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GRACEFUL COLORING OF LADDER GRAPHS

D. LAAVANYA1∗, S. DEVI YAMINI1, §

Abstract. A graceful k-coloring of a non-empty graph G = (V,E) is a proper vertex
coloring f : V (G) → {1, 2, ..., k}, k ≥ 2, which induces a proper edge coloring f∗ :
E(G) → {1, 2, ..., k − 1} defined by f∗(uv) = |f(u) − f(v)|, where u, v ∈ V (G). The
minimum k for which G has a graceful k-coloring is called graceful chromatic number,
χg(G). The graceful chromatic number for a few variants of ladder graphs are investigated
in this article.
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1. Introduction

All the graphs G = (V,E) discussed in this paper are connected, simple and finite.
Graph labeling introduced by Alexander Rosa in 1967 [10], is an assignment of integers to
the vertices, edges (or both) of a graph G subject to certain conditions. Graph labeling
and its types are extensively studied in the literature [4]. Among the various labelings, β-
labeling is one of the prominent labeling. It is also referred as graceful labeling by Golomb
[5], which was initiated to solve the famous Ringel conjecture [10]. Graceful labeling has
an extensive range of applications in network addressing, coding theory, communication
networks, X-ray crystallography, dental arch, etc.

Let G = (V,E) be a graph with m edges. An injective function f : V (G)→ {0, 1, 2, ...m}
is a graceful labeling if it induces a bijective function f∗ : E(G) → {1, 2, ...,m} with the
property that for every edge xy ∈ E(G), f∗(xy) = |f(x)− f(y)|. If there exists a graceful
labeling for a graph G, then G is a graceful graph.

A proper coloring of a graph G is an assignment of colors to the vertices or edges of the
graph such that every pair of adjacent vertices or edges receive distinct colors respectively.
Chromatic number (χ(G)) is the least number of colors required for proper coloring the

vertices of the graph G, whereas the chromatic index (χ
′
(G)) is the least number of colors
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needed for proper coloring the edges of the graph. In [6], the existence of graceful graphs
with arbitrarily large chromatic number was proved.

As an extension of graceful labeling, the concept of graceful chromatic number was
introduced by Gary Chartrand in 2015 [2]. A graceful k-coloring of a non-empty graph
G = (V,E) is a proper vertex coloring f : V (G) → {1, 2, ..., k}, k ≥ 2, which induces a
proper edge coloring f∗ : E(G)→ {1, 2, ..., k−1} defined by f∗(uv) = |f(u)−f(v)|, where
u, v ∈ V (G). The minimum k for which G has a graceful k-coloring is called graceful
chromatic number, χg(G).

In the introductory paper [2] on graceful coloring, the graceful chromatic number for
some well known graphs were computed.

Theorem 1.1. [2] For a cycle Cn, n ≥ 4,

χg(Cn) =

{
4, if n 6= 5

5, if n = 5

Theorem 1.2. [2] For a path Pn, n ≥ 5, χg(Pn) = 5.

Theorem 1.3. [2] For a wheel graph Wn, n ≥ 6, χg(Wn) = n.

Theorem 1.4. [2] If T is a tree with maximum degree ∆, then χg(T ) ≤ d5∆
3 e.

Theorem 1.5. [2] If G is a complete bipartite graph of order n ≥ 3, then χg(G) = n.

Theorem 1.6. [2] If G is a r-regular graph, then χg(G) ≥ r + 2, where r ≥ 2.

Theorem 1.7. [2] For a nontrivial connected graph G, χg(G) ≥ ∆ + 1.

Theorem 1.8. [2] For a subgraph G
′
of G, χg(G

′
) ≤ χg(G).

Theorem 1.9. [2] Let f : V (G) → {1, 2, ..., k}, k ≥ 2 be a coloring of a nontrivial
connected graph G. Then f is a graceful coloring of G if and only if

(i) for each vertex v of G, the vertices in the closed neighborhood N [v] of v are assigned
distinct colors by f and

(ii) for each path (x, y, z) of order 3 in G, f(y) 6= f(x)+f(z)
f(y) .

Let T∆,h denote the rooted tree (root v) with every vertex at a distance less than the
height h from v having degree ∆ and the remaining vertices are at a distance h from v as
leaves [3].

