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GENERATION OF GRAPHS USING HYPER-EDGE REPLACEMENT

GRAPH REWRITING P SYSTEM

K. VINODHINI1, M. P. SANKAR1∗, §

Abstract. Hyper-edge replacement graph grammar is considered a kernel in generating
graphs and hypergraphs, and it has stood out enough to be noticed in recent years.
George Paun proposed Membrane computing, frequently known as P system, as a bio-
inspired model or a model of natural computing. The field of Membrane computing is
first roused by the manner in which nature processes at the cell levels. In this paper,
using the hyper-edge replacement graph rewriting P system, significant graphs like Snail
graphs, Caterpillar graphs, Comb graphs, Fire Cracker graphs, and Wheel graphs are
generated with hyper-edge rules of minimum order.

Keywords: Hyper-edge, Hyper-edge replacement graph grammar (HRG), Graph P sys-
tem, Hyper-edge replacement graph rewriting P system (HRGRPS).
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1. Introduction

The notion of formal grammars on strings has been outstretched to grammars on graphs,
resulting in graph grammars. It provides a tool for modeling the local transformation of
graphs in a mathematically accurate manner. Node replacement and edge replacement
are the two most primordial options for rewriting a graph, but hyper-edge replacement
is included in the more general situation [1]. An atomic object that has an ordered
set of inbound tentacles attached to the nodes via the source function and an ordered
set of outbound tentacles attached to the nodes via the target function is known as a
hyper-edge [2]. Hyper-edge replacement graph grammar is a rudimentary methodology
for rewriting graphs and hypergraphs. Feder and Pavlidis instituted this term in the early
seventies, and many analysts in the later part of the seventies have colossally explored
it. In this grammar, the hyper-edges with non-terminal labels are replaced by graphs
with terminal and non-terminal hyper-edge labels. The set of all graphs generated by the
above-mentioned grammar is called Hyper-edge replacement language. The notion HRG
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stands for all Hyper-edge replacement grammars, while HRL stands for all Hyper-edge
replacement languages.

In 1998, a novel Membrane computing [3] paradigm was proposed, which was educed
from biology. This computing was proposed because it endeavored to model what occurs
in a cell: the behavior of proteins, enzymes, membrane structure, how they evolve, and
how they peregrinate through the membranes as they transit. It was introduced by Pro-
fessor George Paun of Romania, and accordingly, it is known as the P system. Initially,
a theoretical model was created, and the first article was published in 2000. It belongs
to the family of distributed parallel computing devices because whatever happens within
the membrane occurs parallel [4]. Then the message passes from inside to outside of each
membrane, and while crossing the membrane, they carry some information. Membrane
structure, multisets, and rules are considered as the three indispensable aspects of Mem-
brane computing. Here, multisets may be enzymes, proteins, or chromosomes later on
strings, arrays, graphs, etc. These multisets of items mutate throughout time as they
transit from one membrane to another, and a set of rules governs this.

The set of all Snail graphs and Wheel graphs cannot be generated by HRG of minimum
order (order less than 3) [5]. The proposed idea of this paper is to generate with smallest
possible order and to build the set of all Caterpillar graphs as well as some notable graphs
such as Comb graphs and Fire Cracker graphs using the conventional model (HRGRPS).

2. PRELIMINARIES

The graphs which have been employed in this paper are simple and undirected. The
standard representation of a graph G is a tuple (V,E) where V denotes the node set and E
denotes the edge set in which each edge connects precisely two nodes, whereas a hypergraph
is a graph in which each edge called hyper-edge connects an arbitrary number of nodes
instead of two nodes. Today’s real-world social networks heavily rely on hypergraphs. So,
the hyper-edge and hypergraphs are used as atomic items in hyper-edge replacement graph
grammar, which is most powerful among all other existing grammars. This section recalls
some basic notions regarding hypergraphs and hyper-edge replacement graph grammar.

Definition 2.1. [5] A hypergraph H over an arbitrary, but fixed set of labels C consisting
(V,E, s, t, l) where V denotes the node set (finite), E denotes the hyper-edge set (finite),
s is the source function which assigns each hyper-edge source nodes denoted by s(e) and
t is the target function which assigns each hyper-edge target nodes denoted by t(e) where
e ∈ E and l is the labelling function which gives each hyper-edge a label. The set of all
hypergraphs over the label set C is denoted by HC .

Definition 2.2. [5] A hypergraph H ∈ HC is said to be a handle if EH = {e}, sH(e) =
beginH and tH(e) = endH . Here beginH , endH ∈ V ∗ where V ∗ denotes the set of all finite
sequence of nodes over V .

