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GROWTH OF SOLUTIONS OF SECOND ORDER COMPLEX LINEAR

DIFFERENTIAL EQUATIONS
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Abstract. In this paper, we study about order and hyper-order of growth of non-
trivial solutions of f ′′ + A(z)f ′ + B(z)f = 0, where A(z) and B(z) are entire functions
having some restrictions. These restrictions involve notions of Yang’s inequality, Borel
exceptional value, deficient value and accumulation ray.
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1. Introduction

Consider the second order linear differential equation

f ′′ +A(z)f ′ +B(z)f = 0, (1)

where A(z) and B(z)(6≡ 0) are entire functions. It is a well known result by Herold that
every solution of (1) is an entire function [6]. For an entire function f(z), the order of
growth, the hyper-order of growth and the exponent of convergence of zeros of f(z) are
defined by

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
= lim sup

r→∞

log+ log+M(r, f)

log r
,

ρ2(f) = lim sup
r→∞

log+ log+ T (r, f)

log r

and

λ(f) = lim sup
r→∞

log n(r, 1f )

log r

respectively, where M(r, f) = max|z|=r |f(z)| is the maximum modulus of f(z) on the
circle of radius r, T (r, f) is the characteristic function of f(z) and n(r, 1/f) is the number
of zeros of f(z) in |z| ≤ r. By applying Wiman-Valiron theory it has been proved that if
A(z) and B(z) are polynomials then, all solutions of (1) are of finite order and vice versa.
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Thus, if at least one of the A(z) and B(z) is a transcendental entire function, then almost
all solutions of (1) are of infinite order. So it is quite interesting to ask what conditions
on A(z) and B(z) will guarantee that all non-trivial solutions of (1) have infinite order?
There are many results concerning this problem. Some of them are as follows:

In 1988, Gundersen [4] proved that if A(z) and B(z) are entire functions satisfying one
of the following conditions:

(1) ρ(A) < ρ(B)
(2) A(z) is a polynomial and B(z) is a transcendental entire function
(3) ρ(B) < ρ(A) < 1/2
(4) A(z) is a transcendental entire function with ρ(A) = 0 and B(z) is a polynomial,

then every non-trivial solution of (1) is of infinite order.
In this sequel, Hellerstein, Miles and Rossi [7] proved that if ρ(B) < ρ(A) = 1/2, then
every non-trivial solutions of (1) is of infinite order.

For the case ρ(B) ≤ ρ(A) and ρ(A) > 1/2, it is seen that the above conclusion does not
hold in general. Here, we illustrate these conditions by some examples:

Example 1.1. The differential equation

f ′′ − e−zf ′ − (e−z + 1)f = 0

has a non-trivial solution f(z) = e−z of order one, where ρ(A) = ρ(B) and ρ(A) > 1/2.

Example 1.2. The differential equation

f ′′ + e−zf ′ − f = 0

has f(z) = ez+1 as its non-trivial finite order solution. Here ρ(B) < ρ(A) and ρ(A) > 1/2.

But under some conditions on A(z) and B(z) satisfying together with ρ(B) < ρ(A),
ρ(A) > 1/2 or ρ(A) = ρ(B), it was observed that every non-trivial solution of (1) is of
infinite order. For this one may refer to [10, 11, 12, 17].
In this order, some authors have used a condition that the coefficient A(z) in (1) is a
non-trivial solution of the following equation

w′′ + P (z)w = 0, (2)

where P (z) = amz
m + ...+ a0 is a polynomial of degree m ≥ 1, see [12, 19, 21].

In 2019, a problem was studied by J. Long, T. Wu and X. Wu which is as follows:

Theorem A. [15] LetA(z) andB(z) be two linearly independent solutions of (2). Suppose
the number of accumulation rays of the zero sequence of A(z) is less than m + 2. Then,
all non-trivial solutions f of (1) are of infinite order.

Motivated by above theorem, we consider a problem: What if the number of accumu-
lation rays of zero sequence of a solution of (2) are exactly m+ 2? Our results are based
on that problem. To state and prove our main results, we first recall some definitions.

