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AN ESTIMATE TO FUNCTIONS WITH SECOND DERIVATIVES IN

HÖLDER CLASS BY MODULI OF CONTINUITY AND SOLUTION OF

CHANDRASEKHAR’S WHITE DWARF EQUATION BY CHEBYSHEV

WAVELET
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Abstract. In this paper, modulus of continuity, second kind Chebyshev wavelet and
Hölder class are studied. The moduli of continuity and approximations of functions
whose second derivative belonging to Hölder class have been determined by second kind
Chebyshev wavelet. The operational matrix of integration for second kind Chebyshev
wavelet has been framed. Using this, numerical solutions of non-linear singular differen-
tial equations have been obtained. The modulus of continuity, approximations, solution
of Lane-Emden equation of index p=1 as well as the comparison with the exact solution
and applicability of second kind Chebyshev wavelet method in finding numerical solution
of Chandrasekhar’s white dwarf equation are significant achievements of this paper.
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1. Introduction

The approximation of functions using wavelet series has been widely used in recent
years. The approximation theory was initiated by Natanson([13]) and Zygmund([19])
using polynomials and summability theory. Since then, many approaches like spline, finite
element, etc. have been employed, but the approximation of functions using wavelets has
become a more interesting and effective tool. Wavelets have been frequently employed in
approximation theory by researchers due to qualities such as compact support, orthonor-
mality, and simple applicability.

There are various types of wavelets available in the literature such as Haar wavelet([6],
[16]), Meyer wavelet([12]), Legendre wavelet([15]), Laguerre wavelet([7]), Chebyshev wavelet
([4].[18]).These are used to find approximation of functions. One of the objectives of
this research paper is to obtain the moduli of continuity W (f, δ) of a function f such
that its second derivative f ′′ belong to Hα[0, 1) class by second kind Chebyshev wavelet
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expansion. The modulus of continuity of f , denoted by W (f, δ), is defined by
W (f, δ) = sup0<h≤δ ||f(t + h) − f(t)||2, for every t belonging to a finite interval, has the
property limδ→0+ W (f, δ) = 0(Chui[2]). Due to this property, the better estimations of
the rate of approximation of functions in different classes are obtained.

Wavelets have a wide range of applications due to their various properties like
orthonormality, compact support which is applied for the inclusion of initial and boundary
conditions, symmetry and well localization. These can be used in quantum field theory,
numerical solutions to physical problems, digital processing and many more. Nowadays,
wavelets are being used in solution of physical and engineering problems formulated as
differential and integral equations. Unlike the traditional bases, wavelet basis provides a
sparse representation of signals due to orthogonality and can also identify the singularities
in an efficient way. These qualities of wavelets are highly appreciated for solving various
linear and non-linear differential equations having singularities, since due to singularities,
solving these equations by other methods is a challenging task.

In order to solve non-linear initial value problems involving singularity at some point
in [0,1], a second kind Chebyshev operational integration matrix has been developed in
this paper. Using this matrix of integration, the highest order derivative appearing in
the differential equations and the initial conditions can be expressed as the second kind
Chebyshev wavelet matrices. This approach has been applied to a non-linear differential
equation called Lane-Emden equation of index p=1 given as:

y′′(t) +
2

t
y′(t) + y(t) = 0, t ≥ 0

with initial conditions y(0) = 1, y′(0) = 0 ([17]).
The same technique has also been employed to obtain the numerical solution of

Chandrasekhar’s white dwarf equation

y′′(t) +
2

t
y′(t) + (y2 − c)

3
2 = 0, t ≥ 0

with initial conditions y(0) = 1, y′(0) = 0 ([1]) which has a prominent role in the theory
of stellar structure and astrophysics.

