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FIBONACCI RANGE LABELING ON DIRECT PRODUCT OF PATH

AND CYCLES GRAPHS

A. S. ODYUO1∗, P. MERCY1, M. K. PATEL2, §

Abstract. The primary concept of direct product constitute from the idea of product
graphs establish from Weichsel [13], where the direct product of two graphs is connected
if and only if both are connected and are not bipartite. From Imrich and Klavzar [6], the
direct product G×H of graphs G and H is the graph with the vertex set V (G) × V (H)
and for which vertices (x, y) and (x′, y′) being adjacent in G×H ⇐⇒ xx′∈ E(H) and
yy′∈E(G). Here, we characterize for direct product of graphs and prove on certain class
of direct product of path and cycles graphs with Fibonacci range labeling.

Keywords: Direct product, Fibonacci range labeling, Fibonacci range graph, golden
ratio.
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1. Introduction

In 1962, the Kronecker product of graphs proposed by Weichsel [13], establish that the
direct product of two graphs G and H is connected if and only if both G and H are
connected and are not bipartite. Imrich and Klavzar [6], gave three fundamental results
on product graphs: the Cartesian product, the direct product and the strong product.
Certain names on the direct product are used by different authors such as cardinal product,
tensor product, Kronecker product, cross product, categorical product, conjuction etc. In
particular, explicit formulae is obtain on direct product of graphs in terms of graph labeling
and several other papers appeared from the works of Jha et al. [7], Schwarz and Troxell
[11], Jha et al. [8] and for more survey on product graphs and labeling, see Chang and
Kuo [4], Liu and Yeh [10], Jha [9] and others. Our aim in this paper, is to obtain similar
categorical result for the direct product of path and cycles graph from the Fibonacci range
labeling with the objective of determining a common ratio between the connected vertex
set and edge set obtained from the product of two graphs. In the next section we prove
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our main theorems, proposition and remarks for any arbitrary labeling between any two
vertices α and β. We also present examples on Fibonacci range labeling which constitute
from product of two graphs viz., path and cycles graph.

2. Direct product of Path and Cycles graph

Recall from Weichsel [13], the direct product of two graphs G and H is connected if and
only if both G and H are connected and are not bipartite. Imrich and Klavzar [6] defined
the direct product G×H of graphs G and H is the graph with the vertex set V (G) ×
V (H) and for which vertices (x, y) and (x′, y′) being adjacent in G×H ⇐⇒ xx′∈ E(H)
and yy′∈E(G). Formally, we define a graph G = (V,E) is said to be a Fibonacci range
labeling if we label the vertices x ∈ V with distinct labels f(x)→ {f2, f3, f4, ..., fp+1} such

that, when the edge e = (α, β) is labeled with f∗(e = αβ) = d f(α)
2+f(β)2

f(α)+f(β) e or f∗(e = αβ)

= b f(α)2+f(β)2

f(α)+f(β) c, then the resulting edge gets unique label. Also, the ratio of each edge

to the subsequent edge is in the form of the golden ratio given by Rt(Ei,i+1) = Ei+1

Ei
≈ ψ

(for larger i), where Rt(Ei,i+1) is the ratio of the resulting induced edges (e1, e2), (e2, e3),
..., (en−1, en) and ψ = 1.618 known as the golden ratio. If a graph G exhibit a Fibonacci
range labeling then it is defined to be a Fibonacci range graph. Here, we consider all
graphs to be simple, finite and undirected with no loops. In this section, we shows some
result on the vertex edge connectivity for Pn ×K2, Pn ×K3, Pn × C3, Pn × C4, Cn ×K1

in terms of the resultant graph obtained from the two product graph.

Proposition 2.1. Consider α, β and l be in Z+ with α < β then

(i) α < α2+β2

α+β < β

(ii) l < l2+(l+2)2

l+(l+2) < l + 2, where l > 2

(iii) l < l2+(l+3)2

l+(l+3) < l + 3

(iv) l < l2+(l+5)2

l+(l+5) < l + 5

(v) l − 1 <12+l2

1+l < l

Remark 2.1. The Fibonacci numbers are {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...,} here, f0 = 0,
f1 = 1, f2 = 1, ..., but all the vertices labeled should be distinct, so we consider the label
from f2 only.