Definition 1.1. [14] Suppose that f(z) is a meromorphic function in a finite complex
plane. Let γ = reiθ be a ray from origin. For each ε > 0, the exponent of convergence of
zero sequence of f(z) at the ray γ = reiθ is denoted by λθ(f) = lim

ε→0+
λθ,ε(f),

where

λθ,ε(f) = lim sup
r→∞

log n(S(θ − ε, θ + ε), f = 0)

log r
,
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here n(S(θ− ε, θ+ ε), f = 0) counts the number of zeros of f(z) with multiplicities in the
angular sector S(θ − ε, θ + ε) = {z : θ − ε ≤ arg z ≤ θ + ε, |z| > 0}.

Definition 1.2. A ray γ = reiθ is called an accumulation ray of zero sequence of f(z) if
λθ(f) = ρ(f).

The following remark is obtained immediately, one can see [15] also.

Remark 1.1. (i) The number of accumulation rays of the zero sequence of every non-
trivial solution of (2) is less than or equal to m+ 2.

(ii) The set of accumulation rays of the zero sequence of every non-trivial solution of (2)

is a subset of {θj : 0 ≤ j ≤ m+ 1}, where θj = 2jπ−arg(am)
m+2 ; 0 ≤ j ≤ m+ 1.

Definition 1.3. [20] Suppose that f(z) is a meromorphic function of order ρ(f) ∈ (0,∞).
A ray arg z = θ from the origin is called a Borel direction of order ρ(f) of f(z), if for any
ε > 0 and for any complex value a ∈ C ∪ {∞} with at most two exceptions, we have

lim sup
r→∞

log n(S(θ − ε, θ + ε, r), a, f)

log r
= ρ(f),

where n(S(θ − ε, θ + ε, r), a, f)) denotes the number of zeros, counting multiplicities of
f − a in the region S(θ − ε, θ + ε, r) = {z : θ − ε < argz < θ + ε, |z| < r}.

Example 1.3. [20] Consider the entire function f(z) = e−z
n

of order n. It has 2n Borel
directions given by

arg z =
(2k − 1)π

2n
, k = 1, 2, ..., 2n.

Definition 1.4. [16] Let f(z) be an entire function of finite order ρ(f) ∈ (0,∞). If f(z)
has p number of Borel directions and q number of finite deficient values, then f(z) is called
extremal for Yang’s inequality if q = p/2.

Example 1.4. The entire function ez has only one finite deficient value at z = 0. It has
two Borel directions at θ = π/2 and θ = −π/2. Thus, ez is an entire function extremal
for Yang’s inequality.

Definition 1.5. [20] Suppose that f(z) is a meromorphic function of finite order ρ(f) ∈
(0,∞) in the finite plane. A complex number a is called an exceptional value of f(z) in
the sense of Borel if

lim sup
r→∞

log n(r, f = a)

log r
< ρ(f).

Now we are prepared to state our first main result in which we study about order of
growth as well as hyper-order of growth of non-trivial solutions of (1).

Theorem 1.1. Suppose that B(z) is a non-trivial solution of (2) such that the number of
accumulation rays of zero sequence of B(z) are exactly m + 2 and A(z) satisfies any one
of the following conditions:

(1) A(z) is an entire function extremal for Yang’s inequality.
(2) A(z) is an entire function having a finite Borel exceptional value.

Then, every non-trivial solution f of (1) is of infinite order. Moreover,

min{ρ(A), ρ(B)} ≤ ρ2(f) ≤ max{ρ(A), ρ(B)}
whenever A(z) and B(z) are of finite order.

We illustrate the above theorem by an example:
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Example 1.5. All the non-trivial solutions of the differential equation

f
′′

+A(z)f
′
+B(z)f = 0,

have infinite order of growth, where B(z) is any non-trivial solution of f
′′ − zf = 0, which

is not a constant multiple of φj(z) = Ai(αjz) for some j = 1, 2, 3. Here αj is the cube root

of unity and Ai(z) is a special contour integral solution of f
′′ − zf = 0, called the Airy

integral and represented by Ai(z) = 1/2πι
∫
C exp{(1/3)w3− zw} dw, where the contour C

runs from ∞ to 0 along argw = −π/3 and then 0 to ∞ along argw = π/3. This B(z) is
obtained from [5]. It has exactly 1 + 2 = 3 accumulation rays of zero sequence and A(z)
satisfies any one of the followings.

