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ABSOLUTE CONVERGENCE WITH SPEED AND MATRIX

TRANSFORMS

A. AASMA1∗, P. N. NATARAJAN2, §

Abstract. We define the notion of absolute convergence with speed, where the speed is
defined by a monotonically increasing positive sequence λ. Also we present the notion of
absolute λ-conservativity of a matrix, and the notion of improvement of λ-convergence
by a matrix. Let X,Y be two sequence spaces defined by speeds of convergence. In this
paper, we give necessary and sufficient conditions for a matrix A (with real or complex
entries) to map X into Y , if X or Y is the set of absolutely λ-convergent sequences. We
also present some examples of matrices being absolutely λ-conservative or improving the
absolute λ-convergence, and consider these problems in the special cases if A is the Riesz
matrix (R, pn) or the Zweier matrix Z1/2.

Keywords: Matrix transforms, convergence and absolute convergence with speed, abso-
lute λ-conservativity, improvement of λ-convergence.
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1. Introduction

Let X,Y be two sequence spaces and A = (ank) be an arbitrary matrix with real or
complex entries. Throughout this paper we assume that indices and summation indices
run from 0 to ∞ unless otherwise specified. If for each x = (xk) ∈ X the series

Anx :=
∑
k

ankxk

converge and the sequence Ax = (Anx) belongs to Y, we say that A transforms X into
Y . By (X,Y ) we denote the set of all matrices, which transform X into Y . Let ω be
the set of all real or complex valued sequences. Further we need the following well-known
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subspaces of ω: c - the space of all convergent sequences, c0 - the space of all sequences
converging to zero, l∞ - the space of all bounded sequences, and

l1 := {x = (xn) :
∑
n

|xn| <∞}.

Let λ := (λk) be a positive (i.e.; λk > 0 for every k) monotonically increasing sequence.
Following Kangro ([12], [11]), a convergent sequence x = (xk) with

lim
k
xk := s and vk = λk (xk − s) (1.1)

is called bounded with the speed λ (shortly, λ-bounded) if vk = O (1) (or (vk) ∈ l∞), and
convergent with the speed λ (shortly, λ-convergent) if the finite limit

lim
k
vk := b

exists (or (vk) ∈ c). In the following we define the notion of absolute convergence with
speed λ.

Definition 1.1. We say that a convergent sequence x = (xk) with the finite limit s is
absolutely convergent with the speed λ (shortly, absolutely λ-convergent) if (vk) ∈ l1.

We denote the set of all λ-bounded sequences by lλ∞, the set of all λ-convergent sequences
by cλ, and the set of all absolutely λ-convergent sequences by lλ1 . Moreover, let

cλ0 := {x = (xk) : x ∈ cλ and lim
k
λk(xk − s) = 0}

and
lλ∞,0 = {x = (xk) : x ∈ lλ∞ ∩ c0}.

It is not difficult to see that

lλ1 ⊂ cλ0 ⊂ cλ ⊂ lλ∞ ⊂ c, lλ∞,0 ⊂ lλ∞ ⊂ c.
In addition to it, for unbounded sequence λ these inclusions are strict. For λk = O (1), we
get cλ = lλ∞ = c.

Let e = (1, 1, ...), ek = (0, ..., 0, 1, 0, ...), where 1 is in the k-th position, and λ−1 =
(1/λk). We note that

e, ek, λ−1 ∈ cλ; e, ek ∈ lλ1 .
A matrix A is said to be conservative if A ∈ (c, c), and regular if A ∈ (c, c) with

limnAnx = limn xn for every sequence x = (xn) ∈ c. Let µ := (µn) be another speed of
convergence; i.e. a monotonically increasing positive sequence. Following Kangro ([12]),
a matrix A is said to be λ-conservative if A ∈ (cλ, cλ), and improves the λ-convergence if
A ∈ (cλ, cµ) with µn/λn 6= O(1). We define the notions of the absolute λ-conservativity
and the improvement of absolute λ-convergence.

