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HIGHER ORDER HERMITE-FEJÉR INTERPOLATION ON THE UNIT

CIRCLE

S. BAHADUR1, VARUN1∗, §

Abstract. The aim of this paper is to study the approximation of functions using a
higher-order Hermite-Fejér interpolation process on the unit circle. The system of nodes
is composed of vertically projected zeros of Jacobi polynomials onto the unit circle with
boundary points at ±1. Values of the polynomial and its first four derivatives are fixed
by the interpolation conditions at the nodes. Convergence of the process is obtained for
analytic functions on a suitable domain, and the rate of convergence is estimated.
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1. Introduction

Approximation of continous functions can be done using different methods by construct-
ing algebraic or trigonometric polynomials. Hermite interpolation attracted the attention
of many researchers in the last century.
Hermite interpolation [14]: It is the process of finding a polynomial which coincides
with the continous function at certain pre-assigned points, called the nodes of interpola-
tion, and its successsive derivatives coinciding with arbritarily chosen numbers.

An important step was taken when Fejér [10] in 1916 proved a theorem where the values
of the derivatives in the Hermite scheme were equal to zero.

Fejér’s theorem : If f ∈ C[−1, 1], then Hn(f, x) converges to f(x) uniformly on [-1,1]
as n tends to infinty. Interpolation polynomials Hn(f, x) is defined by

Hn(f, x) =
n∑
k=1

f(xkn)(1− xknx)

(
Tn(x)

n(x− xkn)

)2

,
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where xkn are the zeros of the Chebyshev polynomial of the first kind.
Hn(f, x) satisfies the below given conditions where k = 1, 2, ..., n.

Hn(f, xkn) = f(xkn) and H ′n(f, xkn) = 0.

Mills [13] in his paper highlights Hermite and Hemite Fejér interpolation as important

techniques in the approximation theory. Knoop and Locher [12] modified Hermite Féjer
interpolation at the zeros of Jacobi polynomials by introducing more boundary conditions
and obtaining pointwise convergence for arbitrary α, β > −1. Fejér’s theorem has been
extended to more general nodal systems. For example, in 2001, Daruis and González-Vera
[9] extended Fejér’s result to the unit circle by considering the nodal system constituted
by the complex nth roots of unity. They proved that the sequence of Hermite-Fejér inter-
polation polynomials uniformly converge for continous functions on the unit circle.

Berriochoa, Cachafeiro and Garćıa-Amor [5] extended the Fejér’s second theorem to the
unit circle. Then Berriochoa, Cachafeiro, Dı́az, and Mart́ınez Brey [6] obtained the supre-
mum norm of the error of interpolation for analytic functions and computed the order of
convergence of Hermite-Fejér interpolation on the unit circle considering the same set of
nodes as of [9].

Apart from the uniform nodal system (where nodes are equally spaced on the unit
circle), Hermite-Fejér interpolation on the unit circle have been also studied on some non-
uniformly distributed nodes on the unit circle (see [1], [2], [3], [4] and [8]).
Higher order Hermite-Fejér interpolation: It is a process of finding a polynomial
which coincides with a continous function at the nodes of the interpolation and the deriva-
tives upto rth order (r > 1) are null at the nodal points.

A considerable number of papers on higher order Hermite-Fejér interpolation processes
on real nodes have been published (see [15] and [18]). This motivated us to consider a
higher order Hermite-Fejér interpolation problem on non-uniform set of complex nodes on
the unit circle. Let us denote nodal system containing the zeros of the Jacobi polynomial

P
(α,β)
n (x) by Gauss Jacobi point system. Let us also define two sets T = {z : |z| = 1} and

D = {z : |z| < 1}.

