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EXISTENCE AND UNIQUENESS RESULTS FOR A TWO-POINT

NONLINEAR BOUNDARY VALUE PROBLEM OF CAPUTO

FRACTIONAL DIFFERENTIAL EQUATIONS OF VARIABLE ORDER

YAHIA AWAD1,∗, HUSSEIN FAKIH1,2, §

Abstract. In this article, we study the existence and uniqueness of solutions for a two-
point boundary value problem of Caputo fractional differential equation of variable order.
The results are obtained by means of Banach’s and Krasnoselskii’s fixed point theorems.
In addition, the obtained results are illustrated with the aid of a numerical example.
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1. Introduction

The topic of fractional calculus generalizes the integer order integration and differentia-
tion concepts to an arbitrary (real or complex) order. The essential objective of fractional
order differential conditions is to develop mathematical models that give exact portrayals
of the solutions based on the information of their dynamical behaviors. It is observed
that mathematical models based on fractional order derivatives are more efficient than
classical integer order ones. This approach had extensive applications in the mathemati-
cal modeling of real world phenomena occurring in scientific and engineering disciplines.
For example, electromagnetics, fluid mechanics, signals processing, diffusion processes,
control processing, fractional stochastic systems, etc. See ([3], [4], [5], [9], and [18], [23])
and the references therein. Many studies in fractional calculus are essentially based on
Riemann-Liouville and Caputo’s approaches. One can refer to ([1], [21], [8], [11], and [28]).

On the other hand, the operators of variable-order, which are the derivatives and inte-
grals whose order is a function of certain variables, attract attention due to their applied
significance in various research areas where physical processes appear to exhibit fractional

1 Lebanese International University, Faculty of Arts and Sciences, Department of Mathematics and
Physics, Lebanon.
e-mail: yehya.awad@liu.edu.lb; ORCID: https://orcid.org/0000-0001-9878-2482.

∗ Corresponding author.
e-mail: hussein.fakih@liu.edu.lb; ORCID: https://orcid.org/0000-0002-3763-6243.

2 Lebanese University, School of Sciences, Department of Mathematics, Khawarizmi Laboratory for
Mathematics and Applications, Lebanon.

§ Manuscript received: August 08, 2022; accepted: October 30, 2022.
TWMS Journal of Applied and Engineering Mathematics, Vol.14, No.3 © Işık University, Department
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order behavior that may vary with time or space. The continuum of order in fractional
calculus allows the order of the fractional operator to be considered as a variable. Some
practical examples of variable order fractional differential operators are: anomalous diffu-
sion modeling [12], mechanical applications [13], multifractional Gaussian noises [14], FIR
filters [15]. In additon, a comparative study of constant-order and variable-order fractional
models has been considered in [26] and [27]. For more information, see ([16], [19], and
[20]).

In the following, we present some related works that were recently done.
In [18], the authors considered the initial value problem of fractional differential equa-

tionwith the Riemann-Liouvile fractional derivative. The author obtained the basic theory
of the above fractional differential equations by the classical approach.

In [30] and [31] using the monotone iterative method, the author established the ex-
istence and uniqueness of solutions to initial value problems for fractional differential
equation of variable-orderwith the Riemann-Liouvile fractional derivative of variable or-
der.

In [2], by using the Banach contraction mapping principle, the authors considered the
existence and uniqueness of solution for the initial value problem for fractional differential
equation of variable orderith the Riemann-Liouvile fractional derivative of variable-order.

In [24], the author considered a Caputo type variable order fractional differential equa-
tion and he was able to obtain the existence–uniqueness and the Ulam–Hyers stability of
a solution of the considered problemwith the caputo derivative of variable-order.

In [32], the authors introduced the concept of approximate solution to an initial value
problem for differential equations of variable order involving the derivative argument on
half-axiswith Riemann-Liouvile fractional derivative of variable order.

In [17], the authors studied an existence and stability criteria for a boundary value prob-
lem for Hadamard fractional differential equations of variable order, where the results are
obtained based on the Kuratowski measure of noncompactness.with Hadamard fractional
derivative of variable order p(t).

Motivated by the recent works, we study in this paper the existence and uniqueness of
solutions for the following caputo fractional nonlinear two-point boundary value problems
with variable order (VOCFBVP).

cD
α(t)
0+ x(t) = f(t, x(t),cD

β(t)
0+ x(t)),

x(t)|t=0 = u0,
x (t) |t=T = uT .

(1)

where t ∈ I = [0, T ], 0 < T < +∞, D
α(t)
0+ and D

β(t)
0+ denote Caputo fractional derivative

of variable order α(t) and β(t), f is a continuous function such that f : I × R × R → R,
1 < β (t) < α (t) < 2 are the respective variable orders of the derivatives. The semigroup
properties of the Riemann-Liouville fractional integral have played a key role in dealing
with the existence of solutions to differential equations of fractional order. Based on some
results of some experts, we know that the Riemann-Liouville variable order fractional
integral does not have semigroup property, thus the transform between the variable order
fractional integral and derivative is not clear. These judgments bring us extreme difficulties
in considering the existence of solutions of variable order fractional differential equations.
For more details, see [29].

The article is organized as follows: Section (1) is an introduction. In section(2), we state
some notations, definitions, lemmas, and theorems that will be used throughout our work.
In section(3), we prove the existence and uniqueness of mild solution for the VOCFBVP



1070 TWMS J. APP. AND ENG. MATH. V.14, N.3, 2024

(1) by using Banach’s and Krasnoselskii’s fixed point theorems. While, in section(4), a
numerical example is given to to demonstrate the application of our main results.