This paper is arranged as: Section 2. contains some definitions and preliminaries used
in this paper. Section 3. gives the moduli of continuity of functions whose second-order
derivatives belong to Hölder class Hα[0, 1). Section 4. derives the second kind Cheby-
shev wavelet matrix of integration, methodology of solving non-linear singular ordinary
differential equation and the numerical solution of Lane-Emden and Chandrasekhar’s white
dwarf equation. Section 5. contains the concluding remarks and lastly the references have
been written used in framing this paper.

2. Definitions and Preliminaries

2.1. Chebyshev polynomials of second kind. Chebyshev polynomial Um(t) of second
kind is a polynomial of degree m in t, defined by

Um(t) =
sin(m+ 1)θ

sin θ

when t = cos θ (Mason et al.[11]). These polynomials are defined on the interval [-1,1] and

are orthogonal with respect to the weight function w(t) =
√

1− t2 as∫ 1

−1
Um(t)Un(t)w(t)dt =


π

2
, m = n

0, otherwise,
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for m,n = 0, 1, 2, 3... .
Chebyshev polynomials of second kind are: U0(t) = 1, U1(t) = 2t, U2(t) = 4t2, U3(t) =
8t3 − 4t... .
The recurrence formula for these polynomials are Um+1(t) = 2tUm(t)− Um−1(t),
m = 1, 2, 3, ... ([11]).

2.2. Chebyshev wavelets of second kind. Chebyshev wavelets ψn,m(t)=ψ(k, n,m, t)

have four arguments, where n = 1, 2, 3, ..., 2k−1, k ∈ Z+,m being the degree of Chebyshev
polynomials and t the normalized time. These are defined on the interval [0,1) by

ψn,m(t) =


2
k
2

√
2

π
Um(2kt− 2n+ 1),

n− 1

2k−1
≤ t < n

2k−1

0, otherwise,

where m = 0, 1, 2, ...,M and n = 1, 2, ..., 2k−1 (Sahu et al.[18]).

Here, the coefficient

√
2

π
is for orthonormality, (2n − 1)2−k is the translation parameter

and 2−k is the dilation parameter. Also, the weight function w(t) =
√

1− t2 has to be
dilated and translated as wn(t) = w(2kt− 2n+ 1).
{ψn,m} is an orthonormal basis of L2

w[0, 1) w.r.t. weight function w(t) i.e. 〈ψn,m, ψn′,m′〉wn =
δn,n′δm,m′ , Kronecker’s delta.

2.3. Second kind Chebyshev expansion and approximation. A function f ∈ L2
w[0, 1)

can be expanded in terms of second kind Chebyshev wavelet as

f(t) =
∞∑
n=1

∞∑
m=0

cn,mψn,m(t), where cn,m =

∫ 1

0
f(t)ψn,m(t)wn(t)dt

=
2k−1∑
n=1

M∑
m=0

cn,mψn,m(t) +
2k−1∑
n=1

∞∑
M+1

cn,mψn,m(t) +
∞∑

n=2k−1+1

M∑
m=0

cn,mψn,m(t)

+
∞∑

n=2k−1+1

∞∑
M+1

cn,mψn,m(t)

= S2k−1,M +
2k−1∑
n=1

∞∑
m=M+1

cn,mψn,m(t), where S2k−1,M =
2k−1∑
n=1

M∑
m=0

cn,mψn,m(t)

( For n ∈ [2k−1 + 1,∞), 1 ≤ t <∞, so ψn,m = 0 for n = 2k−1 + 1, ...∞)

Now, if f(t) is truncated by S2k−1,M , then f(t) ≈
∑2k−1

n=1

∑M
m=0 cn,mψn,m(t) = CTψ(t),

where C and ψ(t) are 2k−1(M + 1) vectors of the form
C = [c1,0 c1,1 ... c1,M c2,0 c2,1 ... c2,M ... c2k−1,0 ... c2k−1,M ]T and

ψ(t) = [ψ1,0 ψ1,1 ...ψ1,M ψ2,0 ψ2,1 ... ψ2,M ... ψ2k−1,0 ... ψ2k−1,M ]T .