(1) A(z) =
∫ z
0 e
−t2 dt is an entire function extremal for Yang’s inequality and ρ(B) <

ρ(A), see [20].

(2) A(z) = ez
2

+ 1 has ‘1’ as a finite Borel exceptional value and ρ(B) < ρ(A).

In the final result, we consider A(z) to be a transcendental entire function with a finite
deficient value and B(z) to be same as in Theorem 1.1, then we study the growth of
non-trivial solutions of (1).

Theorem 1.2. Suppose that A(z) is a transcendental entire function with a finite deficient
value and B(z) is same as in Theorem 1.1. Then all non-trivial solutions of equation (1)
are of infinite order.

The following example illustrates the above theorem:

Example 1.6. The differential equation

f
′′

+ (ez
3 − 1)f

′
+B(z)f = 0

has every non-trivial solution of infinite order, where B(z) is the same as in Example 1.5

and ‘− 1’ is the finite deficient value of A(z) = ez
3 − 1.

2. Preliminary Results

In this section, we state some lemmas which are used in the proofs of the main theorems.
Before stating these lemmas, first we recall some elementary notions.
The linear measure of a set E ⊂ [0,∞) is defined by m(E) =

∫
E dt.

The logarithmic measure, lower logarithmic density and upper logarithmic density of a set
G ⊂ [1,∞) are defined by

ml(G) =

∫
G

1

t
dt,

log dens(G) = lim inf
r→∞

ml(G ∩ [1, r))

log r
and

log dens(G) = lim sup
r→∞

ml(G ∩ [1, r))

log r
,

respectively. Lower logarithmic density and upper logarithmic density vary between 0 and
1.

The following lemma is due to Gundersen[3] which played a pivotal role to prove many
results of complex differential equations.

Lemma 2.1. Let f(z) be a transcendental meromorphic function and let, k and j be
integers such that k > j ≥ 0. Suppose that ε > 0 and α > 1 are given real constants.
Then the following holds:
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(1) there exists a set F ⊂ [0, 2π) with m(F ) = 0 and there exists a constant c > 0 that
depends only on α and integers j, k such that if φ0 ∈ [0, 2π) \ F , then there is a
constant R0 = R0(φ0) > 1 such that for all z satisfying arg z = φ0 and |z| ≥ R0,
we have ∣∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣∣ ≤ c
(
T (αr, f)

r
logα r log T (αr, f)

)(k−j)
.

If f(z) is of finite order, then f(z) satisfies∣∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣∣ ≤ |z|(k−j)(ρ(f)−1+ε),
for all z satisfying arg z = φ0 and |z| ≥ R0.

(2) there exists a set F ⊂ (1,∞) with finite logarithmic measure and there exists a
constant c > 0 that depends only on α and integers j, k such that∣∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣∣ ≤ c
(
T (αr, f)

r
logα r log T (αr, f)

)(k−j)
,

holds for all z satisfying |z| = r /∈ F ∪ [0, 1].
If f(z) is of finite order, then f(z) satisfies∣∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣∣ ≤ |z|(k−j)(ρ(f)−1+ε),
for all z satisfying |z| /∈ F ∪ [0, 1].

To state next lemma, first we need to recall notion of critical ray, which can be seen in
[13].

Definition 2.1. Suppose that P (z) = anz
n + an−1z

n−1 + ...+ a0 ; an 6= 0 and δ(P, θ) =

<(ane
inθ). A ray arg z = θ is called a critical ray of eP (z) if δ(P, θ) = 0.

We fix some notations.

E+ = {θ ∈ [0, 2π] : δ(P, θ) ≥ 0};

E− = {θ ∈ [0, 2π] : δ(P, θ) ≤ 0}.
If φ < ψ such that ψ − φ < 2π, then

S(φ, ψ) = {z ∈ C : φ < arg z < ψ};

S(φ, ψ, r) = {z ∈ C : φ < arg z < ψ, |z| < r}.
Critical rays of eP (z) divide the whole complex plane into 2n sectors of equal length π/n.