2. Preliminaries

In this section, we introduce some notations, definitions, lemmas and theorems that are
considered prerequisites for our work

Definition 2.1. [21] Let α : R → (0,+∞), the left Riemann-Liouville fractional integral
of order α (t) for function x (t) is defined as

I
α(t)
0+ x (t) =

∫ t

0

(t− s)α(t)−1

Γ(α (t))
x (s) ds, with 0 < t < +∞.

Definition 2.2. [21] Let α : R→ (n− 1, n], where n is a natural number, the left Caputo
fractional derivative of order α (t) for function x (t) is defined as

cD
α(t)
0+ x (t) =

d

dt

∫ t

0

(t− s)−α(t)

Γ(1− α (t))
x (s) ds, with 0 < t < +∞.

Remark 2.1. [21] The variable-order fractional derivatives and integrals are considered as
extensions of the constant order fractional derivatives and integers. That is, if α (t) = α,

where α is finite positive constant real number, then I
α(t)
0+ and cD

α(t)
0+ are the usual Riemann–

Liouville fractional integrals and derivatives (see [21]). In addition, as usual, in order to
study the existence of solutions of a fractional differential equation, we transform it into
an equivalent integral equation using some fundamental properties of Iα0+and cDα

0+.

Lemma 2.1. [21] The fractional integral Iα0+x (t) , 0 ≤ t ≤ +∞ exists almost everywhere.

Lemma 2.2. [21] If 1 < β < α < 2, and x ∈ L (0, b) with 0 < b < +∞, then the

semigroup property for the Riemann–Liouville fractional integrals hold, i.e., Iα0+I
β
0+x (t) =

Iβ
0+I

α
0+x (t) = Iα+β

0+ x (t) , 0 ≤ t ≤ +∞ .

Lemma 2.3. [21] If 1 < α < 2, and x ∈ L (0, b) with 0 < b < +∞, then cDα
0+I

α
0+x (t) =

x (t) , 0 ≤ t ≤ +∞ .

Lemma 2.4. [21] The differential equation cDα
0+x (t) = 0 has unique solution

x (t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where n− 1 < α ≤ n, ci ∈ R, i = 0, 1, 2, ..., n− 1.
In addition,

Iα0+
cDα

0+x (t) = x (t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1.

Remark 2.2. [31] The Riemann–Liouville variable order fractional integrals don’t satisfy
the semigroup property, i.e.,

I
α(t)
0+ I

β(t)
0+ x (t) 6= I

α(t)+β(t)
0+ x (t) , 0 ≤ t ≤ +∞.

Thus, we obtain that there are extreme difficulties to consider the existence of solutions
of solutions of differential equations with fractional variable order derivatives as in those
of fixed order derivatives by means of nonlinear fractional analysis. This implies that we
can not transform a differential equation with variable order fractional derivatives into an
equivalent integral equation without using the above lemmas.

Definition 2.3. [31] A generalized interval is a subset I of R which is either an interval
, a point, or the empty set.
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Definition 2.4. [31] If I is a generalized interval, then set P is a partition of I if P is a
finite of generalized intervals contained in I , such that every x in I lies in exactly one of
the generalized intervals J in P .

Definition 2.5. [31] Let I be a generalized interval, let f : I → R be a function, and let
P be a partition of I. Then, f is said to be piecewise constant with respect to P if for
every J ∈ P , f is constant on J .

Definition 2.6. [31] Let I be a generalized interval. The function f : I → R is called
piecewise constant on I , if there exists a partition P of I such that f is piecewise constant
with respect to P .

Definition 2.7. [7] Let (X, ‖.‖) be a Banach space. A mapping ℘ : X → X is called a
contraction on X if there exists a positive constant K < 1 such that

‖℘(x)− ℘(y)‖ 6 K‖x− y‖, for all x, y ∈ X.

Theorem 2.1. [7](Banach’s Fixed Point Theorem) Let (X, ‖.‖) be a Banach space and
let ℘ : X → X be a contraction on X. Then ℘ has a unique fixed point x ∈ X (i.e.
℘(x) = x).

Definition 2.8. Denote by C(J,R) the Banach space of continuous functions ℘ : J → R
with the norm ‖℘‖ = sup{|℘(t)|; t ∈ J}.

3. Main Results

Throughout this paper, we consider the following assumptions:

(A1) f : I ×R2 → R is continuous and there exists ψ ∈ C(I,R+), with norm ‖ψ‖, such
that:

|f(t, u1, u2)− f(t, v1, v2)| ≤ ψ(t)(|u1 − v1|+ |u2 − v2|),
∀ t ∈ I, ui, vi ∈ R, (i = 1, 2).

(A2) If α : [0, T ] → (1, 2] and β : [0, T ] → (1, 2] are piecewise constant functions
with partition P = {[0, T1], [T1, T2], [T2, T3], ..., [TN∗−1, TN∗ ]} (N∗ is a given natural
number) of the finite interval [0, T ], then

α (t) =
N∗∑
k=1

αkIk (t) , t ∈ [0, T ] ,

β (t) =

N∗∑
k=1

βkIk (t) , t ∈ [0, T ] ,

where 1 < αk;βk < 2, k = 1, 2, 3, ..., N∗, Ik (t) is the indicator of the interval
[Tk−1, Tk] for k = 1, 2, 3, ..., N∗, where T0 = 0 and TN∗ = T , i.e.,

Ik (t) =

{
1 for t ∈ [Tk−1, Tk] ,
0 elsewhere.

