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A LATTICE STRUCTURE OF Z-SOFT COVERING BASED ROUGH

SET AND ITS APPLICATION

S. PAVITHRA1, A. MANIMARAN1∗, §

Abstract. The aim of this paper is to construct the lattice structure for Z-soft cov-
ering based rough set. First, we define an equivalence relation R′ on a universal set
to obtain the equivalence classes induced by Z-soft covering-based rough set. Also, we
define a relation RS on the family of Z-soft covering-based rough set (TS) to show that
the relation RS is a poset on TS . Second, we define two operations join ∨ and meet ∧
on TS . Using these two operations, we prove that every pair of elements of RS has a
least upper bound and a greatest lower bound and as a result, TS is a lattice. Finally,
we develop a novel Multiple Attribute Group Decision Making (MAGDM) model using
Z-soft covering based rough set in medical diagnosis to determine the patients at high
risk of chronic kidney disease using the collected data from the UCI Machine Learning
Repository.
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1. Introduction

Zadeh [17] investigated the general theory of uncertainty. In this theory, information
was represented as general constraints derived from fuzzy set theory and fuzzy logic, and
uncertainty is linked to information through the idea of granular structures. Pawlak [12]
proposed the notion of rough set (RS) in 1982. This formal technique was developed in
information systems to handle incomplete data. This theory is utilized in data analysis
software to find fundamental patterns in data, reduce redundancies and create decision
rules. RS is used in a variety of fields, including artificial intelligence, such as pattern
recognition, intelligent systems, expert systems, knowledge discovery and others [7, 10].
As an extension of Pawlak’s rough sets, covering rough sets (CRS) is an essential research
subject for RS. CRS is a valuable technique that allows researchers to look at uncertainty
and roughness in a wider sense.
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Molodtsov [11] originally proposed soft set theory in 1999, which is another mathematical
technique for dealing with ambiguity. Soft set theory has provided a variety of information
descriptions and computing operations. Ali et al. [4] introduced various operations like
restricted intersection, union and difference on soft sets. In 2021, Al-Shami introduced
a new types of soft compactness on finite spaces and some new types of soft separation
axioms called pt-soft α regular and pt-soft αTi-spaces (i = 0,1,2,3,4) in [1] and [2], re-
spectively. Likewise, soft somewhat open sets and their behaviours are studied in [3]
through some specific topologies. Al-Shami has contributed to the growing literature on
soft topology and decision problems through these research works. Ali [5] investigated the
interconnections among rough set, fuzzy set and soft set. Roy and Maji [14] proposed a
decision-making model by creating a comparison table using fuzzy soft sets. In [6], semir-
ing structures of soft sets are discussed. By combining soft sets with rough sets, Feng et
al. proposed soft P-rough set in [8]. Shabir et al. [15] established a modified soft rough
set using the concept of a soft P-rough set. In terms of precision, this modified soft rough
set exceeds the soft P-rough set. The construction of a soft P-rough set needs additional
criteria than the Shabir-soft rough set. Feng et al. [9] defined a multicriteria group de-
cision making algorithm using soft rough set. Yüksel et al. [16] suggested soft covering
based rough sets (SCRS) and provided a decision-making algorithm.
Zhan et al. [18] proposed five different types of soft covering based rough sets. They
proved that the third type provides a most accurate description of sets than other soft
rough sets and soft covering based rough sets. Praba et al. [13] developed a lattice struc-
ture for minimal soft rough sets and provided a new decision-making technique based on
it. Inspired by these ideas, a lattice structure is constructed for the third type of soft
covering based rough set and developed a decision-making algorithm to solve the medical
problem of identifying patients at high risk of chronic kidney disease. In this paper, we
use the third type of SCRS defined in [18] as Z-soft covering based rough set.
This paper is organized in the following manner: Section 2 provides all the basic definitions
for understanding the following sections. Section 3 defines the relation R′ on the universal
set Ω and prove that the relation R′ is an equivalence relation. In Section 4, we define the
relation RS on TS , where TS is the family of Z-soft covering based rough sets and prove
that TS is a poset. Two operations join ∨ and meet ∧ are defined on TS and based on
these defined operations, TS is proved to be a lattice. In Section 5, an application of Z-soft
covering based rough sets is presented. The conclusion is discussed in Section 6.

2. Preliminaries

In this section, we discuss the basic definitions necessary to understand the following
sections. Throughout this paper, Ω represents a finite universal set.