Lemma 2.1. For any direct product Ga,b × Hc,d ≡ Gα,β

Proof. For any two graph G(V,E) and H(V∗E∗) the direct product of G × H is defined
for vertex as V (G×H) = V × V∗ and edge E(G×H) = {{( vx wx), (vy wy)} : {vxvy}∈ E
and {wxwy∈ E∗}}. Then for any direct product Ga,b × Hc,d = Hc,d × Ga,b ≡ Gα,β such

that f(a)2+f(b)2

f(a)+f(b) ×
f(c)2+f(d)2

f(c)+f(d) = f(c)2+f(d)2

f(c)+f(d) ×
f(a)2+f(b)2

f(a)+f(b) ≡
f(α)2+f(β)2

f(α)+f(β) .

Theorem 2.1. For n ≥ 3, the product graph Pn ×K2 is a Fibonacci range labeling.

Proof. Let Pn be the path with vertices v1, v2, v3, ..., vn and ui, wi be the vertices of K2

which are attached to the vertices of Pn. The order of the graph G is p = 3n and size is
q = 3n− 1. Define a function f : V (G)→ {f2, f3, f4, ..., fp+1} defined by

f∗(e = αβ) = d f(α)2+f(β)2

f(α)+f(β) e or f∗(e = αβ) = b f(α)2+f(β)2

f(α)+f(β) c
(i) f(v1) = 1

(ii) f(v2) = 2
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(iii) f(vi) = fi+1, where 3 ≤ i ≤ n

(iv) f(ui) = fk+i + fk+(i−1), where 1 ≤ i ≤ n

(v) f(wi) = f2k+i + f2k+(i−1), where k = 1, 2, 3, ..., the k-copies

then we get the edge label as

(i) f(v1v2) = 1

(ii) f(v2v3) = 3

(iii) f(vivi+1) = f(vi) + fi−1, for 3 ≤ i ≤ (n− 1)

(iv) f(viui) = f(ui)− i, for 1 ≤ i ≤ 3

(v) f(viui) = f(ui)− {fi+1 − 1}, for 4 ≤ i ≤ n

(vi) f(viwi) = f(wi)− i, for 1 ≤ i ≤ 3

(vii) f(viwi) = f(wi)− fi+1, for 4 ≤ i ≤ n

From the above computations, the edge gets distinct label. Therefore, by Proposition 2.1,
(i) (ii) and (v) all the edge label are unique and distinct. Hence, Pn × K2 for n ≥ 3
is a Fibonacci range labeling. We show an illustration given in Fig. 1 for the graph P3

×K2, P4 ×K2 and the ratio of its induced edge is in the form of the golden ratio ψ = 1.618

Rt(eiei+1) =



3 for i = 1

1.33 for i = 2

1.750 for i = 3

1.571 for i = 4

1.636 for i = 5

1.611 for i = 6

1.620 for i = 7

1.617 for i = 8

1.618 for i = 9

for higher order of n

. . .

1.618 for i = n

(1)

Rt(e
1
je

1
j+1) =



1.583 for j = 1

1.631 for j = 2

1.645 for j = 3

1.608 for j = 4

for higher order of n

. . .

1.618 for j = n

(2)
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Rt(e
2
ke

2
k+1) =



1.611 for k = 1

1.620 for k = 2

1.617 for k = 3

1.618 for k = 4

for higher order of n

. . .

1.618 for k = n

(3)

For larger (i, j, k), Rt(eiei+1), Rt(e
1
je

1
j+1), Rt(e

2
k e

2
k+1) approaches to the value of 1.618

i.e., ≈ ψ, where ψ = 1.618 is the value of the golden ratio. Hence, for Pn × K2 the ratio
of its edge label converges to the golden ratio when higher order are considered for n.

Example 2.1. A Fibonacci range graph of P3 × K2, P4 × K2 is illustrated in view of the
following graph.

Figure 1. Fibonacci range graph of P3 × K2, P4 × K2

The values of the ratio fluctuate and differ as the order of n increases and it converges
to ψ for higher order of n.

Theorem 2.2. For n ≥ 3, the product graph Pn ×K3 is a Fibonacci range labeling.

Proof. This proof follows from Theorem 2.1, by replacing K2 with K3 with the added
vertex label

(i) f(zi) = f3k+i + f3k+(i−1), where k = 1, 2, 3, ..., the k-copies

then it will generate the edge label as

(i) f(vizi) = f(zi)− i, for 1 ≤ i ≤ 3

(ii) f(vizi) = f(zi)− fi+1, for 4 ≤ i ≤ n
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And the rest follows the same from Theorem 2.1, the following labeling is illustrated in
Fig. 2 where the product graph P3 × K3, P4 ×K3 is shown with the corresponding edge
label required to appear towards the golden ratio ψ.