(A3) For 0 ≤ r ≤ αi, i = 1, 2, ..., N∗, let trf : [0, T ]×R2 → R be a continuous function,
and there exists a positive constant L such that(

T
αi
i

TiΓ(αi+1) +GoTi

)
‖ψ‖(

1− ‖ψ‖Tαi−βi1
Γ(αi−βi+1)

) < 1,

and

tr|f(t, x(t),cD
β(t)
0+ x(t))− f(t, y(t),cD

β(t)
0+ y(t))| ≤ L|x (t)− y (t) |, 0 ≤ t ≤ T, x, y ∈ R.
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Remark 3.1. From assumption (A1), we have

|f(t, u1, u2)| − |f(t, 0, 0)| ≤ |f(t, u1, u2)− f(t, 0, 0)| ≤ ψ(t)(|u1|+ |u2|),
and

|f(t, u1, u2)| ≤ ‖ψ‖(|u1|+ |u2|) + F, where F = sup
t∈I
|f(t, 0, 0)|.

Now, in order to study the existence of solutions for (VOCFBVP) (1), we have to make
the following essential analysis.

By assumption (A2), we have∫ t

0

(t− s)−α(t)

Γ(1− α (t))
x (s) ds =

N∗∑
k=1

Ik (t)

∫ t

0

(t− s)−αk
Γ(1− αk)

x (s) ds, t ∈ [0, T ] .

Hence, (VOCFBVP) (1) is equivalent to

d

dt

N∗∑
k=1

Ik (t)

∫ t

0

(t− s)−αk
Γ(1− αk)

x (s) ds = f(t, x(t),
d

dt

N∗∑
k=1

Ik (t)

∫ t

0

(t− s)−βk
Γ(1− βk)

x (s) ds), t ∈ [0, T ] .

(2)
Now, Equation (2) in the interval [0, T1] is written as:

d

dt

∫ t

0

(t− s)−α1

Γ(1− α1)
x (s) ds = cDα1

0+x (t) = f(t, x(t),cDβ1

0+x (t)), t ∈ [0, T1] . (3)

Again, Equation (2) in the interval (T1, T2] is written as:

d

dt

∫ t

0

(t− s)−α2

Γ(1− α2)
x (s) ds = cDα2

0+x (t) = f(t, x(t),cDβ2

0+x (t)), t ∈ (T1, T2]. (4)

If we complete in the following manner, we obtain that Equation (2) in the interval
(Ti−1, Ti], i = 1, 2, 3, ..., N∗ (T0 = 0, TN∗ = T ) can be written as:

d

dt

∫ t

0

(t− s)−αi
Γ(1− αi)

x (s) ds = cDαi
0+x (t) = f(t, x(t),cDβi

0+x (t)), t ∈ (Ti−1, Ti]. (5)

Remark 3.2. By the above argument, we can say that (VOCFBVP) (1) has a (unique)
solution if there exist (unique) functions xi (t) , i = 1, 2, 3, ..., N∗, such that x1 ∈ C[0, T1]
that satisfies Equation (3) with x1(t)|t=0 = u0 and x1 (T ) |t=T1 = uT , x2 ∈ C[0, T2] that
satisfies Equation (4) with x2(t)|t=0 = u0 and x2 (T ) |t=T2 = uT , ..., and xi ∈ C[0, Ti] that
satisfies Equation (5) with xi(t)|t=0 = u0 and xi (T ) |t=Ti = uT for all i = 3, 4, ..., N∗ with
TN∗ = T.

Lemma 3.1. The solution of Equation (3) with x(t)|t=0 = u0 and x (T ) |t=T1 = uT is the
solution of the integral equation

x (t) = h (t, x (t)) +

∫ T1

0
G1(t, s)u(s)ds, (6)

where u is the solution of the fractional order integral equation

u(t) = f(t, h (t, x (t)) +

∫ T1

0
G1(t, s)u(s)ds, Iα1−β1u(t)), (7)

and G(t, s) is the Green’s function described by

G1(t, s) =

{
(t−s)α1−1

Γ(α1) − t(T1−s)α1−1

T1Γ(α1) , 0 ≤ s ≤ t ≤ T1,

− t(T1−s)α1−1

T1Γ(α1) , 0 ≤ t ≤ s ≤ T1,
(8)
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such that

G◦ := max{|G1(t, s)|, (t, s) ∈ I1 × I1}, with I1 = [0, T1] ,

and

h(t) = u0 + (uT − u0)
t

T1
. (9)

Proof. Let x (t) be a solution of equation (3), then by applying the property that

cDβ1

0+x (t) = Iα1−β1 cDα1

0+x (t) for t ∈ [0, T1] ,

we obtain that

cDα1

0+x (t) = f(t, x(t), Iα1−β1 cDα1

0+u (t)), t ∈ [0, T1] ,

where u (t) = cDα1

0+x (t). Hence,

u (t) = f(t, x(t), Iα1−β1 cDα1

0+u (t)), t ∈ [0, T1] ,

But, by Lemma (2.4), we get

x (t) = c0 + c1t+
1

Γ (α1)

∫ t

0
(t− s)α1−1 u(s)ds.

Substituting the boundary conditions x(t)|t=0 = u0 and x (T ) |t=T1 = uT , we get

c0 = u0,

and

c1 =
(uT − u0)

T1
− 1

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 u(s)ds.

Hence, the solution of equation (3) can be written as:

x (t) = u0+(uT − u0)
t

T1
− t

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 u(s)ds+

1

Γ (α1)

∫ t

0
(t− s)α1−1 u(s)ds.

Consequently, we obtain equation (7) from the fact that
∫ T1

0 =
∫ t

0 +
∫ T1

t . �

The following result is based on Banach’s fixed point Theorem to obtain the existence
of a unique solution of the (VOCFBVP) (1).