Definition 2.1. [12] Let R to be an equivalence relation and (Ω, R) be an approximation
space. For any M ⊆ Ω, the lower and upper approximation of M with respect to R are
given by R(M) = {v ∈ Ω : [v]R ⊆M} and R(M) = {v ∈ Ω : [v]R ∩M 6= ∅} , respectively
and the corresponding rough set is defined as RS(M) =

(
R(M), R(M)

)
.

Definition 2.2. [11] Let Ω be a universal set and E be the set of all parameters and B ⊆ E.
A pair K = (N,B) be a soft set over Ω if N is a mapping defined by N : B → P (Ω) where
P (Ω) denote the power set of Ω.

Definition 2.3. [17] A fuzzy set B in Ω is a set of ordered pairs:
B = {(v, µB(v) : v ∈ Ω)}, where µB : Ω −→ [0, 1] = I is a mapping and µB(v) states the
grade of belongness of v in B.
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Definition 2.4. [14] Let IΩ denotes the set of all fuzzy sets on Ω. Let B ⊆ E. A pair
(N,B) is called a fuzzy soft set over Ω, where N is a mapping defined by N : B −→ IΩ.

Definition 2.5. [8] A soft set K = (N,B) over Ω is called a full soft set if
⋃
b∈B

N(b) = Ω.

Definition 2.6. [8] A full soft set K = (N,B) over Ω is called a covering soft set denoted
as CK if N(b) 6= ∅ ∀ b ∈ B.

Definition 2.7. [16] Let K = (N,B) be a covering soft set over Ω. The ordered pair
S = (Ω, CK) represents a soft covering approximation space (SCA).

3. Z-Soft covering based rough set

In this section, we define a relation R′ on Ω and prove that R′ is an equivalence relation.

Definition 3.1. [18] Let S = (Ω, CK) be a SCA. For each v ∈ Ω, the soft adhesion of v
are defined as SA(v) = {u ∈ Ω : ∀ b ∈ B(v ∈ N(b)↔ u ∈ N(b))}.

Definition 3.2. [18] Let S = (Ω, CK) be a SCA. For each subset M ⊆ Ω, the soft cover-
ing lower approximation(SCLA) and soft covering upper approximation(SCUA) are respec-
tively defined as SC(M) = {v ∈ Ω : SA(v) ⊆M} and SC(M) = {v ∈ Ω : SA(v) ∩M 6= ∅} .
If SC(M) 6= SC(M), then M is called Z-soft covering based rough set; otherwise M is
known as Z-soft covering based definable, then the Z-soft covering based rough set is de-
noted as SCRS(M) is defined by SCRS(M) = (SC(M), SC(M)).

We define a relation R′ on Ω such that R′ = {(u, v) ∈ Ω× Ω : SA(u) = SA(v)} by
applying soft adhesion.

Lemma 3.1. R′ is an equivalence relation of Ω.
Proof. The proof is trivial from the statement of the lemma.

�

Example 3.1. Let Ω = {v1, v2, v3, v4} be a universal set and B = {b1, b2, b3} be the set of
parameters. Then the soft set over Ω is given by Table 1 where N(b1) = {v1, v2, v3, v4} ,
N(b2) = {v2, v4} and N(b3) = {v1, v2, v3}.
Then, SA(v1) = {v1, v3} , SA(v2) = {v2} , SA(v3) = {v1, v3} , SA(v4) = {v4}.

Table 1. Tabular representation of the soft set

v1 v2 v3 v4

b1 1 1 1 1
b2 0 1 0 1
b3 1 1 1 0

(i) Let M = {v1, v4} ⊆ Ω; then SC(M) = {v4} and SC(M) = {v1, v3, v4} .
Hence, SCRS(M) = ({v4} , {v1, v3, v4}).
(ii) Let M = {v2, v3, v4} ⊆ Ω; then SC(M) = {v2, v4} and SC(M) = Ω.
Hence, SCRS(M) = ({v2, v4} ,Ω).

The equivalence classes formed by soft adhesion using R′ are [v1] = {v1, v3}, [v2] = {v2},
[v4] = {v4}.

Remark 3.1. The soft adhesion of v can be obtained directly from the tabular representa-
tion of the soft set (see Table 1) , where each row represents an element of the parameter
set and each column represents an element of the universal set.
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Elements vi and vj belong to the same class if the entries in column vi and the entries in
column vj are the same, where vi and vj ∈ Ω. If the entries in column vi are not equal to
any other column vj, then vi forms a separate class. For example, In Table 1, the entries
in v1 and v3 are the same. Therefore, they belong to the same class. The entries in v2 are
not equal to any other column entries. Hence, it forms a separate class.