Definition 1.2. We say that a matrix A is absolutely λ-conservative if A ∈ (lλ1 , l
λ
1 ).

Definition 1.3. We say that a matrix A improves the absolute λ-convergence if A ∈
(lλ1 , l

µ
1 ) with µn/λn 6= O(1).

The sets (lλ∞, l
µ
∞), (cλ, cµ) and (cλ, lµ∞) have been described in [2] and in [10] - [13]. The

sets
(
lλ∞, c

µ
)
,
(
lλ∞, l

µ
∞,0

)
,
(
lλ∞, c

µ
0

)
,
(
cλ, lµ∞,0

)
,
(
cλ, cµ0

)
,
(
lλ∞,0, l

µ
∞
)
,
(
lλ∞,0, l

µ
∞,0

)
,
(
lλ∞,0, c

µ
)
,(

lλ∞,0, c
µ
0

)
,
(
cλ0 , l

µ
∞
)
,
(
cλ0 , l

µ
∞,0

)
,
(
cλ0 , c

µ
)

and
(
cλ0 , c

µ
0

)
have been characterized in [1]. Neces-

sary and sufficient conditions for the λ-conservativity and the improvement of λ-convergence
have been found in [12]. A short overview on the convergence with speed has been pre-
sented in [3] and [13].
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We note that the results connected with convergence, absolute convergence and bound-
edness with speed can be used in several applications, for example in the approximation
theory. Besides, Aasma used such results for the estimation of the order of approximation
of Fourier expansions in Banach spaces ([4] - [7]).

In this paper we continue the studies started in [2], [1], [10], [12] and [11]. We describe
the matrix transforms related to the absolute λ-convergence, giving the characterization
of the sets (lλ1 , l

µ
1 ), (lλ1 , c

µ
0 ), (lλ1 , c

µ), (lλ1 , l
µ
∞), (lλ∞, l

µ
1 ), (cλ, lµ1 ) and (cλ0 , l

µ
1 ). Also we present

some examples of absolute λ-conservative matrices, and matrices, which improve the ab-
solute λ-convergence. We consider the absolute λ-conservativity and the improvement of
the absolute λ-convergence in the special cases when A is the Riesz matrix (R, pn) or the
Zweier matrix Z1/2.

2. Auxiliary results

For the proof of main results we need some auxiliary results.

Lemma 2.1 ([9], p. 44, see also [18], Proposition 12). A matrix A = (ank) ∈ (c0, c) if and
only if conditions

lim
n
ank := ak for all k, (2.1)∑
k

|ank| = O (1) (2.2)

are satisfied. Moreover,

lim
n
Anx =

∑
k

akxk (2.3)

for every x = (xk) ∈ c0.

Lemma 2.2 ([9], p. 46-47, see also [8], p. 17-19 or [18], Proposition 11). A matrix
A = (ank) ∈ (c, c) if and only if conditions (2.1), (2.2) are satisfied and

there exists a number τ such that limit lim
n

∑
k

ank := τ. (2.4)

Moreover, if limk xk = s for x = (xk) ∈ c, then

lim
n
Anx = sτ +

∑
k

(xk − s)ak.

A matrix A is regular if and only if conditions (2.1), (2.2) and (2.4) are satisfied with
ak = 0 and τ = 1.

Lemma 2.3 ([9], p. 51, see also [16], p. 187 or [17], p. 8 or [18], Proposition 10)). The
following statements are equivalent:

(a) A = (ank) ∈ (l∞, c) .
(b) The conditions (2.1), (2.2) are satisfied and

lim
n

∑
k

|ank − ak| = 0. (2.5)

(c) The condition (2.1) holds and

the series
∑
k

|ank| converges uniformly in n. (2.6)

Moreover, if one of statements (a)-(c) is satisfied, then the equation (2.3) holds for every
x = (xk) ∈ l∞.
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Lemma 2.4 ([8], p. 38-40 or [18], Proposition 72)). A matrix A = (ank) ∈ (c0, l1) =
(l∞, l1) if and only if ∑

n∈I

∑
k∈J

ank = O (1)

for all finite subsets I and J of N{0, 1, 2, ...}.