Theorem 3.1. Suppose that assumptions (A1)− (A3) hold, then (VOCFBVP) (1) has a
unique solution.

Proof. According to the above argument, (VOCFBVP) (1) can be written as equation (2).
Now, by Lemma (3.1), equation (2) can be written in the interval [0, T1] as:

x (t) = h1 (t, x (t)) +

∫ T1

0
G1(t, s)u(s)ds, 0 ≤ t ≤ T1.

Define operator T : C [0, T1]→ C [0, T1] by

Tx (t) = h1 (t, x (t)) +

∫ T1

0
G1(t, s)u(s)ds, 0 ≤ t ≤ T1.

In fact, Tx (t) ∈ C [0, T1], since x (t) ∈ C [0, T1]. Let

g(t, x(t), cDβ1

0+x (t)) = trf(t, x(t), cDβ1

0+x (t)),
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then by assumption (A3), we have function g : [0, T1] × R2 → R is continuous. Thus, for
t, t0 ∈ [0, T1] we have

|Tx (t)− Tx (t0) |

= |h1 (t, x (t)) +

∫ T1

0
G1(t, s)u(s)ds− h (t0, x (t0))−

∫ T1

0
G1(t0, s)u(s)ds|,

≤ |h1 (t, x (t))− h1 (t0, x (t0)) |+ |
∫ T1

0
|G1(t, s)−G1 (t0, s) | u(s)ds,

≤ |(uT − u0)

T1
− 1

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 u(s)ds| |t− t0|

+| 1

Γ (α1)

∫ t

0
(t− s)α1−1 f(s, x(s),cDβ1

0+x (s))ds

− 1

Γ (α1)

∫ t0

0
(t0 − s)α1−1 f(s, x(s),cDβ1

0+x (s))ds|,

≤ |(uT − u0)

T1
− 1

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 u(s)ds| |t− t0|

+| t
α1−r

Γ (α1)

∫ 1

0
(1− τ)α1−1 τ−rg(tτ, x(tτ),cDβ1

0+x (tτ))dτ

− tα1−r
0

Γ (α1)

∫ 1

0
(1− τ)α1−1 τ−rg(t0τ, x(t0τ),cDβ1

0+x (t0τ))dτ |,

≤ |(uT − u0)

T1
− 1

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 u(s)ds| |t− t0|

+
|tα1−r − tα1−r

0 |
Γ (α1)

∫ 1

0
(1− τ)α1−1 τ−r |g(tτ, x(tτ),cDβ1

0+x (tτ))| dτ +
tα1−r
0

Γ (α1)∫ 1

0
(1− τ)α1−1 τ−r |g(tτ, x(tτ),cDβ1

0+x (tτ))− g(t0τ, x(t0τ),cDβ1

0+x (t0τ))| dτ.

By the continuity of tα1−r and g, we obtain that Tx (t) ∈ C [0, T1] .
In addition, if x (t) , y (t) ∈ C [0, T1], we have

|Tx (t)− Ty (t) |

= |h1 (t, x (t)) +

∫ T1

0
G1(t, s)u(s)ds− h1 (t, y (t))−

∫ T1

0
G1(t, s)v(s)ds|,

≤ |h1 (t, y (t))− h1 (t, x (t)) |+
∫ T1

0
|G1(t, s)| |u(s)− v (s) |ds,

≤ | 1

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 v(s)ds− 1

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 u(s)ds|

+

∫ T1

0
|G1(t, s)| |u(s)− v (s) |ds,

≤ 1

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 |v(s)− u (s) |ds+

∫ T1

0
|G1(t, s)| |u(s)− v (s) |ds.



Y. A. AWAD, H. FAKIH: RESULTS FOR A TWO-POINT NONLINEAR BVP OF VARIABLE ORDER 1075

But, by assumption (A1) and if we take supremum for t ∈ [0, T1], we get

|u(s)− v (s) | = |f(t, x(t),cDβ1

0+x (t))− f(t, y(t),cDβ1

0+y (t))|,

= |f(t, x(t), Iα1−β1

0+ u (t))− f(t, y(t), Iα1−β1

0+ v (t))|,

≤ ψ (t)

(
|x (t)− y (t) |+

∫ t

0

(t− s)α1−β1−1

Γ(α1 − β1)
|u (s)− v (s) |ds)

)
,

≤ ‖ψ‖

(
‖x− y‖+

Tα1−β1
1

Γ(α1 − β1 + 1)
‖u− v‖

)
.

Hence,

‖u− v‖ ≤ ‖ψ‖(
1− ‖ψ‖Tα1−β1

1
Γ(α1−β1+1)

) ‖x− y‖ .
Thus,

|Tx (t)− Ty (t) | ≤

(
T
α1
1

T1Γ(α1+1) +GoT1

)
‖ψ‖(

1− ‖ψ‖Tα1−β1
1

Γ(α1−β1+1)

) ‖x− y‖ . (10)

Since,

(
T
α1
1

T1Γ(α1+1)
+GoT1

)
‖ψ‖(

1−
‖ψ‖Tα1−β1

1
Γ(α1−β1+1)

) < 1, then by Banach’s contraction principle, we obtain that

operator T has unique fixed point x1 (t) ∈ C [0, T1] such that x1 (0) = u0 and x1 (T1) =
uT . Therefore, x1 (t) is a unique solution of equation (3) with the boundary conditions
x1 (t) |t=0 = u0 and x1 (t) |t=T1 = uT .