4. Lattice Structure on the family of Z-Soft covering based rough sets

In this section, we show that the family of Z-soft covering based rough set create a
lattice. Let TS = {SCRS(M) : M ⊆ Ω} . We define a relation RS on TS by RS =
{(SCRS(M), SCRS(O)) : SCRS(M) ⊆ SCRS(O)}.

Lemma 4.1. RS is a poset on TS.

Proof. By direct verification.
Now, we define two operations ∨ and ∧ on TS as follows. �

Definition 4.1. For each two subsets M and O of Ω. SAW (M) = {SA(v) : SA(v) ⊆M}.
Define the set M ∨O as follows:
(1) M ∨O = M ∪O, if |SAW (M ∪O)| = |SAW (M)|+ |SAW (O)| − |SAW (M ∩O)|.
(2) If |SAW (M ∪O)| > |SAW (M)|+ |SAW (O)|− |SAW (M ∩O)| then there exists v ∈ Ω
such that SA(v) ⊆ SAW (M ∪O), SA(v) *M and SA(v) * O.
(3) Remove v from M (or O).
(4) Name the newly formed set as M (or O).
(5) Redo Step 1 if there is no v such that SA(v) * M and SA(v) * O is found, then
M ∨O = M ∪O.

Definition 4.2. For each subset M and O of Ω, then any element v ∈ Ω is called pivot ele-

ment and P̂M∩O = {v ∈ Ω : SA(v) ∩M 6= ∅, SA(v) ∩O 6= ∅, SA(v) *M ∩O} is the pivot
set for Z-soft covering based rough set.

Definition 4.3. For each subset M and O of Ω. The meet of M and O is defined by

M ∧O = {v ∈ Ω : SA(v) ⊆M ∩O} ∪ P̂M∩O.

Example 4.1. Let Ω = {v1, v2, v3, v4} be a universal set and B = {b1, b2, b3} be the set of
parameters. Then the soft set over Ω is given by Table 1 where
N(b1) = {v1, v2, v3, v4} , N(b2) = {v2, v4} and N(b3) = {v1, v2, v3}.
Then, SA(v1) = {v1, v3} , SA(v2) = {v2} , SA(v3) = {v1, v3} , SA(v4) = {v4}.
Let M = {v2, v3, v4} and O = {v1, v4} are the subsets of Ω.
Then, M ∨O = {v2, v3, v4} and M ∧O = {v1, v3, v4}.

Our intention is to provide a lattice structure on TS . To prove this, for each two
subsets M and O of Ω, the least upper bound (lub) and greatest lower bound (glb) of
SCRS(M) and SCRS(O) are to be found.
In the following, we prove that SCRS(M ∨O) and SCRS(M ∧O) are the lub and glb of
SCRS(M) and SCRS(O) respectively.

Theorem 4.1. If M and O are any two subsets of Ω then SCRS(M ∨ O) is the lub of
SCRS(M) and SCRS(O).

Proof. First, we prove that SCRS(M) ⊆ SCRS(M ∨O). i.e., SC(M) ⊆ SC(M ∨O) and
SC(M) ⊆ SC(M ∨O).
Let v ∈ SC(M)
⇒ SA(v) ⊆ (M)
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⇒ SA(v) ⊆ (M ∨O)
⇒ v ∈ SC(M ∨O).
Hence, SC(M) ⊆ SC(M ∨O).
Now, to prove that SC(M) ⊆ SC(M ∨O).
Let v ∈ SC(M)
⇒ SA(v) ∩M 6= ∅. i.e., SA(v) ∩ (M ∨O) 6= ∅
⇒ v ∈ SC(M ∨O)
∴ SC(M) ⊆ SC(M ∨O).
Similarly, SC(O) ⊆ SC(M ∨O) and SC(O) ⊆ SC(M ∨O).
Hence, SCRS(M) ⊆ SCRS(M ∨O) and SCRS(O) ⊆ SCRS(M ∨O).
∴ SCRS(M ∨O) is an upper bound of SCRS(M) and SCRS(O).
Let SCRS(Z) be any upper bound of SCRS(M) and SCRS(O).
Then, SCRS(M) ⊆ SCRS(Z) and SCRS(O) ⊆ SCRS(Z).
Now, we prove that, SCRS(M ∨O) ⊆ SCRS(Z).
i.e.,(SC(M ∨O), SC(M ∨O)) ⊆ (SC(Z), SC(Z)).
Let v ∈ SC(M ∨O)
⇒ SA(v) ⊆ (M ∨O) then SA(v) ⊆ M or SA(v) ⊆ O.
⇒ v ∈ SC(Z)
∴ SC(M ∨O) ⊆ SC(Z).
Let v ∈ SC(M ∨O)
⇒ SA(v) ∩ (M ∨O) 6= ∅
⇒ SA(v) ∩M 6= ∅ or SA(v) ∩ O 6= ∅
⇒ SA(v) ∩ Z 6= ∅
⇒ v ∈ SC(Z)
⇒ SC(M ∨O) ⊆ SC(Z).
∴ SCRS(M ∨O) ⊆ SCRS(Z).
Hence, SCRS(M ∨ O) is the lub of SCRS(M) and SCRS(O). �

Theorem 4.2. If M and O are any two subsets of Ω then SCRS(M ∧ O) is the glb of
SCRS(M) and SCRS(O).

Proof. First, we prove that SCRS(M∧O) is the lower bound of SCRS(M) and SCRS(O).
It is enough to show that SCRS(M ∧O) ⊆ SCRS(M) and SCRS(M ∧O) ⊆ SCRS(O).
i.e., SC(M ∧O) ⊆ SC(M) and SC(M ∧O) ⊆ SC(M),
SC(M ∧O) ⊆ SC(O) and SC(M ∧O) ⊆ SC(O).
Let v ∈ SC(M ∧O)
⇒ SA(v) ⊆ (M ∧O)
⇒ SA(v) ⊆ (M ∩O) ⊆M
⇒ v ∈ SC(M)
∴ SC(M ∧O) ⊆ SC(M).
Similarly, SC(M ∧O) ⊆ SC(O).
Now, let v ∈ SC(M ∧O)
⇒ SA(v) ∩ (M ∧O) 6= ∅
⇒ SA(v) ∩M 6= ∅ or SA(v) ∩O 6= ∅
⇒ v ∈ SC(M)
∴ SC(M ∧O) ⊆ SC(M).
Similarly, SC(M ∧O) ⊆ SC(O).
Hence, SCRS(M ∧O) ⊆ SCRS(M) and SCRS(M ∧O) ⊆ SCRS(O).
∴ SCRS(M ∧O) is the lower bound of SCRS(M) and SCRS(O).
Let SCRS(Z) be any lower bound of SCRS(M) and SCRS(O).
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We have to prove that SCRS(Z) ⊆ SCRS(M ∧O).
i.e., SC(Z) ⊆ SC(M ∧O) and SC(Z) ⊆ SC(M ∧O).
Let v ∈ SC(Z)
⇒ SA(v) ⊆ Z
⇒ SA(v) ⊆ (M ∧O)
⇒ v ∈ SC(M ∧O)
∴ SC(Z) ⊆ SC(M ∧O).
If v ∈ SC(Z)
then SA(v) ∩ Z 6= ∅
⇒ SA(v) ∩M 6= ∅ and SA(v) ∩ O 6= ∅
⇒ SA(v) ∩ (M ∧O) 6= ∅
⇒ v ∈ SC(M ∧O)
∴ SC(Z) ⊆ SC(M ∧O).
Hence, SCRS(M ∧O) is the glb of SCRS(M) and SCRS(O). �

Remark 4.1. If K = (N,B) is a soft set over Ω, then (TS ,⊆) is a lattice. (TS ,⊆) is
known as Z-soft covering based rough lattice.

Theorem 4.3. (TS ,⊆) has both minimal and maximal element.

Proof. It can be easily verified that SCRS(∅) = (∅,∅) is the minimal element and
SCRS(Ω) = (Ω,Ω) is the maximal element. �

Example 4.2. Let Ω = {v1, v2, v3, v4} be a universal set and B = {b1, b2, b3} be the set of
parameters. Then the soft set over Ω is given by Table 1 where
N(b1) = {v1, v2, v3, v4} , N(b2) = {v2, v4} and N(b3) = {v1, v2, v3}.
Then, SA(v1) = {v1, v3} , SA(v2) = {v2} , SA(v3) = {v1, v3} , SA(v4) = {v4}.
Let M = {v2, v3, v4} and O = {v1, v4} are the subsets of Ω.
Then, SCRS(M) = ({v2, v4} ,Ω) and SCRS(O) = ({v4} , {v1, v3, v4}).
If M ∨ O = {v2, v3, v4} and M ∧ O = {v1, v3, v4}. Then,
SCRS(M ∨O) = ({v2, v4} ,Ω) and SCRS(M ∧O) = ({v1, v3, v4} , {v1, v3, v4}).
TS = { SCRS(∅), SCRS(v1), SCRS(v2), SCRS(v4), SCRS({v1, v2}), SCRS({v1, v3}),
SCRS({v1, v4}), SCRS({v2, v4}), SCRS({v1, v2, v3}), SCRS({v1, v2, v4}),
SCRS({v1, v3, v4}), SCRS(Ω) }.