Theorem 1.10. [3] For each integer ∆ ≥ 2, χg(T∆,2) = d1
2(3∆ + 1)e.

Theorem 1.11. [3] For each integer ∆ ≥ 2, χg(T∆,3) = d1
8(13∆ + 1)e.

Theorem 1.12. [3] For each integer ∆ ≥ 2, χg(T∆,4) = d 1
32(53∆ + 1)e.

Theorem 1.13. [3] For ∆ ≥ 2, h ≥ 2 + b1
3∆c, χg(T∆,h) = d5

3∆e.

The graceful chromatic number of caterpillars were investigated along with a character-
ization in [13]. The graceful chromatic number for some subclasses of the following graphs
have been established in the literature: unicyclic graphs[1]; graphs with diameter at least
2 [7]; regular and irregular graphs [8].
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2. Preliminaries

Denote [a, b] as {a, a+1, ..., b} and [a] as [1, a], where a, b ∈ Z+ such that a < b. A closed
ladder Ln, n ≥ 2 is a graph obtained from two paths Pn with V (Ln) = {xi, yi : 1 ≤ i ≤ n}
and E(Ln) = {xixi+1, yiyi+1 : 1 ≤ i ≤ n − 1} ∪{xiyi : 1 ≤ i ≤ n}. An open ladder OLn,
n ≥ 2 is a graph formed by removing the edges x1y1 and xnyn from the closed ladder Ln. A
slanting ladder SLn, n ≥ 2 is a graph obtained from two paths Pn with V (SLn) = {xi, yi :
1 ≤ i ≤ n} and E(SLn) = {xixi+1, yiyi+1, xiyi+1 : 1 ≤ i ≤ n − 1}. A triangular ladder
TLn, n ≥ 2 is a graph obtained from two paths Pn with V (TLn) = {xi, yi : 1 ≤ i ≤ n} and
E(TLn) = {xixi+1, yiyi+1, xiyi+1 : 1 ≤ i ≤ n− 1} ∪{xiyi : 1 ≤ i ≤ n}. An open triangular
ladder O(TLn), n ≥ 2 is a graph obtained by removing the edges x1y1 and xnyn from the
triangular ladder TLn. A diagonal ladder DLn, n ≥ 2 is a graph obtained by adding the
edges xi+1yi, 1 ≤ i ≤ n − 1 in TLn. An open diagonal ladder O(DLn), n ≥ 2 is a graph
formed by removing the edges x1y1 and xnyn from the diagonal ladder DLn. A circular
ladder graph CLn, n ≥ 2 is a graph obtained by adding the edges x1xn and y1yn in the
closed ladder Ln. These variants of ladder graphs [12] are illustrated in Figure 1.

The cartesian product G�G
′

of two simple connected graphs G and G
′

is a graph with
vertices V (G�G

′
) = V (G)×V (G

′
) and two vertices (a, a

′
) and (b, b

′
) in G�G

′
are adjacent

if the distance between a and b is 0; and a
′

and b
′

is 1 or the distance between a and b is
1; and a

′
and b

′
is 0. The strong product G�G

′
of two connected simple graphs G and G

′

is a graph with vertices V (G�G
′
) = V (G)× V (G

′
) and two vertices (a, a

′
) and (b, b

′
) in

G�G
′

are adjacent if the distance between a and b is 0; and a
′

and b
′

is 1 or the distance
between a and b is 1; and a

′
and b

′
is 0 or the distance between both a and b; and a

′
and

b
′

is 1 [11]. Note that, the cartesian product of Pn with P2; and Cn with P2 is equivalent
to Ln and CLn respectively. Also, the strong product of Pn with P2 results in DLn.

Figure 1
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3. Main Results

Observation 3.1. If [∆+i], i ∈ Z+ colors are applied in graceful coloring, then the vertex
of maximum degree will receive the first and last i colors from [∆ + i].