In addition, equation (2) in the interval (T1, T2] can be written as equation (4). So, in
order to consider the existence result of solution to equation (4), we have to discuss its
existence in the (0, T2].

Consider the following equation

d

dt

∫ t

0

(t− s)−α2

Γ(1− α2)
x (s) ds = cDα1

0+x (t) = f(t, x(t),cDβ2

0+x (t)), t ∈ (0, T2]. (11)

It is clear that if x ∈ C [0, T2] satisfies equation (11), then it also satisfies equation (4).
Hence, let x∗ ∈ C [0, T2] be a solution of equation (11) such that x∗ (t) |t=0 = u0 and
x∗ (t) |t=T2 = uT . That is,

d

dt

∫ t

0

(t− s)−α2

Γ(1− α2)
x∗ (s) ds = f(t, x∗(t),cDβ2

0+x
∗ (t)), t ∈ (T1, T2].

Hence, we deduce that if x∗ ∈ C[0, T2] is a solution of equation (11) then x∗ ∈ C(T1, T2]
is also a solution of equation (4).

Based on this result, we will consider the existence of solution of equation (11) instead
of equation (4).

In a similar manner as above, if we take the operator I
α2

0+ on both sides of equation (11)
and use Lemma (2.4), we get

x (t) = c0 + c1t+
1

Γ (α2)

∫ t

0
(t− s)α2−1 f(t, x(t),cDβ2

0+x (t))ds, 0 ≤ t ≤ T2.

Substituting the boundary conditions x(t)|t=0 = u0 and x (T ) |t=T2 = uT , we get c0 = u0,

and c1 = (uT−u0)
T2

− 1
T2Γ(α1)

∫ T2

0 (T2 − s)α2−1 u(s)ds.Hence, the solution of equation (11)
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can be written as:

x (t) = u0 + (uT − u0) t
T2
− t

T2Γ(α2)

∫ T2

0 (T2 − s)α2−1 u(s)ds

+ 1
Γ(α2)

∫ t
0 (t− s)α2−1 u(s)ds

= h2 (t, x (t)) +
∫ T2

0 G2(t, s)u(s)ds.

Define operator T : C [0, T2]→ C [0, T2] by

Tx (t) = h2 (t, x (t)) +

∫ T2

0
G2(t, s)u(s)ds, 0 ≤ t ≤ T2.

In a similar argument as above, it follows from the continuity of the function

g(t, x(t), cDβ2

0+x (t)) = trf(t, x(t), cDβ2

0+x (t))

that the operator T : C [0, T2] → C [0, T2] is continuous and well defined. In addition, if
u(t), v(t) ∈ C[0, T2], we have

|Tu(t)− Tv (t) | = |h2 (t, y (t))− h2 (t, x (t)) |+ |
∫ T2

0
G2(t, s)u(s)ds−

∫ T2

0
G2(t, s)v(s)ds|,

≤ 1

T2Γ (α2)

∫ T2

0
(T2 − s)α2−1 |v(s)− u (s) |ds+ |

∫ t

0

(t− s)α2−β2−1

Γ(α2 − β2)
|u (s)− v (s) |ds)|,

≤

(
T
α2
2

T2Γ(α2+1) +GoT2

)
‖ψ‖(

1− ‖ψ‖Tα2−β2
2

Γ(α2−β2+1)

) ‖u− v‖ .

Hence, by assumption (A3), we obtain that Banach’s contraction principle assures that
the operator T has unique fixed point x2 (t) ∈ C [0, T2] such that x2 (0) = u0 and x2 (T2) =
uT . Therefore, x2 (t) is a unique solution of equation (4) with the boundary conditions
x2 (t) |t=0 = u0 and x1 (t) |t=T1 = uT .

In a similar manner, we can prove that equation (2) defined on (Ti−1, Ti], for all i =
3, 4, ..., N∗ with TN∗ = T , has one unique solution xi (t) ∈ C [0, Ti] such that xi (t) |t=0 = u0

and xi (t) |t=Ti = uT .
Therefore, we already proved that (VOCFBVP) (1) has one unique solution. Thus, the

proof is completed. �

Now, we present our second existence result for the (VOCFBVP) (1) which is based on
Krasnoselskii’s fixed point Theorem (see [9]).

Definition 3.1. By a mild solution of (VOCFBVP) (1), we refer to a function u ∈
C(I1, R), I1 = [0, T1], that satisfies the integral equation (7), with u the solution of the
following integral equation

u(t) = f(t, h (t, x (t)) +

∫ T1

0
G1(t, s)u(s)ds, Iα1−β1u(t)),

for all t ∈ [0, T1].

Lemma 3.2. Let For arbitrary x (t) , y (t) ∈ C [0, T1], and let 1 < β1 < 2, then

|cDβ1

0+y (t)− cDβ1

0+x (t) | ≤ T−β1
1

|Γ(1− β1)|
‖y − x‖
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Proof. It is clear that if we take supremum for all t ∈ [0, T1] that

|cDβ1

0+y (t)− cDβ1

0+x (t) | = | d
dt

∫ t

0

(t− s)−β1

Γ(1− β1)
y (s) ds− d

dt

∫ t

0

(t− s)−β1

Γ(1− β1)
x (s) ds|

≤ d

dt

∫ t

0

(t− s)−β1

Γ(1− β1)
|y (s)− x (s)| ds

≤ T−β1
1

|Γ(1− β1)|
‖y − x‖

�

Lemma 3.3. The function h : I × R → R, is Lipschitzian function with a Lipschitz
constant c such that

‖h(t, x (t))− h(t, y (t))‖ ≤ c ‖x− y‖.