The Hasse diagram of Z-soft covering based rough lattice on TS is shown in FIGURE
1.

Figure 1. Lattice structure for Z-soft covering based rough set
(Ω,Ω)

({v2, v4} ,Ω)

({v2, v4} , {v2, v4})

(v2, v2)

(φ, φ)

(v4, v4)

(v4, {v1, v3, v4})

({v1, v3, v4} , {v1, v3, v4})

({v1, v2, v3} , {v1, v2, v3})

({v1, v3} , {v1, v3})

(φ, {v1, v3})

(v2, {v1, v2, v3})
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5. A novel approach to MAGDM using Z-SCRS

In this section, a novel decision-making method is created to select the best object from
a list of possible objects Ω.

5.1. Description and process. Let Ω = {v1, v2, ..., vj} be j alternatives and let B be the
parameter set. Assume that, we have an expert group D = {D1, D2, ..., Dm} consisting of
m specialists to evaluate the alternatives in Ω. Each specialist must examine all objects
in Ω and is only allowed to recommend ”the best alternatives” as a result of their evalu-
ation. As a result, the primary evaluation result of each specialist is a subset of Ω. We
assume that the evaluations of these specialists in D are equally important. The primary
assessment result of expert group D is referred to as the assessment soft set K1 = (T,D)
over Ω, where T : D → P (Ω) is given by T (Dm) = Mm (m = 1, 2, ..., p).
From the soft set K1 = (T,D), we get only the initial evaluation dataset. But, soft rough
approximations help us to gain more useful information. We consider the soft rough ap-
proximations of the specialist Dm’s primary evaluation result Mm with respect to the soft
approximation space P = (Ω,K). The soft covering lower approximation T (Dm) can be
regarded as the group of objects that are definitely the best candidates according to spe-
cialist Dm’s opinion. For instance, if v2 ∈ T (D2) we can say that the specialist D2 thinks
with high confidence that v2 is an optimal alternative. Similarly, the soft covering upper
approximation T (Dm) can be regarded as the group of objects that are possibly the best
candidates according to specialist Dm’s opinion.
Using soft rough approximations, we finally obtain two other soft sets K1 = (T ,D) and
K1 = (T ,D) over Ω where,

T : D → P (Ω),
T (Dm) = SC(T (Dm)), m = 1,2,...,p.
T : D → P (Ω),
T (Dm) = SC(T (Dm), m = 1,2,...,p.

As mentioned above, the soft set K1 represents the evaluation result of the whole expert
group D with high confidence, while K1 represents the evaluation result of the whole ex-
pert group D with low confidence. Furthermore, the primary assessment, namely the soft
set K1 is considered as the whole group evaluation result with middle confidence.
It is important to note that fuzzy sets can also be used to express the evaluation result
of the entire expert group D. Let M ⊆ Ω, the characteristic function of M is denoted by
χM . Based on the soft set K1 = (T,D), we define the fuzzy set µK1 in Ω by

µK1 : Ω→ [0, 1],

µK1(vi) = 1
p

p∑
m=1

χT (Dm).

Similarly, the fuzzy sets µK1
and µK1

can be formulated as follows,

µK1
: Ω→ [0, 1],

µK1
(vi) = 1

p

p∑
m=1

χT (Dm).

µK1
: Ω→ [0, 1],

µK1
(vi) = 1

p

p∑
m=1

χT (Dm).

where T (Dm) = SC(T (Dm)) and T (Dm) = SC(T (Dm)) where i = 1, ..., j.
From K1 ⊆ K1 ⊆ K1, we can say that µK1

⊆ µK1 ⊆ µK1
. The risky factors of the patients

can be classified as fuzzy sets µK1
, µK1 and µK1

respectively with the ambiguous concept
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like the patients under “high level of risk”, the patients under “average level of risk” and
the patients under “low level of risk” respectively.
Now, we use the concept of fuzzy soft sets to combine the above soft or fuzzy evaluation
results. Let Q = {L,A,H} be the parameters. Let L be the low level of risk, A be the
average level of risk and H be the high level of risk. We define a fuzzy soft set KF = (X,Q)
over Ω where X : Q→ IΩ is given by X(L) = µK1