Proof. Let w be a vertex of maximum degree and let X = { first i colors and last i colors
}. We prove f(w) ∈ X. Suppose on the contrary, let f(w) = a, where a /∈ X. Then the ∆
neighbours of w should be distinctly colored from {1, 2, ..., a − 1, a + 1, ...,∆ + i}. Hence
there exist at least two neighbours p and q of w such that f(p) = a+ u and f(q) = a− u,
u ∈ [1,∆ − 1], a contradiction to the proper edge coloring (f∗(wp) = f∗(wq)). Hence
f(w) ∈ X. �

Theorem 3.2. χg(Ln) =

{
4, n = 2

5, n ≥ 3

Proof. Let V (Ln) = {xi, yi, 1 ≤ i ≤ n} and E(Ln) = {xixi+1, yiyi+1, 1 ≤ i ≤ n − 1} ∪
{xiyi, 1 ≤ i ≤ n}. Let xixi+1 = e

′
i, yiyi+1 = e∗i , 1 ≤ i ≤ n− 1 and xiyi = ei, 1 ≤ i ≤ n.

Case 1 (n = 2): Note that L2 = C4 and hence χg(L2) = 4, by Theorem 1.1.
Case 2 (n = 3): Since L2 is a subgraph of L3, χg(L3) ≥ χg(L2) = 4, by the Theorem 1.8.
We now show that χg(L3) 6= 4. Suppose that there exist a graceful 4-coloring of L3. It
is clear from the Observation 3.1, the vertices of maximum degree are colored using the
colors 1 and 4. Without loss of generality, let f(x2) = 1 and f(y2) = 4. Then f(x1) = 3
and f(y1) = 2. Now, the vertices x3 and y3 can be colored using the colors which are
at distance at least 3 from them. Thus, f(x3) = 2, and hence f(y3) = 3 which is a
contradiction to the proper edge coloring (f∗(x3y3) = 1 = f∗(y2y3)). Hence χg(L3) ≥ 5.
In addition, we prove χg(L3) ≤ 5.

Define a proper vertex coloring f : V (L3)→ [1, 5] as f(v) =



1, if v = x2

2, if v = x3, y1

3, if v = x1

4, if v = y3

5, if v = y2

which induces a proper edge coloring f∗ : E(L3)→ [1, 4] as

f∗(e) =


1, if e = e1, e

′
2, e

∗
2

2, if e = e
′
1, e3

3, if e = e∗1
4, if e = e2

Consequently, χg(L3) = 5.
Case 3 (n > 3): From the Theorem 1.8, χg(Ln) ≥ χg(L3) = 5, for n > 3. We show that
χg(Ln) ≤ 5 by describing a proper vertex coloring f : V (Ln)→ [1, 5] as

f(v) =



1, if v = xi : i ≡ 2(mod 4), yj : j ≡ 0(mod 4) : 1 ≤ i, j ≤ n
2, if v = xi : i ≡ 3(mod 4), yj : j ≡ 1(mod 4) : 1 ≤ i, j ≤ n
3, if v = x1

4, if v = xi : i ≡ 0(mod 4), yj : j ≡ 2(mod 4) : 1 ≤ i, j ≤ n
5, if v = xi : i ≡ 1(mod 4), yj : j ≡ 3(mod 4) : 1 ≤ i, j ≤ n and i 6= 1

which induces f∗ : E(Ln)→ [1, 4] as
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f∗(e) =


1, if e = {e1}, {e

′
i}, {e∗j} : i, j ≡ 0(mod 2) : 1 ≤ i, j ≤ n− 1

2, if e = {e′1, e
′
i} : i ≡ 3(mod 4), {e∗j} : j ≡ 1(mod 4) : 1 ≤ i, j ≤ n− 1

3, if e = {ek} : k ≡ 1(mod 1) : 1 ≤ k ≤ n
4, if e = {e′i} : i ≡ 1(mod 4), {e∗j} : j ≡ 3(mod 4) : 1 ≤ i, j ≤ n− 1 and i 6= 1

Hence χg(Ln) = 5, for n > 3. �

Corollary 3.1. χg(OLn) = 5, n > 3

Theorem 3.3. χg(SLn) = 5, n ≥ 4.