In the present paper, we consider a Hermite-Fejér interpolation problem on the nodal
system constituted of ±1 and the projections of the Gauss Jacobi point system vertically

onto the unit circle by the transformation x =
1 + z2

2z
. The aim of this paper is to extend

the Hermite-Fejér interpolation on the unit circle problem on all the above said projected
nodes upto the fourth derivative and prove the following convergence theorem:

Theorem 1.1. Let f(z) is a function continous on T ∪ D and analytic on D. For β ≤
α ≤ 1

2
, the sequence of interpolatory polynomial {Qn(z)} satisfies the below relation

| Qn(z)− f(z) |= O
(
ω(f, n−1) log n

)
, (1)

where ω(f, n−1) represents the modulus of continuity of the function f(z), α and β are

parameters of Jacobi Polynomial P
(α,β)
n (x) and O notation refers to as n→∞ .

The paper has been organised in following manner. Preliminaries are given in section 2.
Section 3 covers the interpolation problem and explicit representation of the interpolatory
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polynomial. Section 4 is devoted to finding estimates and the proof of theorem 1.1 has
been assigned section 5.

2. Preliminaries

The differential equation satisfied by P
(α,β)
n (x) is

(1− x2)P (α,β)
′′

n (x) + [β − α− (α+ β + 2)x]P (α,β)
′

n (x) + n(n+ α+ β + 1)P (α,β)
n (x) = 0.

Using the Szegő transformation x =
1 + z2

2z
,

(z2 − 1)4P (α,β)
′′

n (x) + 4z(z2 − 1)
[
{(α+ β + 2)z2 + 1}(z2 − 1)− 2z3(β − α)

]
P (α,β)

′

n (x)

−16z6n(n+ α+ β + 1)P (α,β)
n (x) = 0.

(2)

Let Zn be set of nodes

Zn = {z0 = 1, z2n+1 = −1, zk = xk + iyk = cos θk + i sin θk ; zn+k = zk;

k = 1, 2, 3, ..., n ; xk, yk ∈ R},

which are obtained by projecting vertically the Gauss Jacobi point system on the unit
circle together with ±1.

The polynomial defined on Zn are given by (3),

Figure 1. An arbitrary point z and the nodal system Zn
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R(z) = (z2 − 1)W (z), (3)

where

W (z) =

2n∏
k=1

(z − zk) = KnP
(α,β)
n

(
1 + z2

2z

)
zn, (4)

Kn = 22nn!
Γ(α+ β + n+ 1)

Γ(α+ β + 2n+ 1)
.
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The fundamental polynomials of Lagrange interpolation on the zeros of R(z) are given
by

Lk(z) =
R(z)

(z − zk)R′(zk)
, k = 0, 1, ..., 2n+ 1. (5)

We can write z = x+ iy, where x, y ∈ R. If z ∈ T, then

| z2 − 1 |= 2
√

1− x2 (6)

and

| z − zk |=
√

2

√
1− xxk −

√
1− x2

√
1− x2

k. (7)

In order to evaluate the estimates of the fundamental polynomials formed in section 3, we
will be using below results.
All the estimates from (8)-(13) are obtained under the restriction β ≤ α.
For −1 ≤ x ≤ 1, we have

(1− x2)1/2 | P (α,β)
n (x) |= O(nα−1), (8)

| P (α,β)
n (x) |= O(nα), (9)

| P (α,β)′
n (x) |= O(nα+2), (10)

| P (α,β)′′
n (x) |= O(nα+4). (11)

Considering set of nodes Zn, where xk = cos θk , k = 1, 2, ..., n are the zeros of P
(α,β)
n (x),

then

(1− x2
k)
−1 ∼

(
k

n

)−2

, (12)

| P (α,β)′
n (xk) |∼ k−α−

3
2nα+2. (13)

For more details, refer pg.164-166 of [17].

Let f(z) be continous on T ∪ D and analytic on D. Then, there exists a polynomial
Fn(z) of degree less than (2n+ 2)(r + 1) satisfying Jackson’s inequality.[11]

| f(z)− Fn(z) | ≤ C ω(f, n−1), (14)

where ω(f, n−1) represents the modulus of continuity of the function f(z) and C is inde-
pendent of n and z.