The ordered pair (m,n) denotes the type of the handle, in which m denotes the number
of source nodes of e and n denotes the number of target nodes of e.

Definition 2.3. [5] A hyper-edge replacement grammar denoted by HRG consist of four
components (N,T, P, S) where

• N ⊆ C denotes the set of non-terminal hyper-edge labels,
• T ⊆ C denotes the set of terminal hyper-edge labels,
• P denotes the set of production rules which is finite and consists of ordered pairs

(A,R) where A ∈ N and R ∈ HC,
• S ∈ HC denotes the axiom or the start graph with (1,1) handle.
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Definition 2.4. [6] The attaching nodes are defined as a mapping att : E → V ∗, which
assigns a sequence of pairwise distinct attachment nodes att(e) to each e ∈ E.

Definition 2.5. [5] For H ∈ HC , the set of nodes occuring in the sequence extH =
beginH .endH is called the set of external nodes of H and is denoted by EXTH .

Definition 2.6. [5] If ∀ (A,R) belongs to P , |EXTR| ≤ r then a hyper-edge replacement
grammar is said to have an order r for some r ∈ N.

Definition 2.7. [5] The hypergraph language L(HRG) generated by HRG consist of all
terminal labeled hypergraphs which can be derived from S by applying productions of P ,

L(HRG) = {H ∈ HT |S ⇒∗
P H}.

A simple method of rewriting hypergraphs and graphs called “hyper-edge replacement”
was first introduced in the early 1970s. The idea of hyper-edge replacement graph grammar
is extended to the hyper-edge replacement graph P system as a result of studies on hyper-
edge replacement graph grammars generating string graph languages and by the non-
deterministic parallelism mode of rewriting P system.

Definition 2.8. [7] A hyper-edge replacement graph rewriting P system (HRGRPS) is a
construct
Π = (NH , VH , TH , µ,M1,M2, ..,Mn, R1, R2, .., Rn, (n, d), i0) where
NH is a finite set of node labels,
VH is a finite set of non-terminal and terminal hyper-edge labels,
TH is a finite set of terminal hyper-edge labels,
µ is the membrane structure with n membranes,
Mi is the finite set of (1,1) hyper-edges over VH initially present in the region i where
i = 1, 2, .., n,
d is the depth of the membranes which are labeled by numbers in the set {1, 2, .., n} with
the skin membrane being labelled as 1,
Ri denotes the finite set of hyper-edge replacement graph rules in membrane i such that
the rules in Ri is of the form (A→ B(tgt)) where A is replaced with the graph B with the
help of attachment instructions,
tgt ∈ {here, out} ∪ {inj |1 ≤ j ≤ n}, and
i0 is the output membrane.

Definition 2.9. [5] A Snail graph is a graph in which the edges are rotated to create a
spiral appearance like a snail’s head.

Fig 2.1: Snail graph
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Definition 2.10. [8] A Caterpillar graph, Caterpillar tree, or just “Caterpillar,” is a
tree with all its vertices within one distance of a central path.
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Fig 2.2: Caterpillar graph
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Definition 2.11. [9] A Comb graph is formed by connecting a single pendant edge to
each vertex of a path.

Fig 2.3: Comb graph
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Definition 2.12. [8] A Fire cracker graph is a graph formed by concatenating stars by
connecting one leaf from each.

Fig 2.4: Fire cracker graph
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Definition 2.13. [5] A Wheel graph is a graph in which all the vertices in a cycle are
connected by a single universal vertex.
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Fig 2.5: Wheel graph
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3. MAIN RESULTS

This section generates Snail graphs, Caterpillar graphs, Comb graphs, Fire cracker
graphs, and Wheel graphs using the hyper-edge replacement graph rewriting P system.
All the graphs mentioned above have the same generating system (HRGRPS), but due
to their various structural differences, they have different labels and production rules.
Since the structures of the Caterpillar, Comb, and Fire Cracker graphs are identical, the
attachment instructions are the same for all these three graphs. Thus, the generation of
these classes of graphs is accomplished in a single theorem. Due to the complex structure
(an additional node appears for each spiral rotation) of the Snail graph, the generation
of the Snail graphs cannot be categorized under the previously listed classes. Similarly,
the production rules and attachment instructions for the Wheel graphs are also entirely
distinct from all other graphs. Hence, the set of all Snail graphs and Wheel graphs is
generated in a separate theorem.

Generally, Ri denotes the finite set of production rules in the membrane i. For avoiding
confusions, the notation Rij represents the jth rule in the ith membrane. For instance,

R12 represents the 2nd rule in the 1st membrane.
The attachment nodes is of the form (a, b). Here, a represents the node label in the

right hand side rule of Rij and b represents the node label in the left hand side rule of Rij .