Proof. Let SLn be the slanting ladder with the vertex set V (SLn) = {xi, yi, 1 ≤ i ≤ n}
and the edge set E(SLn) = {xixi+1, yiyi+1, xiyi+1, 1 ≤ i ≤ n − 1}. Let xixi+1 = e

′
i,

yiyi+1 = e∗i , xiyi+1 = ei. Clearly Ln is a subgraph of SLn, χg(SLn) ≥ χg(Ln) = 5, by the
Theorem 1.8. Define f : V (SLn)→ [1, 5] as

f(v) =


1, if v = xi, yj : i ≡ 1(mod 4), j ≡ 0(mod 4) : 1 ≤ i, j ≤ n
2, if v = xi, yj : i ≡ 3(mod 4), j ≡ 2(mod 4) : 1 ≤ i, j ≤ n
4, if v = xi, yj : i ≡ 2(mod 4), j ≡ 1(mod 4) : 1 ≤ i, j ≤ n
5, if v = xi, yj : i ≡ 0(mod 4), j ≡ 3(mod 4) : 1 ≤ i, j ≤ n

which induces f∗ : E(SLn)→ [1, 4] as

f∗(e) =


1, if e = ei : 1 ≤ i ≤ n− 1

2, if e = e
′
j , e

∗
k : j ≡ 2(mod 4), k ≡ 1(mod 4) : 1 ≤ j, k ≤ n− 1

3, if e = e
′
j , e

∗
k : j ≡ 1(mod 2), k ≡ 0(mod 2) : 1 ≤ j, k ≤ n− 1

4, if e = e
′
j , e

∗
k : j ≡ 0(mod 4), k ≡ 3(mod 4) : 1 ≤ j, k ≤ n− 1

Therefore, χg(SLn) ≤ 5 implies χg(SLn) = 5, for n ≥ 4.
�

Theorem 3.4. χg(TLn) =

{
6, n = 3, 4

7, n ≥ 5

Proof. Let V (TLn) = {xi, yi, 1 ≤ i ≤ n} and E(TLn) = {xixi+1, yiyi+1, xiyi+1, 1 ≤ i ≤
n − 1} ∪ {xiyi, 1 ≤ i ≤ n}. Let xixi+1 = e

′
i, yiyi+1 = e∗i , xiyi+1 = ai, 1 ≤ i ≤ n − 1 and

xiyi = ei, 1 ≤ i ≤ n.
Case 1 (n = 3, 4): Since the maximum degree of TLn is 4, we get χg(TLn) ≥ 5, by the
Theorem 1.7. We claim that, χg(TLn) 6= 5. Suppose on the contrary, χg(TLn) = 5. It is
clear that f(w) 6∈ {2, 3, 4}, where w is a vertex of maximum degree, by the Observation
3.1. For n = 3, without loss of generality, let f(x2) = 1 and f(y2) = 5. Obviously,
f(x1) /∈ {1, 3, 5} and hence f(x1) ∈ {2, 4}. Without loss of generality, assume f(x1) = 2,
then the only choice of color for the vertex y1 is 4. Now f(y3) /∈ [1, 5] (by the Theorem 1.9),
which is a contradiction to the assumption that χg(TLn) = 5. Same argument holds when
f(x1) = 4. For n = 4, an induced subgraph of maximum degree vertices of TLn form a
cycle of length 4 which can be gracefully colored with four distinct colors, by the Theorem
1.1. But we have only two colors {1, 5}, which is a contradiction to the assumption that
χg(TLn) = 5. Hence, at least 6 colors are needed for graceful coloring of TLn, for n = 3, 4.



996 TWMS J. APP. AND ENG. MATH. V.14, N.3, 2024

Thus χg(TLn) ≥ 6. Define f : V (TLn)→ [1, 6] as

f(v) =



1, if v = y2

2, if v = x2

3, if v = y1, y4

4, if v = x1, x4

5, if v = y3

6, if v = x3

which induces f∗ : E(TLn)→ [1, 4] as

f∗(e) =


1, if e = e1, e2, e3, e4

2, if e = e
′
1, e

′
3, e

∗
1, e

∗
3

3, if e = a1, a2, a3

4, if e = e
′
2, e

∗
2

Therefore, χg(TLn) ≤ 6, implies χg(TLn) = 6, for n = 3, 4.
Case 2 (n ≥ 5): Since TL4 is a subgraph of TLn, χg(TLn) ≥ χg(TL4) = 6 (by the
Theorem 1.8). We show χg(TLn) 6= 6. Assume the contrary that, χg(TLn) = 6. It is
clear from the Observation 3.1, f(w) 6∈ {3, 4}, w is a vertex of maximum degree. Let
H be an induced subgraph of maximum degree vertices in TLn. Note that Ln, n ≥ 3 is
also a subgraph of H which cannot be gracefully colored using four colors {1, 2, 5, 6}, by
the Theorem 3.2. Hence at least 7 colors are needed for graceful coloring of TLn. Thus
χg(TLn) ≥ 7. We now define a graceful 7-coloring f of TLn. Define f : V (TLn) → [1, 7]
as

f(v) =



1, if v = yj : j ≡ 0(mod 3) : 1 ≤ j ≤ n
2, if v = xi : i ≡ 1(mod 3) : 1 ≤ i ≤ n
3, if v = xi : i ≡ 2(mod 3) : 1 ≤ i ≤ n
4, if v = y1