2.4. Modulus of Continuity. The modulus of continuity(Chui[2]) of a function
f ∈ L2

w[0, 1) is defined as

W (f, δ) = sup
0<h≤δ

||f(t+ h)− f(t)||2, ∀t ∈ [0, 1)

= sup
0<h≤δ

(∫ 1

0
|f(t+ h)− f(t)|2w(t)dt

)1/2

.
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It is remarkable to note that W (f, δ) is a non-decreasing function of δ and W (f, δ) → 0
as δ → 0+ for f ∈ L2

w[0, 1).

2.5. Hölder class Hα[0, 1). A function f is said to be in Hölder class(Das et al.[3])
Hα[0, 1) of order α ∈ (0, 1] if f is continuous on [0,1) and satisfies the inequality,

f(x+ t)− f(x) = O(|t|α), ∀x+ t, x ∈ [0, 1).

3. Moduli of Continuity of functions having second derivative in Hölder
class

Lemma 3.1. Let f(t) ∈ L2
w[0, 1) and has the second kind Chebyshev wavelet expansion

f(t) =
2k−1∑
n=1

∞∑
m=0

cn,mψn,m(t), (1)

then the series converges uniformly to f(t) in L2
w[0, 1).

Proof. Consider

f(t)−
2k−1∑
n=1

M∑
m=0

cn,mψn,m(t) =
2k−1∑
n=1

∞∑
m=M+1

〈f, ψn,m〉wnψn,m(t)

∴ ‖
2k−1∑
n=1

∞∑
m=M+1

cn,mψn,m(t)‖2 = ‖
2k−1∑
n=1

∞∑
m=M+1

〈f, ψn,m〉wnψn,m(t)‖2

=
2k−1∑
n=1

∞∑
m=M+1

|〈f, ψn,m〉wn |2 ‖ψn,m(t)‖2

≤ ‖f‖2 (∵ ‖ψn,m(t)‖2 = 1).

Hence, the series (2) converges to f(t). �

In this paper, the following convergence theorem has been proved:

Theorem 3.1. If a function f ∈ L2
w[0, 1) such that its second derivative f ′′ belongs to

Hα[0, 1) i.e.f ′′(x+ t)− f ′′(x) = O(|t|α), 0 < α ≤ 1 and its Chebyshev wavelet expansion is

f(t) =
∑2k−1

n=1

∑∞
m=0 cn,mψn,m(t), where cn,m = 〈f, ψn,m〉wn then the modulus of continuity

W (f − S2k−1,M (f), 1
2k

) of (f − S2k−1,M (f)) satisfies:

(i) for f(t) =
∑2k−1

n=1 cn,0ψn,0(t),

W (f − S2k−1,0(f),
1

2k
) = sup

0<h≤ 1

2k

||(f − S2k−1,0(f))(.+ h)− (f − S2k−1,0(f))(.)||2

= O

(
1

2kα

)
, k ≥ 1,

(ii) for f(t) =
∑2k−1

n=1

∑1
m=0 cn,mψn,m(t),

W (f − S2k−1,1(f),
1

2k
) = sup

0<h≤ 1

2k

||(f − S2k−1,1(f))(.+ h)− (f − S2k−1,1(f))(.)||2

= O

(
1

2k(α+2)

)
, k ≥ 1, and



S. LAL, ABHILASHA: AN ESTIMATE TO FUNCTIONS WITH SECOND DERIVATIVES... 1125

(iii) for f(t) =
∑2k−1

n=1

∑∞
m=0 cn,mψn,m(t),

W (f − S2k−1,M (f),
1

2k
) = sup

0<h≤ 1

2k

||(f − S2k−1,M (f))(.+ h)− (f − S2k−1,M (f))(.)||2

= O

(
1

2k(α+2).M
3
2

)
, k ≥ 1,M ≥ 2.