3. The problem and explicit representation of interpolatory polynomial

Here, we are interested in determining the convergence of interpolatory polynomial
Qn(z) of degree less than (2n + 2)(r + 1) on the distinct set of nodes {zk}2n+1

k=0 with
Hermite conditions at all points satisfying{

Qn(zk) = αk, k = 0, 1, ..., 2n+ 1

Q
(r)
n (zk) = 0, k = 0, 1, ..., 2n+ 1, r = 1, 2, 3, 4 ,

(15)

where αk’s are arbitrary complex constants.
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Theorem 3.1. We shall write Qn(z) satisfying (15)

Qn(z) =
2n+1∑
k=0

f(zk)A0k(z), (16)

where A0k(z) is a polynomial of degree less than (2n+2)(r+1) satisfying the conditions
given in (17).

For j, k = 0, 1, ..., 2n+ 1 ,{
A0k(zj) = δkj ,

A
(r)
0k (zj) = 0 ; r = 1, 2, 3, 4 ,

(17)

where

A0k(z) = [Lk(z)]
5 +

4∑
p=1

cpkApk(z), (18)

Apk(z) = [R(z)]p(Lk(z))
5−p, (19)

c1k = −
5L′k(zk)

R′(zk)
, (20)

c2k = − 5

2! [R′(zk)]2
[
L′′k(zk) + 10 [L′k(zk)]

2
]
, (21)

c3k = − 5

3! [R′(zk)]3
[
− 18L′′k(zk)L

′
k(zk) + L′′′k (zk) − 198[L′k(zk)]

3
]
, (22)

c4k =− 5

4! [R′(zk)]4

[
L′′′′k (zk)− 24L′′′k (zk)L

′
k(zk)

+ [L′′k(zk)]
2 − 156[L′k(zk)]

2L′′k(zk) + 2544[L′k(zk)]
4

]
.

(23)

Proof. Let A0k(z) be written as

A0k(z) = [Lk(z)]
5 +

4∑
p=1

cpk[R(z)]p(Lk(z))
5−p. (24)

At z = zj , where j = 0, 1, ..., 2n+ 1 ,

A0k(zj) = [Lk(zj)]
5 +

4∑
p=1

cpk[R(zj)]
p(Lk(zj))

5−p.

Using (3), we have R(zj) = 0 and from (5), we have

A0k(zj) = δkj . (25)

Clearly, the first set of condition in (17) is satisfied.
In order to determine the cpk’s, we use the second set of conditions of (17).
On differentiating A0k(z) in (24) one time with respect to z, we get

A′0k(z) = 5L′k(z)[Lk(z)]
4 + c1k[R(z)(Lk(z))

4]′ +
[ 4∑
p=2

cpk[R(z)]p(Lk(z))
5−p
]′
. (26)
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Clearly, at z = zj (j 6= k), we have A′0k(z) = 0.
At z = zk, A

′
0k(z) must be equal to zero. We have

5L′k(zk) + c1k R
′(zk) = 0,

which provides (20). In a similar manner, differentiating (24) two, three and four times
with respect to z gives (21), (22) and (23) respectively by using conditions given in (17).

�

4. Estimation of the fundamental polynomials

In order to find the estimates, we intend to represent the constants cpk in general form
as given under (p=1,2,3,4)

cpk =
5

p![R′(zk)]p

[ p
2

]∑
s=0

p−s∑
r=s

epsr[L
(s)
k (zk)]

rL
(p−sr)
k (zk), (27)

where epsr are the constants independent of n and z and

[
p

2

]
denotes greatest integer

function Also, L
(s)
k (zk) denotes sth derivative of Lk(z) at z = zk.

Lemma 4.1. Let Lk(z) be given by (5), then for z ∈ T ∪ D, we have

| Lk(z) |= O

(
1

k−α+ 3
2

)
(28)

Proof. For k = 1, 2, ..., 2n

Lk(z) =
R(z)

(z − zk)R′(zk)
. (29)

Taking modulus on the both sides,

| Lk(z) | =
| R(z) |

| z − zk || R′(zk) |
,

=
| (z2 − 1)W (z) |

| z − zk || {2zW (z) + (z2 − 1)W ′(z))}z=zk |
.