Example 2.2. A Fibonacci range graph of P3 × K3, P4×K3 is illustrated in view of the
following graph.

Figure 2. Fibonacci range graph of P3 ×K3, P4 ×K3

The values of the ratio fluctuate and differ as the order of n increases and it converges
to ψ for higher order of n.

Corollary 2.1. Without loss of generality, from Theorem 2.1 and Theorem 2.2, for any
direct product of two graph graph Pn × Km is a Fibonacci range labeling for any values of
n ≥ 3, m ≥ 2 and by lemma 2.1, it follows.

Theorem 2.3. For n ≥ 3, the product graph Pn × C3 is a Fibonacci range labeling.

Proof. Let Pn × C3 be the graph with vertices v1, v2, v3 ,..., vn and u1, u2, u3 ,..., um.
The order of the graph is p = 2n − 1 and size q = 3n − 3 edges. Define a function
f : V (G)→ {f2, f3, f4, ..., fp+1} defined by

f∗(e = αβ) = d f(α)2+f(β)2

f(α)+f(β) e or f∗(e = αβ) = b f(α)2+f(β)2

f(α)+f(β) c
(i) f(vi) = fi+1, where 1 ≤ i ≤ n

(ii) f(ui) = fk+(i+1) + fk+i, where k = 1, 2, 3, ..., the k-copies

then we get the edge gets label as

(i) f(v1v2) = 1

(ii) f(v2v3) = 3

(iii) f(vivi+1) = f(vi) + fi−1, for 3 ≤ i ≤ (n− 1)

(iv) f(viui) = f(ui) − fi+1, for 1 ≤ i ≤ (n− 3) and 1 ≤ i ≤ (m− 2)

(v) f(vi+1ui) = f(ui) − fi+2, for 1 ≤ i ≤ (n− 3) and 1 ≤ i ≤ (m− 2)

(vi) f(vn−2um−1) = f(um−1)− {fm − 1}
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(vii) f(vn−1um−1) = f(um−1)− {fm+1 − 1}
(viii) f(vn−1um) = f(um)− {fm+1 − 1}

(ix) f(vnum) = f(um)− {fm+2 − 2}
From the above computations, the edge gets distinct label. Therefore, by Proposition 2.1,
(i) (ii) and (v) all the edge label are unique and distinct. Hence, Pn × C3 for n ≥ 3
is a Fibonacci range labeling. We show an illustration given in Fig. 3 for the graph P5

× C3, P6 × C3 and the ratio of its induced edge is in the form of the golden ratio ψ = 1.618

Rt(eiei+1) =



3 for i = 1

1.33 for i = 2

1.750 for i = 3

1.571 for i = 4

1.636 for i = 5

1.611 for i = 6

1.620 for i = 7

1.617 for i = 8

1.618 for i = 9

1.618 for i = 10

for higher order of n

. . .

1.618 for i = n

(4)

Rt(e
1
je

1
j+1) =



1.600 for j = 1

1.625 for j = 2

1.634 for j = 3

1.612 for j = 4

for higher order of n

. . .

1.618 for j = n

(5)

Rt(e
2
ke

2
k+1) =



1.631 for k = 1

1.613 for k = 2

1.640 for k = 3

1.621 for k = 4

for higher order of n

. . .

1.618 for k = n

(6)

For larger (i, j, k), Rt(eiei+1), Rt(e
1
je

1
j+1), Rt(e

2
k e

2
k+1) approaches to the value of 1.618

i.e., ≈ ψ, where ψ = 1.618 is the value of the golden ratio. Hence, for Pn × C3 the ratio
of its edge label converges to the golden ratio when higher order are considered for n.
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Example 2.3. A Fibonacci range graph of P5 × C3, P6 × C3 is illustrated in view of the
following graph.

Figure 3. Fibonacci range graph of P5 × C3, P6 × C3

The values of the ratio fluctuate and differ as the order of n increases and it converges
to ψ for higher order of n.

Theorem 2.4. For n ≥ 3, the product graph Pn × C4 is a Fibonacci range labeling.