5, if v = yj : j ≡ 1(mod 3) : 1 ≤ j ≤ n and j 6= 1

6, if v = xi : i ≡ 0(mod 3) : 1 ≤ i ≤ n
7, if v = yj : j ≡ 2(mod 3) : 1 ≤ j ≤ n

which induces f∗ : E(TLn)→ [1, 6] as

f∗(e) =



1, if e = {e′i} : i ≡ 1(mod 3), {al} : l ≡ 0(mod 3) : 1 ≤ i, l ≤ n− 1

2, if e = {e1}, {e∗j}, : j ≡ 1(mod 3), {al} : l ≡ 2(mod 3) : 1 ≤ l, j ≤ n− 1

and j 6= 1

3, if e = {e∗1}, {e
′
i} : i ≡ 2(mod 3), {ek} : k ≡ 1(mod 3) : 1 ≤ i ≤ n− 1,

4 ≤ k ≤ n
4, if e = {e′i} : i ≡ 0(mod 3), {e∗j} : j ≡ 0(mod 3), {ek} : k ≡ 2(mod 3) :

1 ≤ i, j ≤ n− 1, 1 ≤ k ≤ n
5, if e = {ek} : k ≡ 0(mod 3), {al} : l ≡ 1(mod 3) : 1 ≤ k ≤ n, 1 ≤ l ≤ n− 1

6, if e = {e∗j} : j ≡ 2(mod 3) : 1 ≤ j ≤ n− 1

Therefore, χg(TLn) ≤ 7, implies χg(TLn) = 7, for n ≥ 5. �

Corollary 3.2. χg(O(TLn)) = 7, n ≥ 5
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Theorem 3.5. χg(DLn) =

{
8, n = 5, 6

9, n ≥ 7

Proof. Consider the diagonal ladder DLn with the vertex and the edge set as follows:
V (DLn) = {xi, yi, 1 ≤ i ≤ n}, E(DLn) = {xixi+1, yiyi+1, xiyi+1, yixi+1, 1 ≤ i ≤ n − 1} ∪
{xiyi, 1 ≤ i ≤ n}. Let xixi+1 = e

′
i, yiyi+1 = e∗i , xiyi+1 = a

′
i, yixi+1 = a∗i , 1 ≤ i ≤ n − 1

and xiyi = ei, 1 ≤ i ≤ n
Case 1 (n = 5, 6): TLn is a subgraph of DLn, χg(DLn) ≥ χg(TLn) = 7 (by the Theorem
1.8). We now show that χg(DLn) 6= 7. Suppose on the contrary, χg(DLn) = 7. Observe
that f(w) 6∈ {3, 4, 5}, where w is a vertex of maximum degree (by the Observation 3.1).
Let H be an induced subgraph of maximum degree vertices in DLn. Also TLn (n = 3, 4)
is a subgraph of H which cannot be gracefully colored with 4 colors {1, 2, 6, 7} (by the
Theorem 3.4), which implies that our assumption χg(DLn) = 7, for n = 5, 6 is wrong.
Hence at least 8 colors are needed for graceful coloring of DLn. Therefore, χg(DLn) ≥ 8.
Define f : V (DLn)→ [1, 8] as

f(v) =



1, if v = x4

2, if v = y2, y5

3, if v = x3

4, if v = y1, y6

5, if v = x1, x6

6, if v = y4

7, if v = x2, x5

8, if v = y3

which induces f∗ : E(DLn)→ [1, 7] as

f∗(e) =



1, if e = {e1, e6}, {a
′
2, a

′
4}, {a∗2, a∗4}

2, if e = {e′1, e
′
3, e

′
5}, {e∗1, e∗3, e∗5}

3, if e = {a′1, a
′
3, a

′
5}, {a∗1, a∗5}

4, if e = {e′2}, {e∗4}
5, if e = {e2, e3, e4, e5}
6, if e = {e′4}, {e∗2}
7, if e = {a∗3}