, X(A) = µK1 , and X(H) = µK1
. Since

IΩ denotes the set of all fuzzy sets on Ω.
Let the weighting vector R = (rL, rA, rH), so that rL + rA + rH = 1.
w(vi) = rL ·X(L)(vi) + rA ·X(A)(vi) + rH ·X(H)(vi).
is the weighted assessment values of the alternatives vi ∈ Ω, i = 1,...,j.
Finally, we select the object vi such that w(vi) = max {w(vi) : i = 1, ..., j} as the best
alternative.
The decision-making method is summarized as follows:
Step 1: Consider the original soft set K = (N,B).
Step 2: Formulate the soft set K1 = (T,D) by using the first assessment results of the
specialist group D.
Step 3: Calculate SCLA and SCUA and get the soft set K1 = (T ,D) and K1 = (T ,D).
Step 4: Calculate the fuzzy sets µk1 , µk1 and µk1 of the sets K1 = (T,D), K1 = (T ,D)

and K1 = (T ,D).
Step 5: Determine the fuzzy soft set KF = (X,Q) using the fuzzy sets µk1 , µk1 and µk1 .
Step 6: Considering the weighting vector R, calculate the weighted assessment values
w(vi) of any alternatives vi ∈ Ω. Using w(vi), we rank the alternatives to select the
elements with the highest weighted evaluation values.

5.2. Illustrative example. In this work, we use soft adhesion to find SCLA and SCUA.
Our intention is to assist the doctors in determining the patients with a high risk of
chronic kidney disease for kidney transplant using the parameters-blood urea level(b1),
diabetes(b2), coronary artery disease(b3), blood pressure level(b4) and bacteria in urine(b5).

We select 40 patients from the UCI Machine Learning Repository with chronic kidney
disease as the data mentioned in the Table 2.
Step 1: Let Ω = {vi : v1 = 1, v2 = 2, v3 = 3, · · · , v39 = 39, v40 = 40} be the universal set
and let B = {blood urea level(b1), diabetes(b2), coronary artery disease(b3),blood pressure
level(b4), bacteria(b5) } be the set of parameters. The patients whose blood urea level
is 75 and greater than 75, patients with diabetes, patients with coronary artery disease,
patients with blood pressure level is 80 and greater than 80, patients with bacteria in urine
are chosen. We create the soft set K = (N,B) which is mainly based on the parameters
over Ω is given in Table 3. Let S = (Ω, CK) be the SCA. Let
N(b1) = {2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 24, 32, 34, 35, 37, 39, 40} ,
N(b2) = {2, 3, 4, 5, 7, 8, 9, 10, 12, 16, 17, 18, 19, 24, 25, 26, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40} ,
N(b3) = {4, 5, 7, 9, 14, 16, 17, 34, 40} ,
N(b4) = {2, 4, 5, 6, 9, 11, 12, 14, 17, 19, 20, 21, 22, 24, 26, 28, 32, 33, 34, 36, 37, 38} ,
N(b5) = {4, 12, 14, 16, 20, 28, 30, 31, 36, 37, 38, 40} .
Step 2: Let D = {D1, D2, D3, D4} be the expert doctors where they assess the patients
with the help of parameters. We create a soft set K1 = (T,D) over Ω by using the first
assessment values of expert doctors D. Each expert evaluate all the elements in Ω and
will be pointing out “the best alternatives” as their assessment result. Therefore, each
experts primary assessment values are subsets of Ω. We consider the assessments of these
experts in D = {D1, D2, D3, D4} are with the equal importance.
T (D1) = {1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, 18, 19, 20, 22, 24, 27, 28, 30, 32, 34, 35, 37, 39, 40} ,
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Table 2. Tabular representation of parameter values of some patients

Ω b1 b2 b3 b4 b5
v1 56 No No 70 Not Present
v5 148 Yes Yes 80 Not Present
v11 107 No No 90 Not Present
v16 82 Yes Yes 70 Present
v19 166 Yes No 90 Not Present
v24 235 Yes No 90 Not Present
v28 40 No No 90 Present
v31 67 No No 60 Present
v35 150 Yes No 70 Not Present
v40 96 Yes Yes 70 Present

T (D2) = {1, 2, 3, 6, 8, 10, 11, 13, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 32, 33, 35, 37, 39} ,
T (D3) = {2, 3, 4, 5, 8, 9, 12, 14, 16, 17, 20, 22, 25, 26, 28, 30, 32, 33, 34, 36, 37, 38, 40} ,
T (D4) = {1, 3, 5, 6, 8, 9, 10, 11, 15, 17, 18, 19, 21, 23, 25, 27, 29, 31, 34, 35, 36, 38, 39} .