Suppose that φi and ψi ( 1 ≤ i ≤ n) are critical rays of eP (z) such that 0 ≤ φ1 < ψ1 <
φ2 < ψ2 < ... < φn < ψn and φn+1 = 2π + φ1. These critical rays form 2n disjoint sectors
S(φi, ψi) and S(ψi, φi+1) ; 1 ≤ i ≤ n in which eP (z) satisfies δ(P, θ) > 0 and δ(P, θ) < 0,
respectively.

Example 2.1. The function e−z has two critical rays at θ = π/2 and θ = −π/2. Also
E+ = [π/2, 3π/2] and E− = [−π/2, π/2].

Now we are prepared to state next lemma which gives estimate for an entire function
with integral order of growth.
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Lemma 2.2. [1] Let A(z) = d(z)eQ(z) be an entire function, where Q(z) is a polynomial
of degree n ≥ 1, and d(z) is an analytic function such that ρ(d) < ρ(A) = deg Q(z). Then
for given ε > 0, there exists a set E ⊂ [0, 2π) with linear measure zero, such that

(1) if θ ∈ E+ \ E, there exists a R(θ) > 1 such that

|A(reiθ)| ≥ exp((1− ε)δ(Q, θ)rn),

holds for all r > R(θ).
(2) if θ ∈ E− \ E, there exists a R(θ) > 1 such that

|A(reiθ)| ≤ exp((1− ε)δ(Q, θ)rn),

holds for all r > R(θ).

Remark 2.1. From the above lemma, we mention a clear notion of E+ and E− which
will be used in the proof of main theorems.

E+ =

i=n⋃
i=1

(φi, ψi), E− =

i=n⋃
i=1

(ψi, φi+1).

To state next lemma, we first fix some notations.
Let 0 ≤ α < β < 2π and S(α, β) = {z : α < arg z < β} be a sector. S denotes closure of
S. Suppose that f(z) is an entire function of finite order ρ(f) ∈ (0,∞). We say that f(z)
blows up exponentially in S if

lim
r→∞

log log |f(reiθ)|
log r

= ρ(f)

holds for any θ ∈ (α, β). We also say that f(z) decays to zero exponentially in S if

lim
r→∞

log log |f(reiθ)|−1

log r
= ρ(f)

holds for any θ ∈ (α, β).

Now we state next lemma which was originally given by Hille [2], one can also find in
[18, 12]. This lemma plays an important role to prove our results.

Lemma 2.3. Suppose that w is a non-trivial solution of (2). Set Sj = S(θj , θj+1), where

θj = 2πj−arg(am)
m+2 ; 0 ≤ j ≤ m+ 1. Then w satisfies the following properties:

(1) In each sector Sj , w either blows up or decays to zero exponentially.
(2) If w decays to zero in Sj , for some j, then it must blow up in Sj−1 and Sj+1.

However, it is possible for w to blow up in many adjacent sectors.
(3) If w decays to zero in Sj , then w has at most finitely many zeros in any closed

sub-sector within Sj−1 ∪ Sj ∪ Sj+1.
(4) If w blows up in Sj−1 and Sj , then for each ε > 0, w has infinitely many zeros in

each sector S(θj − ε, θj + ε).

The following lemma gives estimate for a meromorphic function.

Lemma 2.4. [9] Suppose that f(z) is a meromorphic function of finite order ρ. Then for
the given δ > 0 and 0 < l < 1/2, there exists a constant κ(ρ, δ) and a set Eδ ⊂ [0,∞) of
lower logarithmic density greater than 1− δ such that for all r ∈ Eδ and for every interval
I of length l, we have

r

∫
I

∣∣∣∣f ′(reιθ)f(reιθ)

∣∣∣∣ dθ < κ(ρ, δ)(l log
1

l
)T (r, f).
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Next lemma gives an upper bound for hyper-order of growth of every solution f of (1).

Lemma 2.5. [22] Suppose that A(z) and B(z) are entire functions of finite order. Then
each solution f of (1) satisfies

lim sup
r→∞

log log T (r, f)

log r
≤ max{ρ(A), ρ(B)}.

The following lemma provides lower bound for hyper-order of growth of non-trivial
solution f of (1).