Proof. (i)For m = 0,

The error between f(t) and its Chebyshev wavelet expansion in the interval

[
n− 1

2k−1
,
n

2k−1

)
is given by

en(f) = cn,0ψn,0 − fχ[ n−1

2k−1 ,
n

2k−1 )
,

n− 1

2k−1
≤ t < n

2k−1
. (2)

cn,0 = 〈f, ψn,0〉wn =

∫ 1

0
f(t)ψn,0(t)wn(t)dt

=

∫ n

2k−1

n−1

2k−1

f(t)2
k
2

√
2

π
U0(2

kt− 2n+ 1)w(2kt− 2n+ 1)dt

=

∫ 1

−1
f

(
2n− 1 + v

2k

)
2
k
2

√
2

π
U0(v)w(v)

dv

2k
, 2kt− 2n+ 1 = v

=
1

2
k
2

√
2

π

∫ 1

−1

[
f

(
2n− 1

2k

)
+

v

2k
f ′
(

2n− 1

2k

)
+
( v

2k

)2 1

2!

f ′′
(

2n− 1

2k
+
θv

2k

)]
w(v)dv = I1 + I2 + I3.

I1 =
1

2
k
2

√
2

π

∫ 1

−1
f

(
2n− 1

2k

)√
1− v2dv =

1

2
k
2

√
π

2
f

(
2n− 1

2k

)
I2 =

1

2
k
2

√
2

π
f ′
(

2n− 1

2k

)∫ 1

−1

v

2k

√
1− v2dv = 0

I3 =
1

2
k
2

√
2

π

1

2!

1

(2k)2

∫ 1

−1
v2f ′′

(
2n− 1

2k
+
θv

2k

)√
1− v2dv , 0 < θ < 1

=
1

2
k
2

√
2

π

1

2!

1

(2k)2
f ′′
(

2n− 1

2k
+
θv1
2k

)
2.

∫ 1

0
v2
√

1− v2dv , v1 ∈ (−1, 1)

=
1

2
k
2

√
π

2
.
1

4
.
1

2!

1

(22k)
f ′′
(

2n− 1

2k
+
θv1
2k

)
.

Therefore,

cn,0 =
1

2
k
2

√
π

2

[
f

(
2n− 1

2k

)
+

1

4.2!
.

1

22k
f ′′
(

2n− 1

2k
+
θv1
2k

)]
. (3)

Substituting the values of cn,0 in eq.(2),

|en(f)| =

∣∣∣∣f (2n− 1

2k

)
+

1

4.2!
.

1

22k
f ′′
(

2n− 1 + θv1
2k

)
− f

(
2n− 1

2k

)
− v

2k
f ′
(

2n− 1

2k

)
− v2

2!

(
1

22k

)
f ′′
(

2n− 1 + θv

2k

)∣∣∣∣
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≤
∣∣∣∣ v2

2!.22k.4
f ′′
(

2n− 1 + θv1
2k

)
− v2

2!.22k
f ′′
(

2n− 1 + θv

2k

)
− v

2k
f ′
(

2n− 1

2k

)∣∣∣∣
≤

(
v2

2!.22k

) ∣∣∣∣θ(v1 − v)

2k

∣∣∣∣α +

(
v2

2kα

) (
∵ f ′′ ∈ Hα[0, 1), 0 < α ≤ 1

)
≤ 1

(2!).2k(α+2)
+

(
1

2kα

)
(∵ v ∈ [−1, 1) and 0 < θ < 1)

≤
(

2

2kα

)
.

‖en‖22 =

∫ n

2k−1

n−1

2k−1

|en(f)|2|wn(t)|dt

≤
∫ 1

−1

4

22kα

√
1− v2
2k

dv =
2π

2k(2α+1)
.

‖f − S2k−1,0(f)‖22 =

2k−1∑
n=1

||en||22 ≤
2k−1∑
n=1

2π

2k(2α+1)
=

π

22kα

‖f − S2k−1,0(f)‖2 ≤
√
π

2kα
.