Table 3. Tabular representation of the soft set K = (N,B)

Ω b1 b2 b3 b4 b5
v1 0 0 0 0 0
v5 1 1 1 1 0
v11 1 0 0 1 0
v16 1 1 1 0 1
v19 1 1 0 1 0
v24 1 1 0 1 0
v28 0 0 0 1 1
v31 0 0 0 0 1
v35 1 1 0 0 0
v40 1 1 1 0 1

Step 3: Now we use SCLA and SCUA in this decision making problem. Let S =
(Ω, CK) be a SCA. By using this, we get two soft sets K1 = (T ,D) and K1 = (T ,D) over
Ω where,

T : D → P (Ω),
T (Dm) = SC(T (Dm)), m = 1,2,3,4.
T : D → P (Ω),
T (Dm) = SC(T (Dm), m = 1,2,3,4.

The soft sets K1 and K1 are the assessment values of the experts group D with less confi-
dence and more confidence respectively. We get the SCLA and SCUA of first assessment
values of experts group D to obtain the soft sets K1 and K1. Consider,
T (D1) = {2, 4, 5, 7, 9, 10, 12, 14, 16, 17, 18, 19, 20, 22, 24, 28, 30, 32, 34, 35, 37, 39, 40} ,
T (D2) = {1, 2, 3, 6, 8, 10, 11, 13, 15, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 32, 33, 35, 39} ,
T (D3) = {3, 4, 5, 8, 9, 12, 14, 16, 17, 20, 22, 25, 26, 28, 30, 33, 34, 36, 37, 38, 40} ,
T (D4) = {1, 3, 5, 6, 8, 9, 10, 11, 15, 17, 18, 21, 23, 25, 27, 29, 31, 34, 35, 36, 38, 39} .
T (D1) = {1, 2, 4, 5, 7, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 27, 28, 29, 30, 32, 34, 35, 37, 39, 40} ,
T (D2) = {1, 2, 3, 6, 8, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 32, 33, 35, 37, 39, 40} ,
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T (D3) = {2, 3, 4, 5, 8, 9, 12, 14, 16, 17, 19, 20, 22, 24, 25, 26, 28, 30, 32, 33, 34, 36, 37, 38, 40} ,
T (D4) = {1, 2, 3, 5, 6, 8, 9, 10, 11, 15, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 32, 34, 35, 36, 38, 39} .
Step 4: The outcomes of expert doctors assessment can be formulated into fuzzy sets.
Let M ⊆ Ω, the characteristic function of M is denoted by χM . Based on the soft set
K1 = (T,D), we define the fuzzy set µK1 in Ω by

µK1 : Ω→ [0, 1],

µK1(vi) = 1
4

4∑
m=1

χT (Dm).

Similarly, the fuzzy sets µK1
and µK1

can be formulated as follows,

µK1
: Ω→ [0, 1],

µK1
(vi) = 1

4

4∑
m=1

χT (Dm).

µK1
: Ω→ [0, 1],

µK1
(vi) = 1

4

4∑
m=1

χT (Dm).

where T (Di) = SC(T (Dm)) and T (Dm) = SC(T (Dm)) where i = 1, ..., 40.
From K1 ⊆ K1 ⊆ K1, we can say that µK1

⊆ µK1 ⊆ µK1
. The risky factors of the patients

can be classified as fuzzy sets µK1
, µK1 and µK1

respectively with the ambiguous concept
like the patients under “high level of risk”, the patients under “average level of risk” and
the patients under “low level of risk” respectively. In this way, we obtain the fuzzy sets
µk1 , µk1 and µk1 by the memberships obtained above. The membership values of some
patients are given in Table 4. For example, we get the membership values of fuzzy sets
for the first patient:
µK1

(v1) = 3/4, µK1(v1) = 3/4, and µK1
(v1) = 2/4.