Lemma 2.6. [8] Suppose that A(z) and B(z) are entire functions with ρ(A) < ρ(B) or
ρ(B) < ρ(A) < 1/2. Then every non-trivial solution f of (1) satisfies

lim sup
r→∞

log log T (r, f)

log r
≥ max{ρ(A), ρ(B)}.

Next we state and prove an auxiliary result which would be required to get foothold in
the next section.

Lemma 2.7. Let w be a non-trivial solution of (2) such that the number of accumulation
rays of zeros sequence of w(z) are exactly m + 2. Then, w(z) blows up exponentially in

each sector Sj = S(θj , θj+1), where θj = 2πj−arg(am)
m+2 ; 0 ≤ j ≤ m+ 1.

Proof. Suppose that there exist a sector Sj in which w(z) decays to zero exponentially.
Then using Lemma 2.3, w(z) has at most finitely many zeros in any closed sub-sector
within Sj−1 ∪ Sj ∪ Sj+1. But for the ray arg z = θj we have, λθj (f) = ρ(f). This implies
that there are infinite number of zeros clustering around the ray arg z = θj . Which is a
contradiction. Hence, w(z) blows up exponentially in each sector Sj .

�

3. Proofs of Theorems

Proof of Theorem 1.1. Let f be a non-trivial solution of finite order which is contrary to
the assertion. We target to prove theorem by contradiction.

(1) Suppose that A(z) is an entire function extremal for Yang’s inequality and let, A(z)
has q finite deficient values say, b1, b2, ..., bq. Then, A(z) has 2q Borel directions say,
φ1, φ2, ..., φ2q which divides whole complex plane into 2q sectors say, Ωj(φj , φj+1)
where 1 ≤ j ≤ 2q and φ2q+1 = φ1 + 2π.
As A(z) is an extremal for Yang’s inequality, so for the alternative sectors say,
Ω1,Ω3, ...,Ω2q−1, there exists φ ∈ (φj , φj+1) ; j = 1, 3, ..., 2q − 1, such that A(z)
satisfies

lim sup
r→∞

log log |A(reiφ)|
log r

= ρ(A),

and for the remaining sectors Ωj , for every deficient value bj , where j = 1, 2, ..., q,
there exists a corresponding sector domain Ωj ; j = 2, 4, ..., 2q such that

log
1

|A(z)− bj |
> C(φj , φj+1, ε, δ(bj , A))T (r,A),

holds for z ∈ Ω(φj + ε, φj+1 − ε, r0,∞), where C(φj , φj+1, ε, δ(bj , A)) is a constant
depending on φj , φj+1, ε and δ(bj , A). For simplicity we can denote it by C.
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Without loss of generality, corresponding to a finite deficient value bj0 we can take
a sector Ω2i ; 1 ≤ i ≤ q such that

log
1

|A(z)− bj0 |
> CT (r,A), (3)

holds for z ∈ Ω(φ2i + ε, φ2i+1 − ε, r0,∞).
Using Lemma 2.7, B(z) blows up exponentially in each sector Sj ; j = 0, 1, ...,m+1.
Therefore, there exist a sector Sk(θk, θk+1) such that B(z) blows up exponentially
for any θ ∈ (θk, θk+1) ∩ (φ2i + ε, φ2i+1 − ε) for some 1 ≤ i ≤ q and we have

lim
r→∞

log log |B(reiθ)|
log r

= ρ(B), (4)

for all sufficiently large r.
From Lemma 2.1, there exists a set F ⊂ [0, 2π) with m(F ) = 0 such that if
θ0 ∈ [0, 2π) \ F , then there is a constant R0 = R0(θ0) > 1 such that for all z
satisfying arg z = θ0 and |z| ≥ R0, we have∣∣∣∣∣f (k)(z)f(z)

∣∣∣∣∣ ≤ |z|2ρ(f), k = 1, 2. (5)

Combining (1), (3), (4) and (5), there exists a sequence z = reiθ such that θ ∈
(θk, θk+1) ∩ (φ2i + ε, φ2i+1 − ε) \ F , for some 1 ≤ i ≤ q and r > max{r0, R0},
we have

|B(z)| ≤
∣∣∣∣f ′′(z)f(z)