Theorem 3.1. The set of all Snail graphs can be generated by hyper-edge replacement
graph rewriting P system using two membranes with rules of order 2.
The HRGRPS is a construct

ΠS= ({1, 2, 3, 4, 5}, {S1, a, b}, {a, b, c, d, e, f, g, h, i}, [1[2]2]1], R1, R2, (2, 1), 1).

Generally, R1 denotes the set of production rules in the first membrane and R2 denotes
the set of production rules in the second membrane. Here, R1 consist of only one rule
denoted by R11and R2 consists of two rules R21, and R22.
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R11 : S →

Fig 3.1.1: The production rules for generating Snail graphs

R21 : S1 → R22 : S1 →
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Attachment nodes for R21: ((2, H), (3, T ), (1, A), here) and R22: ((1, H), (2, T ), out).

Proof. At first, the node label in R11 designated as 1 is the Head node(H), the node label
in R11 designated as 5 is the Tail node(T), and the attachment node(A) is the node next
to the head node on the left. After using the production rule R21, the head node and tail
node succeeds by one and two respectively for the connecting purpose, and the attachment
node remains as stated previously.

Initially, S is the (1, 1) handle in the skin membrane. A graph with the non-terminal
S1 is produced after R11 is utilized and enters the second membrane. After entering, it
can apply either R21 or R22. If it chooses R22, then the resultant graph produced by
applying R11 becomes the left hand side rule of R22. The attachment nodes for R22 is
((1, H), (2, T ), out). Here the 1 and 2 represents the node labels in the right hand side
rule of R22 and H and T represents the node labels in the left hand side rule of R22. Now
by applying R22, the Snail graph with a head component is constructed and emerges to
the skin membrane, since the target is out. For generating the Snail graph of order one,
R11 is applied to the graph with handle S to generate a graph with non-terminal S1. If
it chooses R21, then the resultant graph produced by applying R11 becomes the left hand
side rule of R21. The attachment nodes for R21 is ((2, H), (3, T ), (1, A), here). Here the
2, 3, and 1 represents the node labels in the right hand side rule of R21 and H,T, and A
represents the node labels in the left hand side rule of R21. Now by applying R21 once,
it builds a Snail graph of order one with the non-terminal S1 and stays in the membrane
two since the target is here. The resultant graph uses the terminal rule R22 in membrane
two and thus generates the Snail graph of order one.The process repeats until the desired
order is generated.

In general, R11 is applied to handle S to construct a graph with non-terminal S1. It
employs R21 n times after entering membrane two and it utilizes terminal rule R22, thus
generates the Snail graph of order n. �

Theorem 3.2. The set of all Caterpillar graphs, Comb graphs, and Fire Cracker graphs
can be generated by hyper-edge replacement graph rewriting P system using two membranes
with rules of order 2.
The HRGRPS for Caterpillar, Comb, and Fire Cracker graphs is a construct

ΠC = ({1, 2, 3, 4, 5, 6, 7, 8}, {S1, S2, S3, a, b, c}, {a, b, c}, [1[2]2]1], R1, R2, (2, 1), 1).

Generally, R1 denotes the set of production rules in the first membrane and R2 denotes the
set of production rules in the second membrane. Here, R1 consists of three rules R11, R12,
and R13 and R2 consists of six rules R21, R22, R23, R24, R25, and R26.
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R11 : S →

Fig 3.2.1: The production rules for generating Caterpillar graphs

R21 : S1 → R22 : S1 →
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R12 : S →

Fig 3.2.2: The production rules for generating Comb graphs

R23 : S2 → R24 : S2 →1 2S2
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R13 : S →

Fig 3.2.3: The production rules for generating Fire Cracker graphs

R25 : S3 → R26 : S3 →
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Attachment nodes for R21, R23, and R25: ((3, 1), (1, 2), here) and R22, R24, and R26:
((1, 1), (2, 2), out).

Proof. The system ΠC consists of two membranes. In first membrane, R1 has three rules
R11, R12, and R13 and in second membrane, R2 has six rules R21, R22, R23, R24, R25, and
R26, in which R22, R24, and R26 are terminal rules. Intially, S is the (1,1) handle in the
first membrane.

• If the rule R11 is chosen, the set of all Caterpillar graphs are generated by using
R21 and R22.
• If the rule R12 is chosen, the set of all Comb graphs are generated by using R23

and R24.
• If the rule R13 is chosen, the set of all Fire Cracker graphs are generated by using
R25 and R26.