Table 4. Tabular representation of the membership of some patients

Ω µK1
µK1 µK1

v1 3/4 3/4 2/4
v5 3/4 3/4 3/4
v11 2/4 2/4 2/4
v16 3/4 3/4 2/4
v19 1 3/4 2/4
v24 1 2/4 2/4
v28 2/4 2/4 2/4
v31 1/4 1/4 1/4
v35 3/4 3/4 3/4
v40 3/4 2/4 2/4

Step 5: Let Q = {L,A,H} be the parameters. Let L be the low level of risk, A be the
average level of risk and H be the high level of risk. We define a fuzzy soft set KF = (X,Q)
over Ω where X : Q→ IΩ is given by X(L) = µK1

, X(A) = µK1 , and X(H) = µK1
. Since

IΩ denotes the set of all fuzzy sets on Ω.
Step 6: Let the weighting vector R = (0.3, 0.4, 0.3).
The weighted assessment values of the alternatives vi ∈ Ω is given by
w(vi) = 0.3 ·X(L)(vi) + 0.4 ·X(A)(vi) + 0.3 ·X(H)(vi).
Tabular representation of fuzzy soft set KF = (X,Q) with the weighted assessment values
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of some patients are given in Table 5. The ranking of the alternatives according to their
weighted values is as follows:
2 ≈ 3 ≈ 5 ≈ 8 ≈ 9 ≈ 10 ≈ 17 ≈ 18 ≈ 19 ≈ 20 ≈ 25 ≈ 32 ≈ 34 ≈ 35 ≈ 39 = 0.75 > 1 ≈
16 ≈ 24 ≈ 27 ≈ 37 = 0.675 > 4 ≈ 6 ≈ 11 ≈ 12 ≈ 14 ≈ 15 ≈ 21 ≈ 22 ≈ 23 ≈ 26 ≈ 28 ≈
29 ≈ 30 ≈ 33 ≈ 36 ≈ 38 ≈ 40 = 0.5 > 7 ≈ 13 ≈ 31 = 0.25.

Table 5. Tabular representation of fuzzy soft set KF = (X,Q) with the
weighted assessment values of some patients

Ω L A H w(vj)
v1 3/4 3/4 2/4 0.675
v5 3/4 3/4 3/4 0.75
v11 2/4 2/4 2/4 0.5
v16 3/4 3/4 2/4 0.675
v19 1 3/4 2/4 0.75
v24 1 2/4 2/4 0.65
v28 2/4 2/4 2/4 0.5
v31 1/4 1/4 1/4 0.25
v35 3/4 3/4 3/4 0.75
v40 3/4 2/4 2/4 0.5

Figure 2. Graphical representation of the weighted assessment values of patients

In step 6, we found the weighted assessment values {0.75, 0.675, 0.5, 0.25} for every
patient. According to these values, we set the rules as follows:
Rule 1: If a patient’s weighted assessment value is 0.75, the patient is at high risk for
chronic kidney disease.
Rule 2: If a patient’s weighted assessment value is 0.675, the patient is at an average risk
for chronic kidney disease.
Rule 3: If a patient’s weighted assessment value is 0.5, the patient is at low risk for
chronic kidney disease.
Rule 4: If a patient’s weighted assessment value is 0.25, the patient is at a very low level
of risk for chronic kidney disease.
From the above, the rule sets are given by,
R1 = {2, 3, 5, 8, 9, 10, 17, 18, 19, 20, 25, 32, 34, 35, 39}
R2 = {1, 16, 24, 27, 37}
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R3 = {4, 6, 11, 12, 14, 15, 21, 22, 23, 26, 28, 29, 30, 33, 36, 38, 40}
R4 = {7, 13, 31}
We conclude from this method that kidney transplantation should be used on patients
who are at high risk of chronic kidney disease. The kidney transplant is not necessary for
patients at an average level of risk of chronic kidney disease, but the patients must follow
the doctor’s advice. Patients at low and very low risk of chronic kidney disease do not
require a kidney transplant or doctor’s care. Therefore, kidney transplantation is needed
for the patients in set R1. Using MATLAB, the weighted assessment values of patients
are plotted in the graph shown in the Fig. 2 for better understanding.

6. Conclusion

Rough set theory and soft set theory are two different mathematical tools for discussing
uncertainty. A combination of these theories is a recently developing concept. In this
paper, a relation RS on the family of Z-soft covering based rough set (TS) is defined and
proved that RS is a partially ordered set in TS . Join (∨) and meet (∧) are the two opera-
tions defined on TS to prove that every pair of elements of RS has a least upper bound and
a greatest lower bound showing that TS is a lattice. Furthermore, Z-soft covering based
rough set is applied to a concrete example of selecting the right patient for a kidney trans-
plant to demonstrate its practical application. For this process, 40 patients are selected
from the UCI Machine Learning Repository dataset and the proposed decision-making
algorithm is applied. As a result, we obtained that 15 out of 40 patients are at high risk of
chronic kidney disease. We plan to extend our study in the following areas: (1) Semiring
on Z-soft covering based rough set (2) Characterization of Z-soft covering based rough
semiring.
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