Since z′ks are the zeros of W (z), using (4), we get

| Lk(z) | =

∣∣∣(z2 − 1)KnP
(α,β)
n

(
1+z2

2z

)
zn
∣∣∣

| z − zk |
∣∣∣(z2

k − 1)
{
KnP

(α,β)
n

(
1+z2

2z

)
zn
}′
z=zk

∣∣∣
=

∣∣∣(z2 − 1)P
(α,β)
n

(
1+z2

2z

)
zn
∣∣∣

| z − zk |
∣∣∣(z2

k − 1)
{
nzn−1

k P
(α,β)
n (xk) + znkP

(α,β)′
n (xk)

(
z2k−1

2z2k

)}∣∣∣
=

2|z2 − 1||P (α,β)
n (x)||z|n

| z − zk | |zk|n−2|z2
k − 1|2|P (α,β)′

n (xk)|
.
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Using (6) and (7), we get

| Lk(z) | =
2.2
√

1− x2|P (α,β)
n (x)||z|n

4(1− x2
k)
√

2

√
1− xxk −

√
1− x2

√
1− x2

k|P
(α,β)′
n (xk)|

=

√
1− x2|P (α,β)

n (x)||z|n
√

1− xxk +
√

1− x2
√

1− x2
k

√
2(1− x2

k)
√

(1− xxk)2 − (1− x2)(1− x2
k)|P

(α,β)′
n (xk)|

=

√
1− x2|P (α,β)

n (x)||z|n
√

1− xxk +
√

1− x2 − x2
k + x2x2

k

√
2(1− x2

k) | x− xk | |P
(α,β)′
n (xk)|

=

√
1− x2|P (α,β)

n (x)||z|n
√

1− xxk +
√

(1− xxk)2 − (x− xk)2

√
2(1− x2

k) | x− xk | |P
(α,β)′
n (xk)|

≤
√

1− x2|P (α,β)
n (x)|

√
1− xxk

(1− x2
k) | x− xk | |P

(α,β)′
n (xk)|

.

For | x− xk |≥ 1
2 | 1− x

2
k |, we get

| Lk(z) | ≤ C

√
1− x2|P (α,β)

n (x)|
(1− x2

k)
3/2 |P (α,β)′

n (xk)|
,

where C is constant independent of n and z. Using (8), (12) and (13), we have

| Lk(z) | = O

(
1

k−α+ 3
2

)
. (30)

Similarly, for | x− xk |≤ 1
2 | 1− x

2
k |, we get the same result as (30).

For k = 0 and k = 2n+ 1, we have

| L0(z) |=| L2n+1(z) |= O(1). (31)

From (30) and (31), we have Lemma 4.1. �

Lemma 4.2. Let cpk be given by (27), then

| cpk |= O

(
1

Kp
n np(α−1) k p/2−pα

)
. (32)

Proof. From (3) and (4), we have

R′(zk) =

(
Kn

2

)
zn−2
k (z2

k − 1)2P (α,β)′
n (xk).

Taking modulus on both the sides, we get

| R′(zk) |=

(
Kn

2

)
| zk |n−2 | (z2

k − 1) |2 | P (α,β)′
n (xk) | .
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From (6), (12) and (13), we have

| R′(zk) |= O(Kn k
−α+ 1

2nα). (33)

Similarly, from (2), (5) and (6), we have

| L(s)
k (zk) |= O(ns). (34)

Using (33) and (34) in (27), we have Lemma 4.2.
�

Lemma 4.3. Let A0k(z) be given by (18) and cpk given by (27), then for z ∈ T ∪ D,

2n+1∑
k=0

| A0k(z) | = O(log n), (35)

where −1 < α ≤ 1

2
.