Thus, χg(DLn) ≤ 8. Consequently, χg(DLn) = 8, for n = 5, 6.
Case 2 (n ≥ 7): Obviously, χg(DLn) ≥ χg(DL6) = 8. We show that, graceful coloring
of DLn need at least 9 colors. Assume the contrary that, χg(DLn) = 8. It can be seen
that f(w) 6∈ {4, 5}, where w is a vertex of maximum degree (by the Observation 3.1). Let
H be an induced subgraph of maximum degree vertices in DLn. Indeed, TLn, n ≥ 5 is a
subgraph of H. By the Theorem 3.4, the colors [1, 3] ∪ [6, 8] are inadequate for graceful
coloring of DLn. Hence, at least 9 colors are required for graceful coloring of DLn. Thus,
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χg(DLn) ≥ 9. It remains to show χg(DLn) ≤ 9 by describing f : V (DLn)→ [1, 9] as

f(v) =



1, if v = xi : i ≡ 2(mod 4) : 1 ≤ i ≤ n
2, if v = yj : j ≡ 2(mod 4) : 1 ≤ j ≤ n
3, if v = yj : j ≡ 0(mod 4) : 1 ≤ j ≤ n
4, if v = xi : i ≡ 0(mod 4) : 1 ≤ i ≤ n
5, if v = y1

6, if v = yj : j ≡ 1(mod 4) : 5 ≤ j ≤ n
7, if v = xi : i ≡ 1(mod 4) : 1 ≤ i ≤ n
8, if v = xi : i ≡ 3(mod 4) : 1 ≤ i ≤ n
9, if v = yj : j ≡ 3(mod 4) : 1 ≤ j ≤ n

which induces f∗ : E(DLn)→ [1, 8] as

f∗(e) =



1, if e = {ek} : k ≡ 1(mod 1) : 1 ≤ k ≤ n
2, if e = {e1}, {a

′
l} : l ≡ 0(mod 4) : 1 ≤ l ≤ n− 1

3, if e = {e′i} : i ≡ 0(mod 4), {e∗1, e∗j} : j ≡ 0(mod 4)1 ≤ i, j ≤ n− 1

4, if e = {e′i} : i ≡ 3(mod 4), {e∗j} : j ≡ 1(mod 4), {a∗1, a∗m} : m ≡ 0(mod 4) :

1 ≤ i, j,m ≤ n− 1 and j 6= {1}
5, if e = {a′l} : l ≡ 1(mod 2), {a∗m} : m ≡ 1(mod 2) : m 6= 1, 1 ≤ l,m ≤ n− 1

6, if e = {e′i} : i ≡ 1(mod 4), {e∗j} : j ≡ 3(mod 4), {a∗2, a∗m} : m ≡ 2(mod 4) :

1 ≤ i, j,m ≤ n− 1 and m 6= 2

7, if e = {e′i} : i ≡ 2(mod 4), {e∗j} : j ≡ 2(mod 4) : 1 ≤ i, j ≤ n− 1

8, if e = {a′l} : l ≡ 2(mod 4) : 1 ≤ l ≤ n− 1

Hence, χg(DLn) = 9, for n ≥ 7. �

Corollary 3.3. χg(O(DLn)) = 9, n ≥ 7.

Theorem 3.6. For n ≥ 4, χg(CLn) =

{
5, n ≡ 0(mod 4)