∣∣∣∣+ |A(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣
exp(rρ(B)−ε′) ≤

∣∣∣∣f ′′(reiθ)f(reiθ)

∣∣∣∣+ |(A(reiθ)− bj0) + bj0 |
∣∣∣∣f ′(reiθ)f(reiθ)

∣∣∣∣
< r2ρ(f)(1 + exp(−CT (r,A)) + |bj0 |),

which is a contradiction for sufficiently large r. Therefore, every non-trivial solu-
tion f of (1) is of infinite order.
Now to show that

min{ρ(A), ρ(B)} ≤ ρ2(f) ≤ max{ρ(A), ρ(B)},

we need to investigate the following cases:
(i) If ρ(A) < ρ(B), Then using Lemma 2.5 and Lemma 2.6, we obtain ρ2(f) =

ρ(B).
(ii) If ρ(B) ≤ ρ(A), by applying Lemma 2.1, there exists a set F ⊂ [0, 2π) with

m(F ) = 0 and a constant c > 0 such that if θ0 ∈ [0, 2π) \ F , then there is a
constant R0(θ0) > 1 such that∣∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣∣ ≤ c [T (2r, f)]2(k−j) , (6)

holds for all z satisfying |z| ≥ R0 and arg z = θ0.
Combining (1), (3), (4) and (6), there exists a sequence of points zl = rle

iθ

such that for θ ∈ (θk, θk+1) ∩ (φ2i + ε, φ2i+1 − ε) \ F for some 1 ≤ i ≤ q and
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rl →∞ as l→∞, we have

exp(r
ρ(B)−ε′
l ) < |B(rle

ιθ)| ≤
∣∣∣∣f ′′(rleιθ)f(rleιθ)

∣∣∣∣+ |(A(rle
ιθ)− bj0) + bj0 |

∣∣∣∣f ′(rleιθ)f(rleιθ)

∣∣∣∣
≤ cT (2rl, f)4 + (exp(−CT (rl, A)) + |bj0 |)cT (2rl, f)2

≤ cT (2rl, f)4(1 + o(1)).

Hence, we get

ρ(B)− ε′ ≤ lim sup
rl→∞

log log T (rl, f)

log rl
, (7)

where ε′ > 0 is arbitrary.
From (7) and Lemma 2.5 , we obtain

ρ(B) ≤ ρ2(f) ≤ ρ(A).

(2) Suppose that a is a Borel exceptional value of A(z). Then, A(z)− a has zero as a
Borel exceptional value. Applying Weierstrass factorisation theorem, we have

A(z)− a = g(z) = d(z)eQ(z),

where Q(z) = bnz
n + ...+ b0; bn 6= 0 and ρ(d) < ρ(A) = degQ(z).

This implies

|A(z)− a| = |d(z)eQ(z)| = |d(z)|eRe{Q(z)}.

Applying Lemma 2.2, for θ ∈ E− \ E, there exist a R(θ) > 1 such that

|A(reiθ)− a| < exp((1− ε)δ(Q, θ)rn), (8)

holds for all r > R(θ). For simplicity, we can say that (8) holds for θ ∈
n⋃
i=1

(ψi, φi+1)\

E and r > R(θ).
Using Lemma 2.7, there exists a sector Sk(θk, θk+1) such that B(z) blows up ex-
ponentially for any θ ∈ (ψi, φi+1) ∩ (θk, θk+1) \ E, for some 1 ≤ i ≤ n and we
have

lim
r→∞

log log |B(reiθ)|
log r

= ρ(B), (9)

for all sufficiently large r.
Using Lemma 2.1, there exists a set F ⊂ (1,∞) with finite logarithmic measure
such that ∣∣∣∣∣f (k)(z)f(z)

∣∣∣∣∣ ≤ |z|2ρ(f), k = 1, 2 (10)

holds for all z satisfying |z| /∈ F ∪ [0, 1].
All together with (1), (8), (9), and (10), there exists a sequence of points zl = rle

iθ

such that for θ ∈ (ψi, φi+1) ∩ (θk, θk+1) \ E, for some 1 ≤ i ≤ n and rl → ∞ as
l→∞, we have

exp(r
ρ(B)−ε
l ) ≤

∣∣∣∣f ′′(rleiθ)f(rleiθ)