Proof. From (3) and (4), we have

R(z) = (z2 − 1)KnP
(α,β)
n

(
1 + z2

2z

)
zn. (36)

Taking modulus on both the sides and using (6) and (8), we have

| R(z) |= O(Knn
α−1). (37)

For | xk − x | ≥
1

2
| 1− x2

k | and from (18) and (19), we have

2n+1∑
k=0

| A0k(z) | =
2n+1∑
k=0

| Lk(z) |5 +
2n+1∑
k=0

4∑
p=1

| cpk | | R(z) |p | Lk(z) |5−p .

Using (37), Lemma 4.1 and Lemma 4.2, we get

2n+1∑
k=0

| A0k(z) | = O

(
2n+1∑
k=0

1

k−5α+ 15
2

+
2n+1∑
k=0

4∑
p=1

1

k−5α−p+ 15
2

)
,

2n+1∑
k=0

| A0k(z) |= O

(
2n+1∑
k=0

1

k

)
= O(log n),

{
− 1 < α ≤ 13

10
− p

5

}
. (38)

Similarly, for | xk − x |≤ 1
2 | 1− x

2
k |, we get the same result.

Since, range of α with p = 4 lies in the intersection of all the cases. Hence, the lemma
follows. �

5. Proof of theorem 1.1

Let f(z) be a function that is continous on T∪D and analytic on D. Since Qn(z) is the
uniquely determined polynomial of degree less than (2n + 2)(r + 1) and the polynomial
Fn(z) satisfying equation (14) can be expressed as

Fn(z) =

2n+1∑
k=0

Fn(zk)Ak(z). (39)
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Then

| Qn(z)− f(z) | ≤ | Qn(z)− Fn(z) | + | Fn(z)− f(z) | . (40)

Using (16) and (39), we have

| Qn(z)− f(z) | ≤
2n+1∑
k=0

| f(zk)− Fn(zk) || Ak(z) |︸ ︷︷ ︸
N1

+ | Fn(z)− f(z) |︸ ︷︷ ︸
N2

.

We have

| Qn(z)− f(z) | ≤ N1 +N2. (41)

From (14) and (35), we have

N1 = O
(
ω(f, n−1) log n

)
. (42)

From (14), we have

N2 = O
(
ω(f, n−1)

)
. (43)

Using (42) and (43) in (41), we get

| Qn(z)− f(z) |= O
(
ω(f, n−1) log n

)
.

Hence, Theorem 1.1 follows.

6. Conclusions

This research paper poses a completely new problem where Hermite-Fejér interpolation
on the unit circle is extended upto the fourth derivative on the nodal system constituted
of ±1 and the projections of the Gauss Jacobi point system vertically onto the unit cir-
cle. On comparing our main convergence result (1) with the theorem 14.6 of [17] ,we can
conclude that for α = 1

2 , we get a good approximation of a function which is continous
on T ∪ D and analytic on D . The reason behind this is to make use of first modulus of
continuity instead of the second modulus of continuity used in theorem 14.6 of [17]. Since
the present problem invloves extension upto fourth derivative, a subtle open problem is
to generalize the problem upto mth derivative, where m can be even or odd. This will
provide a much broader aspect of convergence and comparisions to the present problem.
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References

[1] Bahadur, S., (2011), (0,0,1) interpolation on the unit circle, International Journal of Mathematical
Analysis, 5, pp. 1429-1434.

[2] Bahadur, S., Varun, (2021), A note on Hermite- Fejér Interpolation on the non-uniform nodes of the
Unit Circle, South East Asian J. Of Mathematics And Mathematical Sciences, 17(2), pp. 83-92.

[3] Bahadur, S., Varun, (2022), Extension of Pál type Hermite Fejér interpolation onto the unit circle,
Applied Mathematics E-Notes, 22.

[4] Bahadur, S., Varun, (2021), Revisiting Pál- type Hermite- Fejér Interpolation onto the unit circle,
Ganita, 71(1), pp. 145-153.
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