6, otherwise

Proof. A circular ladder CLn is formed by adding two edges x1xn and y1yn in the closed
ladder Ln.
Case 1 (n ≡ 0(mod 4)): Since CLn is a 3-regular graph, χg(CLn) ≥ 5 (by the Theorem
1.6). We claim that χg(CLn) ≤ 5 by defining f : V (CLn) → [1, 5] as follows. For
n = 4b+ 4, where b ∈ {0, 1, 2, 3, ...}

f(v) =


1, if v = {xi} : i ≡ 1(mod 4), {yj} : j ≡ 3(mod 4) : 1 ≤ i, j ≤ n
2, if v = {xi} : i ≡ 2(mod 4), {yj} : j ≡ 0(mod 4) : 1 ≤ i, j ≤ n
4, if v = {xi} : i ≡ 0(mod 4), {yj} : j ≡ 2(mod 4) : 1 ≤ i, j ≤ n
5, if v = {xi} : i ≡ 3(mod 4), {yj} : j ≡ 1(mod 4) : 1 ≤ i, j ≤ n

which induces f∗ : E(CLn)→ [1, 4]

f∗(e) =


1, if e = {e′i, e∗j} : i, j ≡ 1(mod 2) : 1 ≤ i, j ≤ n
2, if e = {ek} : k ≡ 0(mod 2) : 1 ≤ k ≤ n
3, if e = {e′i, e∗j} : i, j ≡ 0(mod 2) : 1 ≤ i, j ≤ n
4, if e = {ek} : k ≡ 1(mod 2) : 1 ≤ k ≤ n
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Case 2 (n 6≡ 0(mod 4)): Obviously, χg(CLn) ≥ χg(Ln) = 5, for n ≥ 3 (by the Theorem
1.8). It is also clear that, the vertices of CLn are colored using {1, 2, 4, 5} (by the Ob-
servation 3.1). We claim that, χg(Ln) 6= 5. Consider a proper vertex coloring f of Ln

as (1, 2, 5, 4, 1, 2, 5, 4, ...) for the vertices in the upper path and (5, 4, 1, 2, 5, 4, 1, 2, ...) for
the vertices in the lower path; which induces the edge coloring (1, 3, 1, 3, 1, 3, 1, 3, ...) and
(1, 3, 1, 3, 1, 3, 1, 3, ...) respectively. Note that, the vertex xn will not receive the color 4 in
CLn (n 6≡ 0(mod 4)).
If f(xn) = 1, then f∗(x1xn) = 0
If f(xn) = 2, then f∗(x1xn) = 1 = f∗(x1x2)
If f(xn) = 5, then f∗(x1xn) = 4 = f∗(x1y1)
Note that all the above cases leads to a contradiction to the proper edge coloring. Thus
χg(CLn) ≥ 6. In addition, we prove that χg(CLn) ≤ 6 by defining f : V (CLn)→ [1, 6] as
follows. For n = 4b+ 5, where b ∈ {0, 1, 2, 3, ...},

f(v) =



1, if v = {xi} : i ≡ 1(mod 4) and i 6= n, {yj} : j ≡ 3(mod 4) : 1 ≤ i, j ≤ n
2, if v = {xi} : i ≡ 2(mod 4), {yn, yj} : j ≡ 0(mod 4) and j 6= n− 1 :

1 ≤ i, j ≤ n
3, if v = xn−1

4, if v = {xn, xi} : i ≡ 0(mod 4) and i 6= n− 1, {yj} : j ≡ 2(mod 4) :

1 ≤ i, j ≤ n
5, if v = {xi} : i ≡ 3(mod 4), {yj} : j ≡ 1(mod 4) and j 6= n :

1 ≤ i, j ≤ n
6, if v = yn−1

which induces f∗ : E(CLn)→ [1, 5]

f∗(e) =



1, if e = {e′n−1, e
′
i} : i ≡ 1(mod 2) and i 6= n− 2, {e∗j} : j ≡ 1(mod 2) :

1 ≤ i ≤ n, 1 ≤ j ≤ n− 4

2, if e = {e′n−2, en}, {ek} : k ≡ 0(mod 2) and k 6= n− 1 : 1 ≤ k ≤ n− 2

3, if e = {e′n, e
′
i} : i ≡ 0(mod 2) and i 6= n− 1, {e∗n, e∗j} : j ≡ 0(mod 2)

and j 6= n− 1, en−1 : 1 ≤ i, j ≤ n
4, if e = e∗n−1, {ek} : k ≡ 1(mod 2) and k 6= n : 1 ≤ k ≤ n− 1

5, if e = e∗n−2

For n = 4b+ 6, where b ∈ {0, 1, 2, 3, ...},

f(v) =



1, if v = {x1, x4, xi} : i ≡ 3(mod 4), {y6, y9, yj} : j ≡ 1(mod 4) and n 6= 6 :