Lemma 2.5 ([8], p. 30 or [18], Proposition 6). A matrix A = (ank) ∈ (l1, l∞) if and only
if

ank = O (1) . (2.7)

Lemma 2.6 ([17], p. 19 or[8], p. 25-26 or [18], Proposition 17). A matrix A = (ank) ∈
(l1, c) if and only if conditions (2.1) and (2.7) are satisfied. Moreover, the equation (2.3)
holds for every x = (xk) ∈ l1.

Lemma 2.7 ([9], p. 50 or [18], Proposition 77). A matrix A = (ank) ∈ (l1, c0) if and only
if condition (2.1) with ak = 0, and condition (2.7) are satisfied.

Lemma 2.8 ([17], p. 31, see also [8], p. 34-35 or [18], Proposition 77). A matrix A =
(ank) ∈ (l1, l1) if and only if ∑

n

|ank| = O (1) .

Moreover, the equation (2.3) holds for every x = (xk) ∈ l1.

3. Main results

First we prove

Theorem 3.1. A matrix A = (ank) ∈
(
lλ1 , l

µ
1

)
if and only if

Ae = (Ane) ∈ lµ1 , Ane =
∑
k

ank (3.1)

ank
λk

= O(1), (3.2)

there exist the finite limits lim
n
ank := ak for all k, (3.3)

1

λk

∑
n

µn |ank − ak| = O(1). (3.4)

Proof. Necessity. Let A ∈
(
lλ1 , l

µ
1

)
. It is easy to see that e ∈ lλ1 and ek ∈ lλ1 . Hence

conditions (3.1) and (3.3) hold. Since, from (1.1) we have

xk =
vk
λk

+ s; s := lim
k
xk, (vk) ∈ l1

for every x := (xk) ∈ lλ1 , it follows that

Anx =
∑
k

ank
λk

vk + sAn; An :=
∑
k

ank. (3.5)

As (An) ∈ lµ1 by (3.1), then, from (3.5) we obtain that the matrix

Aλ :=

(
ank
λk

)
transforms this sequence (vk) ∈ l1 into c. In addition, for every sequence (vk) ∈ l1, the
sequence (vk/λk) ∈ c0. But, for (vk/λk), there exists a convergent sequence x := (xk)
with s := limk xk, such that vk/λk = xk − s. So we have proved that, for every sequence
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(vk) ∈ l1 there exists a sequence (xk) ∈ lλ1 such that vk = λk (xk − s). Hence Aλ ∈ (l1, c).
This implies, by Lemma 2.6, that condition (3.2) is satisfied and the finite limit

φ := lim
n
Anx =

∑
k

ak
λk
vk + s lim

n
An

exists for every x ∈ lλ1 . Writing

µn(Anx− φ) = µn
∑
k

ank − ak
λk

vk + sµn(An − lim
n

An), (3.6)

we conclude, by (3.1) that the matrix Aλ,µ ∈ (l1, l1), where

Aλ,µ :=

(
µn
ank − ak

λk

)
.

Hence condition (3.4) is satisfied by Lemma 2.8.

Sufficiency. Let conditions (3.1) - (3.4) be fulfilled. Then relation (3.5) also holds for
every x ∈ lλ1 and (An) ∈ lµ1 by (3.1). In addition, Aλ ∈ (l1, c) and the finite limit φ exists
for every x ∈ lλ1 by Lemma 2.6, since (3.2) and (3.3) hold. Hence relation (3.6) holds for
every x ∈ lλ1 . As (3.4) is valid, then Aλ,µ ∈ (l1, l1) by Lemma 2.8. Therefore, due to (3.1),

A ∈
(
lλ1 , l

µ
1

)
. �

Remark 3.1. If λk = O(1), then condition (3.2) can be replaced by condition (2.7), and
condition (3.4) by condition ∑

n

µn |ank − ak| = O(1)

in Theorem 3.1.