Proof. Let x (t) , y (t) ∈ C [0, T1]. By applying assumption (A1) and taking supremum for
all t ∈ [0, T1], we get

|h(t, x(t))− h(t, y(t))|

=
∣∣∣ 1

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 v(s)ds− 1

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 u(s)ds

∣∣∣
≤ 1

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 |v(s)− u (s) |ds

≤ 1

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 |f(t, y(t),cDβ1

0+y (t))− f(t, x(t),cDβ1

0+x (t))|ds

≤ 1

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 |ψ(t)|(|y (t)− x (t) |+ |cDβ1

0+y (t)− cDβ1

0+x (t) |)ds

≤ ‖ψ‖Tα1
1

T1Γ (α1 + 1)

(
1 +

T−β1
1

|Γ(1− β1)|

)
‖x− y‖.

Thus

‖h(t, x)− h(t, y)‖ ≤ c ‖x− y‖,

where c =
‖ψ‖Tα1

1
T1Γ(α1+1)

(
1 +

T
−β1
1

|Γ(1−β1)|

)
. �

Theorem 3.2. Suppose that assumptions (A1) holds. If

‖ψ‖Tα1
1

T1Γ (α1 + 1)

(
1 +

T−β1
1

|Γ(1− β1)|

)
< 1 (12)

then the (VOCFBVP) (1) has at least one mild solution in C [0, T1].

Proof. By converting (VOCFBVP) (1) into a fixed point problem. Define the operator
A : C(I1, R)→ C(I1, R), I1 = [0, T1] by:

Ax(t) = h(t, x(t)) +

∫ T1

0
G1(t, s)u(s)ds, t ∈ [0, T1] , (13)

with

u(t) = f(t, x(t), Iα1−β1 u (t)).
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Let B%1 = {x ∈ C(I1, R) : ‖x‖ ≤ %1} be a closed subset of C [0, T1], where %1 is a positive
constant satisfying

%1 ≥ max
t∈[0,T1]

=+ <F
1− ℵ

,
FGoT1

1− ‖ψ‖G0T1

(
1 +

T
−β1
1

|Γ(1−β1)|

)
 ,

where

= = 2u0 + uT ,

ℵ = ‖ψ‖
(

Tα1
1

T1Γ (α1 + 1)
+GoT1

)(
1 +

T−β1
1

|Γ(1− β1)|

)
,

and

< =

(
Tα1

1

T1Γ (α1 + 1)
+GoT1

)
.

Obviously, B%1 is a Banach space with metric in C [0, T1].
Now, consider the operators A1 and A2 on B%1 as

A1x(t) = h(t, x(t))

A2x(t) =

∫ T1

0
G1(t, s)u(s)ds.

Then, for any x ∈ C([0, T1] , R) we have

Ax(t) = A1x(t) +A2x(t), t ∈ [0, T1] .

The proof is divided into three steps.
Step 1: A1x1 +A2x2 ∈ B%1 for every x1, x2 ∈ B%1

Let x1, x2 ∈ B%1 and t ∈ I, we have

|A1x1(t) +A2x2(t)| (14)

≤ |A1x1(t)|+ |A2x2(t)|

≤ |h(t, x1(t))|+
∫ T1

0
|G1(t, s)||f(t, x(t), cDβ1

0+x (t))|ds

≤ |u0|+ |uT − u0|
t

T1
+

1

T1Γ (α1)

∫ T1

0
(T1 − s)α1−1 |u(s)|ds+

∫ T

0
|G1(t, s)||u(s)|ds.

By Lemma 3.2 and taking supremum for t ∈ [0, T1], we have

|u(t)| = |f(t, x(t), cDβ1

0+x (t))|

≤ ‖ψ‖(|x (t) |+ |cDβ1

0+x (t))|) + F, where F = sup
t∈I
|f(t, 0, 0)|.

≤ ‖ψ‖

(
1 +

T−β1
1

|Γ(1− β1)|

)
‖x‖+ F.

Thus, for each t ∈ [0, T1]

|A1x1(t) +A2x2(t)| ≤ 2u0 + uT

+

(
Tα1

1

T1Γ (α1 + 1)
+GoT1

)(
‖ψ‖

(
1 +

T−β1
1

|Γ(1− β1)|

)
‖x‖+ F

)
.
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Taking supremum over t ∈ [0, T1], we have

‖A1x1 +A2x2‖ ≤ %1

for %1 ≥ =+<F
1−ℵ , where= = 2u0 + uT , ℵ = ‖ψ‖

(
T
α1
1

T1Γ(α1+1) +GoT1

)(
1 +

T
−β1
1

Γ(1−β1)

)
, and

< =
(

T
α1
1

T1Γ(α1+1) +GoT1

)
. This proves that A1x1 +A2x2 ∈ B%1 for every x1, x2 ∈ B%1 .

Step 2: The operator A1 is a contraction mapping on B%1 .
It is clear that from Lemma 3.3, A1 is a contraction mapping for

c =
‖ψ‖Tα1

1

T1Γ (α1 + 1)

(
1 +

T−β1
1

|Γ(1− β1)|

)
< 1.

Step 3: The operator A2 is completely continuous (compact and continuous) on B%1 .
First, we prove that operator A2 is continuous.
Let {xn}n∈N be a sequence such that xn → x as n→∞ in C([0, T1] , R).
To show that A2 is continuous, we have to prove that

‖A2xn −A2x‖ → 0 as n→∞.