11 ≤ i ≤ n, 13 ≤ j ≤ n
2, if v = {x2, x7}, x5 : n = 6, y10

3, if v = x5 : n 6= 6, {xi} : i ≡ 0(mod 4), y6 : n = 6, {y3, yj} : j ≡ 2(mod 4) :

8 ≤ i ≤ n, 14 ≤ j ≤ n
4, if v = x6 : n = 6, {x3, xi} : i ≡ 2(mod 4), y5 : n 6= 6, {yj} : j ≡ 0(mod 4) :

10 ≤ i ≤ n, 12 ≤ j ≤ b
5, if v = y5 : n 6= 6, {y2, y7}
6, if v = {x6, xi} : i ≡ 1(mod 4), {y1, y4, y8, yj} : j ≡ 3(mod 4) :

13 ≤ i ≤ n, 11 ≤ j ≤ n



1000 TWMS J. APP. AND ENG. MATH. V.14, N.3, 2024

which induces f∗ : E(CLn)→ [1, 5]

f∗(e) =



1, if e = e
′
4 : n = 6, {e′1, e

′
7, e

′
9}, e∗4 : n = 6, {e∗1, , e∗7, e∗9}, e6 : n = 6,

{e3, e5, ek} : k ≡ 0(mod 2) : 12 ≤ k ≤ n
2, if e = e

′
5 : n = 6, {e′2, e

′
4, e

′
8, e

′
i} : i ≡ 1(mod 2), e∗5 : n = 6, {e∗2, e∗4, e∗j} :

j ≡ 1(mod 2), e10 : 11 ≤ i, j ≤ n
3, if e = e

′
6 : n = 6, {e′3, e

′
5, e

′
i} : i ≡ 0(mod 2), e∗6 : n = 6, {e∗3, e∗5, e∗j} :

j ≡ 0(mod 2), e5 : n = 6, {e2, e7, e8} : 10 ≤ i ≤ n, 12 ≤ j ≤ n
4, if e = e

′
6 : n 6= 6, e∗6 : n 6= 6, e∗10, e9 : n 6= 6

5, if e = e∗8, e6 : n 6= 6, {e1, e4, ek} : k ≡ 1(mod 2), 11 ≤ k ≤ n

For n = 4b+ 7, where b ∈ {0, 1, 2, 3, ...},

f(v) =



1, if v = {xi} : i ≡ 1(mod 4), {yj} : j ≡ 3(mod 4) : j 6= n : 1 ≤ i, j ≤ n
2, if v = {xi} : i ≡ 2(mod 4) and i 6= n− 1, {yn, yj} : j ≡ 0(mod 4) :

1 ≤ i, j ≤ n
3, if v = xn−1

4, if v = {xn, xi} : i ≡ 0(mod 4), {yj} : j ≡ 2(mod 4) and j 6= n− 1 :

1 ≤ i, j ≤ n
5, if v = {xi} : i ≡ 3(mod 4) and i 6= n, {yj} : j ≡ 1(mod 4) :

1 ≤ i, j ≤ n
6, if v = yn−1

which induces f∗ : E(CLn)→ [1, 5]

f∗(e) =



1, if e = {e′n−1, e
′
i} : i ≡ 1(mod 2) and i 6= n− 2, {e∗j} : j ≡ 1(mod 2),

1 ≤ i, j ≤ n
2, if e = e

′
n−2, en, {ek} : k ≡ 0(mod 2) and k 6= n− 1, 1 ≤ k ≤ n

3, if e = {e′n, e
′
i} : i ≡ 0(mod 2) and i 6= n− 1, {e∗j} : j ≡ 0(mod 2)

and j 6= n− 1 : 1 ≤ i, j ≤ n
4, if e = e∗n−1, {ek} : k ≡ 1(mod 2) and k 6= n, 1 ≤ k ≤ n

Hence, χg(CLn) = 6, for n 6≡ 0(mod 4). �

4. Conclusion

The graceful coloring of many graph classes like bipartite graphs, complete graphs, reg-
ular graphs, forbidden graphs, etc. are still unexplored as the study on this concept began
only during 2018. We investigate the graceful coloring of a few variants of ladder graphs.
It is also interesting to work on graph operations like strong product, tensor product,
cartesian product, lexicographic product and corona product of some graph classes with
respect to graceful coloring which are still open.
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