∣∣∣∣+ |(A(rle
iθ)− a) + a|

∣∣∣∣f ′(rleiθ)f(rleiθ)

∣∣∣∣
≤ r2ρ(f)l + (exp((1− ε)δ(Q, θ)rnl ) + |a|)r2ρ(f)l

< r
2ρ(f)
l (1 + o(1)).
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This is a contradiction for sufficiently large rl. Thus, every non-trivial solution f
of (1) is of infinite order.
Proceeding on similar lines as in (1), we obtain the range of hyper-order of non-
trivial solutions f of (1). We omit the details. This completes the proof.

�

Proof of Theorem 1.2. Let f be a finite order non-trivial solution of equation (1). we aim
to prove theorem by contradiction. Suppose c ∈ C is a finite deficient value of A(z). Then
it follows from the definition that

lim inf
r→∞

m(r, 1
A(z)−c)

T (r,A)
= 2α > 0.

This gives

m

(
r,

1

A(z)− c

)
≥ αT (r,A),

for all sufficiently large r.
Applying definition of proximity function, we have

1

2π

∫ 2π

0
log

∣∣∣∣ 1

A(reιθ)− c

∣∣∣∣ dθ ≥ αT (r,A)

or

1

2π

∫ 2π

0
log |A(reιθ)− c| dθ ≤ −αT (r,A),

holds for all sufficiently large r. Thus, for any sufficiently large r, there exists zr = reιθr

such that

log |A(zr)− c| ≤ −αT (r,A), (see [9, Proof of Theorem 2]).

From Lemma 2.4, we choose δ > 0 and 0 < l < 1/2 in such a way that κ(ρ(A), δ)(l log(1/l))
is sufficiently small. We can also choose φ > 0, |θr − φ| ≤ l such that

log |A(reιθ)− c| = log |A(reιθr)− c|+
∫ θ

θr

d

dt
log |A(reit)− c| dt

≤ −αT (r,A) + r

∫ θ

θr

∣∣∣∣∣(A− c)
′
(reιt)

(A− c)(reιt)

∣∣∣∣∣ dt
≤ −αT (r,A) + κ(ρ(A), δ)(l log(1/l))T (r,A)

≤ 0,

holds for all θ ∈ [θr − φ, θr + φ] and for all sufficiently large r ∈ Eδ, where log dens(Eδ) >
1− δ. Thus we have

A(reιθ) ≤ 1 + c, (11)

for all sufficiently large r ∈ Eδ and for all θ ∈ [θr − φ, θr + φ].
Using Lemma 2.7, there exists a sector Sk(θk, θk+1) such that B(z) blows up exponentially
for any θ ∈ [θr − φ, θr + φ] ∩ (θk, θk+1) and we have

lim
r→∞

log log |B(reiθ)|
log r

= ρ(B), (12)
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for all sufficiently large r.
Combining equations (1), (10), (11) and (12), there exists a sequence of points zl = rle

ιθ

such that for all θ ∈ [θr − φ, θr + φ] ∩ (θk, θk+1) and rl →∞ as l→∞, we have

|B(rle
ιθ)| ≤

∣∣∣∣f ′′(rleιθ)f(rleιθ)

∣∣∣∣+ |A(rle
ιθ)|
∣∣∣∣f ′(rleιθ)f(rleιθ)

∣∣∣∣
exp(r

ρ(B)−ε′
l ) <

∣∣∣∣f ′′(rleιθ)f(rleιθ)

∣∣∣∣+ |(A(rle
ιθ)|
∣∣∣∣f ′(rleιθ)f(rleιθ)

∣∣∣∣
≤ r2ρ(f)l (2 + c),

which is a contradiction for sufficiently large rl. Hence, all non-trivial solutions of (1) have
infinite order. �

4. Conclusion

We provide the conditions on the coefficients of second order linear differential equation
(1) so that all non-trivial solutions have infinite order of growth. The hyper order of
growth of these solutions is proved to be of finite order.

Acknowledgement. The author is highly thankful to the anonymous referee(s) for their
kind suggestions and comments.
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