Generation of the set of all Caterpillar graphs:
For generating the set of all Caterpillar graphs, the rule R11 with non-terminal S1

is applied to the (1,1) handle S in the first membrane. The resultant graph produced
enters the second membrane. In membrane two, it can apply either R21 or R22. If it
applies R22 with the help of the attachment nodes (as explained in the Theorem 3.1),
the Caterpillar graph of order two is generated. In general, R11 with the non-terminal S1
is applied to the handle S. Then it uses R21 n − 2 times and R22 once to generate the
Caterpillar graph of order n. The HRL generated by the set of all Caterpillar graphs is
L(HRGRPS) = {an−1b3n|n ≥ 2}.
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Generation of the set of all Comb graphs:
For generating the set of all Comb graphs, the rule R12 with non-terminal S2 is applied

to the (1,1) handle S in the first membrane. The resultant graph produced enters into the
second membrane. In membrane two, it can apply either R23 or R24. If it applies R23 with
the help of the attachment nodes (as explained in the Theorem 3.1), the Comb graph of
order two is generated. In general, R12 with the non-terminal S2 is applied to the handle
S. Then it uses R23 n − 2 times and R24 once to generate the Comb graph of order n.
The HRL generated by set of all Comb graphs is L(HRGRPS) = {an−1bn|n ≥ 2}.
Generation of the set of all Fire Cracker graphs:

For generating the set of all Fire Cracker graphs, the rule R13 with non-terminal S3
is applied to the (1,1) handle S in the first membrane. The resultant graph produced
enters into the second membrane. In membrane two, it can apply either R25 or R26. If
it applies R25 with the help of the attachment nodes (as explained in the Theorem 3.1),
the Fire Cracker graph of order two is generated. In general, R13 with the non-terminal
S3 is applied to the handle S. Then it uses R25 n− 2 times and R26 once to generate the
Fire Cracker graph of order n. The HRL generated by set of all Fire Cracker graphs is
L(HRGRPS) = {an−1bnc5n|n ≥ 2}.

�

Theorem 3.3. The set of all Wheel graphs can be generated by hyper-edge replacement
graph rewriting P system using two membranes with rules of order 2.
The HRGRPS is a construct

ΠW = ({1, 2, 3, 4}, {S1, S2, a, b}, {a, b}, [1[2]2]1], R1, R2, (2, 1), 1).

Generally, R1 denotes the set of production rules in the first membrane and R2 denotes the
set of production rules in the second membrane. Here, R1 consists of three rules R11, R12,
and R13 and R2 consist of one rule R21.

R11 : S → R12 : S1 → R13 : S1 →

R21 : S2 →

Fig 3.3.1: The production rules for generating Wheel graphs
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Attachment nodes for R12: ((1, H), (2, T2), here), R13: ((1, H), (2, T2), in2) and
R21: ((1, H), (2, T2), (4, T1), out).

Proof. Initially, the node labeled as 1 in R11 is considered as the head node(H), while
node 2 in R11 (the node associated to the left of 1) is the main tail node, marked by T1,
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and node 4 in R11 is taken to be the second tail node, denoted by T2. After using R12 in
membrane one, T2 increases by 1, but the head and tail node (T1) stays constant.

The first membrane consists of a (1,1) handle labeled S. It uses R11 to create a graph
with non-terminals S1 and S2. Since the skin membrane contains two additional rules,
it has a choice in applying rules. If R13 is used, the non-terminal S1 terminates there
and forms a graph with the non-terminal S2, before entering the second membrane. S2
is terminated by R21 in the second membrane, which then produces the Wheel graph of
order 3. For generating the Wheel graph of order 4, use R11 to generate a graph with
non-terminals S1 and S2. It utilizes R12 and stays there, then it enters membrane two by
applying R13. After using the terminal rule R21 in membrane two, the resultant graph is
sent out.

In general, the nth order Wheel graph is generated by utilizing R11 to produce a graph
with non-terminals S1 and S2. The rule R12 is applied n−3 times and R13 is applied once
to build a graph with S2. Then by entering second membrane it utilizes R21 once and
the final output is collected in the skin membrane. The HRL generated by this system is
{anbn|n ≥ 3}. �

4. Conclusion and Future work

The generation of the set of all Snail and Wheel graphs is accomplished in this proposed
work with the smallest possible order. In addition, some prominent graphs like Caterpillar
graphs, Comb graphs, and Fire Cracker graphs are generated in a single construct, which
greatly aid in studying the topological features of benzenoid hydrocarbons, particularly
resonance interactions among individual hexagons of a benzenoid system. In the future, we
plan to generate some prominent classes of Wheel and Cycle graphs using this P system.
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