Next we present the following theorems.

Theorem 3.2. A matrix A = (ank) ∈
(
lλ1 , c

µ
)

if and only if conditions (3.2) and (3.3)
hold, Ae ∈ cµ, and

there exist the finite limits lim
n
µn(ank − ak) := aµk for all k, (3.7)

µn
ank − ak

λk
= O(1). (3.8)

Theorem 3.3. A matrix A = (ank) ∈
(
lλ1 , c

µ
0

)
if and only if Ae ∈ cµ0 and conditions (3.2),

(3.3), (3.7) with aµk = 0, and (3.8) hold.

Theorem 3.4. A matrix A = (ank) ∈
(
lλ1 , l

µ
∞
)

if and only if Ae ∈ lµ∞ and conditions
(3.2), (3.3) and (3.8) hold.

Theorem 3.5. A matrix A = (ank) ∈
(
lλ∞, l

µ
1

)
if and only if conditions (3.1) and (3.3)

hold, and ∑
k

|ank|
λk

= O(1), (3.9)

lim
n

∑
k

|ank − ak|
λk

= 0, (3.10)

∑
n∈I

∑
k∈J

µn
ank − ak

λk
= O (1) (3.11)

for all finite subsets I and J of N.
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As the proofs of Theorems 3.2 - 3.5 are similar to the proof of Theorem 3.1, we only
give a short description of the proofs. As e ∈ lλ1 and e ∈ lλ∞, then instead of condition
(3.1), for Theorems 3.2 - 3.5 we correspondingly obtain Ae ∈ cµ, Ae ∈ cµ0 , Ae ∈ lµ∞, and
Ae ∈ lµ1 . Also, the matrix transform Anx for x := (xk) ∈ lλ1 or for x ∈ lλ∞ may be presented
in the form (3.5). In addition, in the proof of Theorems 3.2-3.4 (similarly to the proof of
Theorem 3.1) Aλ ∈ (l1, c), and in the proof of Theorem 3.5 Aλ ∈ (l∞, c). Hence the finite
limit φ exists for every x ∈ lλ1 by Lemma 2.6, and for every x ∈ lλ∞ by Lemma 2.3. Hence
relation (3.6) also holds for every x ∈ lλ1 and for every x ∈ lλ∞. The role of the matrix
Aλ,µ is different in the proof of each theorem: in the proof of Theorem 3.2, Aλ,µ ∈ (l1, c),
in the proof of Theorem 3.3, Aλ,µ ∈ (l1, c0), in the proof of Theorem 3.4, Aλ,µ ∈ (l1, l∞),
and in the proof of Theorem 3.5, Aλ,µ ∈ (l∞, l1). Therefore, for completing the proof of
Theorem 3.2 it is necessary to use Lemma 2.6, for completing the proof of Theorem 3.3 -
Lemmas 2.6 and 2.7, for completing the proof of Theorem 3.4 - Lemmas 2.6 and 2.5, and
for completing the proof of Theorem 3.5 - Lemmas 2.3 and 2.4.

Remark 3.2. Using Lemma 2.3 (c) we obtain that conditions (3.9) and (3.10) we can
replace by the condition

the series
∑
k

|ank|
λk

converges uniformly in n

in Theorem 3.5.

Remark 3.3. If λk = O(1), then condition (3.2) can be replaced by condition (2.7), and
condition (3.8) by condition

µn |ank − ak| = O(1)

in Theorems 3.2 - 3.4.

Remark 3.4. If µk = O(1), then conditions (3.7) and (3.8) are redundant in Theorems
3.2 - 3.4, and condition (3.8) is redundant in Theorem 3.5.