Proof. This proof follows from Theorem 2.3, by replacing the order of C3 cycle with C4

cycle with the change in vertex label

(i) f(wi) = fk+i + fk+(i−1)

(ii) f(ui) = f2k+i + f2k+(i−1), where k = 1, 2, 3, ..., the k-copies

then it will generate the edege label as

(i) f(uiwi) = f(ui) − {f(wi)− 2}
(ii) f(ui+1wi) = f(ui+1) − {f(wi)− 2}

And the rest follows the same from Theorem 2.3, the following labeling is illustrated in
Fig. 4 where the product graph P4 × C4, P5 × C4 is shown with the corresponding edge
label required to appear towards the golden ratio ψ.

Example 2.4. A Fibonacci range graph of P4 × C4, P5 × C4 is illustrated in of the
following graph.
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Figure 4. Fibonacci range graph of P4 × C4, P5 × C4

The values of the ratio fluctuate and differ as the order of n increases and it converges
to ψ for higher order of n.

Corollary 2.2. Without loss of generality, from Theorem 2.3 and Theorem 2.4, for any
direct product of two graph Pn × Cm is a Fibonacci range labeling for any values of n ≥ 3,
m ≥ 3 and by lemma 2.1, it follows.

Theorem 2.5. For n ≥ 3, the product graph Cn × K1 is a Fibonacci range labeling.

Proof. Let Cn be the cycles with vertices v1, v2, v3, ....vnv1 and u1, u2, u3, ..., un be the
pendent vertex adjacent to vi. Define a function f : V (G) → {f2, f3, f4, ....fn+1} defined
by

f∗(e = αβ) = d f(α)2+f(β)2

f(α)+f(β) e or f∗(e = αβ) = b f(α)2+f(β)2

f(α)+f(β) c
(i) f(vi) = fi+1, where 1 ≤ i ≤ n

(ii) f(ui) = fn+(i+1), where n = number of vertices of the cycle Cn

then we get the edge gets label as

(i) f(v1v2) = 1

(ii) f(v2v3) = 3

(iii) f(vivi+1) = f(vi) + fi−1, for 3 ≤ i ≤ (n− 1)

(iv) f(vnv1) = f(vn) − 1

(v) f(viui) = f(ui) − f(vi), for 1≤ i ≤ 4

(vi) f(ui) - f(vi − 1), for 5≤ i ≤ n
From the above computations, the edge gets distinct label. Therefore, by Proposition 2.1,
(i) (ii) and (v) all the edge label are unique and distinct. Hence, Cn × K1 for n ≥ 3 is a
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Fibonacci range labeling. We show an illustration given in Fig. 5 for the graph C8 × K1

and the ratio of its induced edge is in the form of the golden ratio ψ = 1.618

Rt(eiei+1) =



3, for i = 1

1.33 for i = 2

1.750 for i = 3

1.571 for i = 4

1.636 for i = 5

1.611 for i = 6

1.620 for i = 7

1.617 for i = 8

1.618 for i = 9

1.618 for i = 10

for higher order of n

. . .

1.618 for j = n

(7)

Rt(e
1
je

1
j+1) =



1.611 for j = 1

1.620 for j = 2

1.617 for j = 3

1.622 for j = 4

1.617 for j = 5

1.617 for j = 6

1.617 for j = 7

1.617 for j = 8

for higher order of n

. . .

1.618 for j = n

(8)

For larger (i, j), Rt(eiei+1), Rt(e
1
je

1
j+1), approaches to the value of 1.618 i.e., ≈ ψ, where

ψ = 1.618 is the value of the golden ratio. Hence, for Cn × K1 the ratio of its edge label
converges to the golden ratio when higher order are considered for n.

Example 2.5. A Fibonacci range graph of C8 × K1 is illustrated in view of the following
graph.
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Figure 5. Fibonacci range graph of C8 × K1

The values of the ratio fluctuate and differ as the order of n increases and it converges
to ψ for higher order of n.

Corollary 2.3. Similarily, the direct product of cycle Cn × K1 for n ≥ 3 follows the same
from Corollary 2.1 and Corollary 2.2.

3. Conclusions

In this article, we demonstrate a brief result on the direct products of path and cycles
graph by assigning a general framework based on Fibonacci range labeling. The objective
to construct a distinct edge label is to achieve a common ratio (ψ) between the edge
labeled. This simple approach to direct product of path and cycles with regard to graph
labeling is indispensable on the complexity of product graphs.
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