

(|J1(x)|(|J1(x)| − 1)− |L1(x)|)
(|J2(x)|(|J2(x)| − 1)− |L2(x)|) +

∑
x∈P1∩P2

|L1(x)||L2(x)|, if we count the arcs as many
times they appear in different diparts of D1

⊙
D2. �

Corollary 4.1. Let D∗ = (V,A) be a directed graph and D1 = (D∗, J1, L1, P1) and D2 =
(D∗, J2, L2, P2) be two soft directed graphs of D∗. Then

(i)
∑

x∈P1∩P2

∑
(u,v)∈JD1

⊙
D2

(x)

ideg(u, v)[MD1
⊙

D2
(x)] =

∑
x∈P1∩P2

∑
(u,v)∈JD1

⊙
D2

(x)

odeg(u, v)[MD1
⊙

D2
(x)] =

∑
x∈P1∩P2

(|J1(x)|(|J1(x)| − 1)− |L1(x)|) (|J2(x)|(|J2(x)| − 1)− |L2(x)|) +

∑
x∈P1∩P2

|L1(x)||L2(x)|

(ii)
∑

x∈P1∩P2

∑
(u,v)∈JD1

⊙
D2

(x)

deg(u, v)[MD1
⊙

D2
(x)] =

∑
x∈P1∩P2

2 (|J1(x)|(|J1(x)| − 1)− |L1(x)|) (|J2(x)|(|J2(x)| − 1)− |L2(x)|) +

∑
x∈P1∩P2

2|L1(x)||L2(x)|,

where ideg(u, v)[MD1
⊙

D2
(x)], odeg(u, v)[MD1

⊙
D2

(x)] and deg(u, v)[MD1
⊙

D2
(x)]

denote the dipart in-degree, dipart out-degree and dipart degree respectively, of the vertex
(u, v), in the dipart MD1

⊙
D2

(x) of D1
⊙
D2.

Proof. (i) Consider any dipart MD1
⊙

D2
(x) = (JD1

⊙
D2

(x), LD1
⊙

D2
(x)) of D1

⊙
D2

which is given by M1(x) ×M2(x). By theorem 4.2, we have number of arcs in M1(x) ×
M2(x) is (|J1(x)|(|J1(x)| − 1)− |L1(x)|) (|J2(x)|(|J2(x)| − 1)− |L2(x)|) + |L1(x)||L2(x)|.
Hence, we have ∑

(u,v)∈JD1
⊙

D2
(x)

ideg(u, v)[MD1
⊙

D2
(x)] =

∑
(u,v)∈JD1

⊙
D2

(x)

odeg(u, v)[MD1
⊙

D2
(x)] =

(|J1(x)|(|J1(x)| − 1)− |L1(x)|) (|J2(x)|(|J2(x)| − 1)− |L2(x)|) + |L1(x)||L2(x)|,
since each arc in MD1

⊙
D2

(x) contributes 1 each to the sums∑
(u,v)∈JD1

⊙
D2

(x) ideg(u, v)[MD1
⊙

D2
(x)] and
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(u,v)∈JD1

⊙
D2

(x) odeg(u, v)[MD1
⊙

D2
(x)].

This is true for all the diparts MD1
⊙

D2
(x) of D1

⊙
D2. Hence,∑

x∈P1∩P2

∑
(u,v)∈JD1

⊙
D2

(x)

ideg(u, v)[MD1
⊙

D2
(x)] =

∑
x∈P1∩P2

∑
(u,v)∈JD1

⊙
D2

(x)

odeg(u, v)[MD1
⊙

D2
(x)] =

∑
x∈P1∩P2

(|J1(x)|(|J1(x)| − 1)− |L1(x)|) (|J2(x)|(|J2(x)| − 1)− |L2(x)|) +

∑
x∈P1∩P2

|L1(x)||L2(x)|.

(ii) Since deg(u, v)[MD1
⊙

D2
(x)] = ideg(u, v)[MD1

⊙
D2

(x)]+odeg(u, v)[MD1
⊙

D2
(x)] and

by part (i) of this theorem we have,∑
x∈P1∩P2

∑
(u,v)∈JD1

⊙
D2

(x)

deg(u, v)[MD1
⊙

D2
(x)] =

∑
x∈P1∩P2

2 (|J1(x)|(|J1(x)| − 1)− |L1(x)|) (|J2(x)|(|J2(x)| − 1)− |L2(x)|) +

∑
x∈P1∩P2

2|L1(x)||L2(x)|.

�

5. Conclusion

Soft directed graph generates a series of representations of a relationship given by a
directed graph, through parameterization. In this paper, we introduced the modular
product and the restricted modular product of soft directed graphs. We proved that these
products are also soft directed graphs and we developed the formulas for determining the
vertex count, the arc count and the sum of indegrees, outdegrees and degrees in them.
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