Corollary 3.1. Condition (3.2) can be replaced by condition

ak
λk

= O(1) (3.12)

in Theorems 3.1 - 3.4.

Proof. It is easy to see that condition (3.12) follows from (3.2) and (3.3). From the other
side, conditions (3.3), (3.4) and (3.12) imply the validity of (3.2). Indeed, first from
condition (3.4) we obtain that

ank − ak
λk

= O(1), (3.13)

since (µn) is bounded from below due to µn ≥ µ0 > 0 for every n. As

ank
λk

=
ank − ak

λk
+
ak
λk
,

then
|ank|
λk
≤ |ank − ak|

λk
+
|ak|
λk

.

Moreover, the finite limits ak exist by (3.3). Hence condition (3.2) is satisfied by (3.12)
and (3.13). �

In the following we characterize the set
(
cλ, lµ1

)
.
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Theorem 3.6. A matrix A = (ank) ∈
(
cλ, lµ1

)
if and only if conditions (3.9) and (3.11)

are satisfied, and

Ae ∈ lµ1 , Ae
k ∈ lµ1 , Aλ

−1 ∈ lµ1 . (3.14)

Proof. Necessity. Assume that A ∈
(
cλ, lµ1

)
. It is easy to see that ek ∈ cλ, e ∈ cλ and

λ−1 ∈ cλ. Hence condition (3.14) holds. As equality (3.5) holds for every x := (xk) ∈ cλ,
and the finite limit

τ := lim
n

An

exists due to Ae ∈ lµ1 , then the method Aλ transforms this convergent sequence (vk) into
c. Similar to the proof of the necessity of Theorem 3.1, it is possible to show that, for every
sequence (vk) ∈ c, there exists a sequence (xk) ∈ cλ such that vk = λk (xk − s). Hence
Aλ ∈ (c, c). This implies by Lemma 2.2 that the finite limits ak and

aλ := lim
n

∑
k

ank
λk

exist, and that condition (3.9) is satisfied. With the help of (3.5), for every x ∈ cλ, we can
write by Lemma 2.2 that

φ := lim
n
Anx = aλb+

∑
k

ak
λk

(vk − b) + τs, (3.15)

where s := limk xk and b := limk vk. Now, using (3.5) and (3.15), we obtain

µn(Anx− φ) = µn
∑
k

ank − ak
λk

(vk − b) + µn (An − τ) s+ µn

(∑
k

ank
λk
− aλ

)
b. (3.16)

As Ae ∈ lµ1 and Aλ−1 ∈ lµ1 by (3.14), then Aλ,µ ∈ (c0, l1). Therefore we can conclude by
Lemma 2.4 that condition (3.11) holds.

Sufficiency. Assume that conditions (3.9), (3.11) and (3.14) are satisfied. First we note
that relation (3.5) holds for every x ∈ cλ and the finite limits ak, τ and aλ exist by (3.14).
As (3.9) also holds, then Aλ ∈ (c, c) by Lemma 2.2, and therefore relations (3.15) and
(3.16) hold for every x ∈ cλ. As condition (3.11) holds, then Aλ,µ ∈ (c0, l1) by Lemma 2.4.

In addition, Ae ∈ lµ1 and Aλ−1 ∈ lµ1 by (3.14). Thus, A ∈
(
cλ, lµ1

)
. �

Theorem 3.7. A matrix A = (ank) ∈
(
cλ0 , l

µ
1

)
if and only if Ae ∈ lµ1 , Aek ∈ lµ1 , and

conditions (3.9) and (3.11) are satisfied.

Proof. The proof is similar to the proof of Theorem 3.6; we only note that in this case
Aλ−1 does not belong into cλ0 . �

Similarly to the proof of Corollary 3.1 it is possible to prove the following result.