Then for each t ∈ [0, T1], we have

|A2xn −A2x| ≤
∫ T

0
|G1(t, s)||un(s)− u(s)|ds,

where un, u ∈ C([0, T1] , R), such that

un(t) = f(t, xn(t), cDβ1

0+xn (t)) = f(t, xn(t), Iα1−β1 un(t)),

u(t) = f(t, x(t), cDβ1

0+x (t)) = f(t, x(t), Iα1−β1 u(t)),

and by (A1), we have

|un(t)− u(t)| = |f(t, xn(t),cDβ1

0+xn (t))− f(t, x(t),cDβ1

0+x (t))|

≤ |ψ(t)|(|xn(t)− x(t)|+ | cDβ1

0+xn (t)− cDβ1

0+x (t) |)

≤ ‖ψ‖(‖xn − x‖+
T−β1

1

Γ(1− β1)
‖xn − x‖).

≤ ‖ψ‖(1 +
T−β1

1

|Γ(1− β1)|
)‖xn − x‖.

Thus, if we take the supremum for t ∈ [0, T1], we get

‖un − u‖ ≤ ‖ψ‖(1 +
T−β1

1

|Γ(1− β1)|
)‖xn − x‖.

Since xn → x, then we get un(t) → u(t) as n → ∞ for each t ∈ [0, T1]. And let ε > 0 be
such that, for each t ∈ [0, T1], we have |un(t)| ≤ ε/2, and |u(t)| ≤ ε/2. Then, we have

|G1(t, s)||un(s)− u(s)| ≤ |G1(t, s)|(|un(s)|+ |u(s)|)
≤ ε|G1(t, s)|

For each t ∈ [0, T1], the function s→ ε|G1(t, s)| is integrable on I. Then applying Lebesgue
Dominated Convergence Theorem, it implies that

‖A2xn −A2x‖ → 0 as n→∞.
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Consequently, A2 is continuous.
In addition, we have

‖A2x‖ ≤ GoT1

[
‖ψ‖

(
1 +

T−β1
1

|Γ(1− β1)|

)
%1 + F

]
≤ %1

due to definitions of %1. This proves that A2 is uniformly bounded on B%1 .
Finally, we prove that A2 maps bounded sets into equicontinuous sets of C(I,R), i.e.,

B%1 is equicontinuous.
Now, Let ∀ ε > 0, ∃ δ > 0 and t1, t2 ∈ I, t1 < t2, |t2 − t1| < δ. Then we have

|A2x(t2)−A2x(t1)| ≤
∫ T1

0
|G1(t2, s)−G1(t1, s)| |u(s)|ds

≤ ‖u‖
∫ T1

0
|G1(t2, s)−G1(t1, s)| ds

≤

[
‖ψ‖

(
1 +

T−β1
1

Γ(1− β1)

)
%1 + F

]∫ T

0
|G(t2, s)−G(t1, s)| ds.

As t1 → t2, the right-hand side of the above inequality is not dependent on x and tends
to zero. Consequently,

|A2x(t2)−A2x(t1)| → 0, ∀ |t2 − t1| → 0.

Thus, {Ax} is equi-continuous on B%1 . and A is compact operator by the Arzela-Ascoli
Theorem [10], we conclude that A : C([0, T1] , R) → C([0, T1] , R) is continuous and com-
pact. Hence, all the hypotheses of Krasnoselskiiâ’s fixed point theorem are satisfied and
hence the operator A = A1 +A2 has a fixed point x1 (t) ∈ C [0, T1] on B%1 with x1 (0) = u0

and x1 (T1) = uT . Therefore, x1 (t) is a mild solution of equation (3) with the boundary
conditions x1 (t) |t=0 = u0 and x1 (t) |t=T1 = uT .

Now, if we make the same argument done in Theorem (3.1), we have equation (2) in the
interval (T1, T2] is equivalent equation (4). So, considering the existence results of solution
for equation (4) is equivalent to discussing its existence in the (0, T2].

Consider the following equation. In addition, it is clear that if x2 ∈ C [0, T2] satisfies
equation (11), then it also satisfies equation (4) such that x2 (t) |t=0 = u0 and x2 (t) |t=T2 =
uT .

By the similar way, for i = 3, ..., N∗, we could get that equation (4) defined on (Ti−1, Ti]
has at least one mild solution xi(t) ∈ C[0, Ti] with xi (t) |t=0 = u0 and xi (t) |t=T i = uT
(TN∗ = T ). Therefore, by applying Krasnoselskii’s fixed point Theorem, we obtain that
(VOCFBVP) (1) has at least one mild solution in C [0, T ]. The proof is completed. �

Remark 3.3. We studied the existence and uniqueness of the proposed model. A natural
(but involved, see, e.g., [24]) problem would be to study the stability of our proposed model
in the sense of the Ulam-Hyers stability (see e.g. [6]). This will be investigated elsewhere.

4. Numerical Example

Given the following VOCFBVP:{
cDα(t)y (t) =

√
2t+1

69e2t+1

[
5+y(t)+ cDβ(t)y(t)

1+y(t)+ cDβ(t)y(t)

]
for all t ∈ [0, 3],

y(0) = 1, and y(3) = 1,
(15)
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where

α (t) =


7
5 if 0 ≤ t ≤ 1
6
5 if 1 < t ≤ 2
9
5 if 2 < t ≤ 3

, (16)

and

β (t) =


6
5 if 0 ≤ t ≤ 1
11
10 if 1 < t ≤ 2
8
5 if 2 < t ≤ 3

, (17a)

with T0 = 0, T1 = 1, T2 = 2, and T3 = 3.
It is obvious that

f(t, u, v) =

√
2t+ 1

69e2t+1

[
5 + |u|+ |v|
1 + |u|+ |v|

]
.

is a mutually continuous function. Besides, for any u1, v1, u2, v2 ∈ R, and t ∈ [0, T ] we
have

|f(t, u1, v1)− f(t, u2, v2)| ≤ 1

69e
(|u1 − u2|+ |v1 − v2|) .