Corollary 3.2. Condition (3.9) can be replaced by condition∑
k

|ak|
λk

= O(1) (3.17)

in Theorems 3.5 - 3.7.
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4. Absolutely λ-conservative matrices and the improvement of absolute
λ-convergence

In this section we study the absolute λ-conservativity of matrices and the improvement
of absolute λ-convergence by matrices. First we present some examples on λ-conservative
matrices, and on matrices, improving the absolute λ-convergence.

Example 4.1. Let λ be defined by

λk := (k + 1)β, β ≥ 1. (4.1)

Then a lower triangular matrix A = (ank), defined by

ank :=
k + 1

(n+ 1)α
; α > 0, (4.2)

is absolutely λ-conservative if α > β + 3. For proving it, we show that all conditions of
Theorem 3.1 for µn = λn are satisfied. It is easy to see that conditions (3.2) and (3.3)
with ak = 0 hold, and

Tk :=
1

λk

∑
n

µn |ank − ak| =
1

(k + 1)β−1

∞∑
n=k

1

(n+ 1)α−β
= O(1)

for α− β > 1 or α > β+ 1 (but we have α > β+ 3 by assumption). Thus, condition (3.4)
is fulfilled. Finally we show that condition (3.1) holds. As

Ane =
n∑
k=0

k + 1

(n+ 1)α
=

1

2

(n+ 2)(n+ 1)

(n+ 1)α
,

then

lim
n
Ane = 0,

since α > 2 by the assumption. Hence

S :=
∑
n

λn |Ane| =
∑
n

1

(n+ 1)α−β

∣∣∣∣∣
n∑
k=0

(k + 1)

∣∣∣∣∣ =
1

2

∑
n

(
n+ 2

n+ 1

)
1

(n+ 1)α−β−2
= O(1)

for α > β + 3.

Example 4.2. Let λ be defined by (3.5), and µ by

µn := (n+ 1)γ , γ ≥ 1.

Then the matrix A = (ank), defined by (4.2), improves the absolute λ-convergence if
1 ≤ β < γ < α − 3.. Indeed, as in Example 4.1, conditions (3.2) and (3.3) with ak = 0
hold. In this case

Tk =
1

(k + 1)β−1

∞∑
n=k

1

(n+ 1)α−γ
= O(1)

and

S =
1

2

∑
n

(
n+ 2

n+ 1

)
1

(n+ 1)α−γ−2
= O(1),

since β ≥ 1 and α−γ > 3. Hence all conditions of Theorem 3.1 are satisfied and µn/λn 6=
O(1).
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We note that, from the point of view of applications, regular matrices are still the most
important. Therefore, let us look at some examples of them. Let (pn) be a sequence of
nonzero real numbers and Pn = p0 + ...+ pn 6= 0. Then the Riesz matrix (R, pn), defined
by a lower triangular matrix A = (ank), is given by equalities ([3], p. 29 or p. 131)

ank =
pk
Pn
, k ≤ n.

Proposition 4.1. The Riesz matrix (R, pn) with limn Pn =∞ is absolutely λ-conservative
if and only if

pk
λk

∞∑
n=k

λn
Pn

= O(1). (4.3)

Proof. For the proof it is sufficient to show that all conditions of Theorem 3.1 are satisfied
for µn = λn and A = (R, pn). It is easy to see that in this case Ae = 1 and ak = 0; so
conditions (3.1) and (3.3) are satisfied. Therefore the validity of condition (3.4) implies
condition (3.2). In addition, condition (3.4) takes now the form (4.3). �

Corollary 4.1. The Riesz matrix (R, pn) with limn Pn =∞ and pn > 0 does not absolutely
λ-conservative for any unbounded λ.

Proof. As pn > 0 and limn Pn =∞, then the series∑
n

pn
Pn

diverges by Dini’s test. Therefore there exist M > 0 such that

Pn < Mpn(n+ 1)ln(n+ 1).

Hence

Lk :=
∞∑
n=k

λn
Pn

>
1

M

∞∑
n=k

λn
pn(n+ 1)ln(n+ 1)

.

For the boundedness of Lk it is necessary that pn/λn 6= O(1). But in this case condi-
tion (4.3) does not hold. Therefore, (R, pn) does not absolutely λ-conservative for any
unbounded λ. �

It is easy to see that (R, pn) is regular for limn Pn = ∞ and pn > 0 by Lemma 2.2.
Therefore, the question may arise as to whether it exists at all a regular absolutely λ-
conservative matrix. The answer is yes. To confirm the statement, let’s look at the Zweier
matrix Z1/2, defined by the lower triangular matrix A = (ank), where (see [9], p. 14)
a00 = 1/2 and

ank =

{
1
2 , if k = n− 1 and k = n;

0, if k < n− 1

for n ≥ 1. The method A = Z1/2 is regular by Lemma 2.2.

Proposition 4.2. The Zweier matrix Z1/2 is absolutely λ-conservative if and only if
λk+1/λk = O(1).

Proof. For the proof it is sufficient to show that all conditions of Theorem 3.1 are satisfied
for µn = λn and A = Z1/2. Similarly to the proof of Proposition 4.1, it is possible to show
that conditions (3.1) and (3.3) hold, and condition (3.2) follows from (3.4) Condition (3.4)
takes now the form

1

2λk
(λk + λk+1) =

1

2

(
1 +

λk+1

λk

)
= O(1),
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which is equivalent to λk+1/λk = O(1). This completes the proof. �

Remark 4.1. It is not difficult to see that λ, defined by (4.1), satisfies the condition of
Proposition 4.2.

Next we prove the following result.

Lemma 4.1. If a matrix A = (ank) improves the absolute λ-convergence, then

lim
r

r∑
n=k

|ank − ak| = 0, r > k (4.4)

for every k.

Proof. If a matrix A = (ank) improves the absolute λ-convergence, then µn/λn 6= O(1)
by definition. Suppose (4.4) does not hold. Then, for every ε > 0 and for every k, there
exists a sequence of indexes

(
ikr
)
, such that

ikr∑
n=k

|ank − ak| ≥ ε

for every k. Hence

1

λk

ikr∑
n=k

µn|ank − ak| ≥ ε
µk
λk

(since µ is monotonically increasing). As a matrix A improves the absolute λ-convergence,
then

1

λk

ikr∑
n=k

µn|ank − ak| = O(1) (4.5)

by Theorem 3.1. But condition (4.5) can be satisfied only in the case if µn/λn = O(1),
which contradicts µn/λn 6= O(1). Thus condition (4.4) holds. �

Using Lemmas 2.2 and 4.1, we immediately obtain the following corollary.

Corollary 4.2. Any regular matrix cannot improve the absolute λ-convergence for any
unbounded λ.

5. Conclusions

In this paper we introduced the notions of absolute convergence with speed (where
the speed is defined by a monotonically increasing positive sequence λ), absolute λ-
conservativity of a matrix, and improvement of λ-convergence by a matrix. We char-
acterized certain matrix classes involving some spaces with involvement of speeds. Also
we studied the absolute λ-conservativity and the improvement of λ-convergence for regular
matrices, and proved that the (regular) Zweier matrix is absolutely λ-conservative with
respect to some λ, and any regular matrix cannot improve the absolute λ-convergence for
any unbounded λ.

The findings of the present paper should inspire to investigate for several other matrix
classes characterization by assigning speeds to different classes of participating spaces. For
example, it is possible to consider the convergence and absolute convergence with speed
in Hahn sequence space h (see [14], [15], [19] - [21]); so for different speeds it is possible to
obtain several Hahn sequence spaces with speed and to study matrix transforms between
them. The results of the present paper also can be interesting for approximation theory,
for example, to compare the approximation orders of Fourier expansions.
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(Summability factors for the series λ-bounded by the methods of Riesz and Cesàro), Tartu Riikl. Ül.
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