Thus,

|f(t, u, v)| =
√

2t+ 1

69e2t+1
(3 + |u|+ |v|) , with F =

5

69e
, and ‖ψ‖ =

1

69e
.

Hence, assumptions (A1)− (A3) are satisfied with

ψ(t) =

√
2t+ 1

69e2t+1
, and ‖ψ‖ =

1

69e
.

By (16) and (17a), we consider three BVPs for caputo fractional differential equations of
constant order  cD

7
5 y (t) =

√
2t+1

69e2t+1

[
5+y(t)+ cD

6
5 y(t)

1+y(t)+ cD
6
5 y(t)

]
for all t ∈ [0, 1],

y(0) = 1, and y(1) = 1,
(18a)

 cD
6
5 y (t) =

√
2t+1

69e2t+1

[
5+y(t)+ cD

11
10 y(t)

1+y(t)+ cD
11
10 y(t)

]
for all t ∈ (1, 2],

y(1) = 1, and y(2) = 1,
(19)

 cD
9
5 y (t) =

√
2t+1

69e2t+1

[
5+y(t)+ cD

8
5 y(t)

1+y(t)+ cD
8
5 y(t)

]
for all t ∈ (2, 3],

y(2) = 1, and y(3) = 1,
(20a)

Condition (12) is satisfied on [0, 1] since

‖ψ‖Tα1
1

T1Γ (α1 + 1)

(
1 +

T−β1
1

Γ(1− β1)

)
=

1
69e

Γ
(

12
5

) (1 +
1

Γ
(−1

5

)) ≈ 0.0408804 < 1,

which implies that BVP (18a) has at least one mild solution x1 ∈ C [0, 1] .
In addition, we have Go < 0.5 and condition (10) is satisfied on [0, 1] since(

T
α1−1
1

Γ(α1+1) +GoT1

)
‖ψ‖(

1− ‖ψ‖Tα1−β1
1

Γ(α1−β1+1)

) =

1
69e

(
1

Γ( 12
5 )

+ 0.5

)
(

1−
1

69e

Γ(−42
5

)

) ≈ 0.0857421 < 1,

which implies that BVP (18a) one unique solution x1 ∈ C [0, 1] .
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Also, condition (12) is satisfied on (1, 2] since

‖ψ‖Tα2
2

T2Γ (α2 + 1)

(
1 +

T−β2
2

Γ(1− β2)

)
=

1
69e2

6
5

2Γ
(

11
5

) (1 +
2−

11
10

Γ
(−1

10

)) ≈ 0.0611323 < 1,

which implies that BVP (19) has at least one mild solution x2 ∈ C(1, 2].
In addition, we have Go < 0.5 and condition (10) is satisfied on (1, 2] since(

T
α2−1
2

Γ(α2+1) +GoT2

)
‖ψ‖(

1− ‖ψ‖Tα2−β2
2

Γ(α2−β2+1)

) =

1
69e

(
2

1
5

Γ( 11
5 )

+ 1

)
(

1−
1

69e
2

1
10

Γ( 11
10

)

) ≈ 0.134529 < 1,

which implies that BVP (18a) one unique solution x2 ∈ C(1, 2].
Finally, condition (12) is satisfied on (2, 3] since

‖ψ‖Tα3
3

T3Γ (α3 + 1)

(
1 +

T−β3
3

Γ(1− β3)

)
=

1
69e3

9
5

3Γ
(

14
5

) (1 +
3−

8
5

Γ
(−3

5

)) ≈ 0.0839666 < 1,

which implies that BVP (20a) has at least one mild solution x2 ∈ C(2, 3].
In addition, we have Go < 1.5 and condition (10) is satisfied on (1, 2] since(

T
α3−1
3

Γ(α3+1) +GoT3

)
‖ψ‖(

1− ‖ψ‖Tα3−β3
3

Γ(α3−β3+1)

) =

1
69e

(
3

4
5

Γ( 14
5 )

+ 4.5

)
(

1−
1

69e
3

1
5

Γ( 6
5

)

) ≈ 0.39701 < 1,

which implies that BVP (18a) one unique solution x3 ∈ C(2, 3].
It follows from Theorems (3.2) and (3.1) that problem (15) has a unique mild solution

x (t) ∈ C [0, 3] such that

x (t) =

 x1 (t) , t ∈ [0, 1],
x2 (t) , t ∈ (1, 2],
x3 (t) , t ∈ (2, 3].

5. Conclusion

In this work, we proved the existence and uniqueness of solutions for a two-point bound-
ary value problem of Caputo fractional differential equation of variable order. These results
are investigated by means of Banach’s and Krasnoselskii’s fixed point theorems. Further-
more, we gave a numerical example that confirm the obtained theoretical results. In the
future, we will consider the existence and uniqueness of solutions for a two-point boundary
value problem of singular fractional differential equation of variable order.
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[29] Valério, D. and da Costa, J.S., (2011), Variable-order fractional derivative and their numerical ap-
proximations, Signal Process, 91, pp. 470-483.

[30] Zhang, S., (2013), Existence and uniqueness result of solutions to initial value problems of fractional
differential equations of variable-order, J. Frac. Calc. Anal, 4(1), pp. 82-98.

[31] Zhang, S., (2018), The uniqueness result of solutions to initial value problems of differential equations
of variable-order, Revista de la Real Academia de Ciencias Exactas, F́ısicas y Naturales. Serie A.
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