W

(
f − S2k−1,0(f),

1

2k

)
= sup

0<h≤ 1

2k

||(f − S2k−1,0(f))(t+ h)− (f − S2k−1,0(f))(t)||2

≤ sup
0<h≤ 1

2k

[
||(f − S2k−1,0(f))(t+ h)||2 + ||(f − S2k−1,0(f))(t)||2

]
≤ 2||f − S2k−1,0(f)||2

≤ 2

√
π

2kα
= O

(
1

2kα

)
, k ≥ 1.

(ii)For m = 0, 1,

The error between f(t) and its Chebyshev wavelet expansion in the interval

[
n− 1

2k−1
,
n

2k−1

)
is given by

en(f) = cn,0ψn,0 + cn,1ψn,1 − fχ[ n−1

2k−1 ,
n

2k−1 )
,

n− 1

2k−1
≤ t < n

2k−1
(4)

cn,0 =
1

2
k
2

√
π

2

[
f

(
2n− 1

2k

)
+

1

4.2!
.

1

22k
f ′′
(

2n− 1

2k
+
θv1
2k

)]
.

cn,1 = 〈f, ψn,1〉wn

=

∫ 1

0
f(t)ψn,1(t)wn(t)dt

=

∫ n

2k−1

n−1

2k−1

f(t)2
k
2

√
2

π
U1(2

kt− 2n+ 1)w(2kt− 2n+ 1)dt

=
1

2
k
2

√
2

π

∫ 1

−1
f

(
2n− 1

2k
+

v

2k

)
2v
√

1− v2dv
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=
2

2
k
2

√
2

π

∫ 1

−1

[
f

(
2n− 1

2k

)
+

v

2k
f ′
(

2n− 1

2k

)
+
( v

2k

)2 1

2!
f ′′
(

2n− 1

2k
+
θv

2k

)]
.v
√

1− v2dv, 0 < θ < 1

= J1 + J2 + J3.

J1 =
2

2
k
2

√
2

π

∫ 1

−1
f

(
2n− 1

2k

)
v
√

1− v2dv = 0

J2 =
2

2
k
2

√
2

π
f ′
(

2n− 1

2k

)
1

2k

∫ 1

−1
v2
√

1− v2dv

=
2

2
k
2

√
2

π
f ′
(

2n− 1

2k

)
1

2k
.
π

8

J3 =
2

2
k
2

√
2

π

1

2!

1

(2k)2

∫ 1

−1
v3f ′′

(
2n− 1

2k
+
θv

2k

)√
1− v2dv , 0 < θ < 1

=
2

2
k
2

√
2

π

1

2!

1

(2k)2
f ′′
(

2n− 1

2k
+
θv2
2k

)∫ 1

−1
v3
√

1− v2dv , v2 ∈ (−1, 1)

= 0.

Therefore,

cn,1 =
1

2
.

√
π

2
.

1

2
3k
2

f ′
(

2n− 1

2k

)
.

Substituting the values of cn,0 and cn,1 in eq.(4),

|en(f)| =

∣∣∣∣f (2n− 1

2k

)
+

1

4.2!
.

1

22k
f ′′
(

2n− 1 + θv1
2k

)
+

v

2k
f ′
(

2n− 1

2k

)
− f

(
2n− 1

2k

)
− v

2k
f ′
(

2n− 1

2k

)
v2

2!

(
1

2k

)
f ′′
(

2n− 1 + θv

2k

)∣∣∣∣
≤

∣∣∣∣ v2

2!.22k.4
f ′′
(

2n− 1 + θv1
2k

)
− v2

2!.22k
f ′′
(

2n− 1 + θv

2k

)∣∣∣∣
≤

(
v2

2!.22k

) ∣∣∣∣f ′′(2n− 1 + θv1
2k

)
− f ′′

(
2n− 1 + θv

2k

)∣∣∣∣
≤

(
v2

2!.22k

) ∣∣∣∣θ(v1 − v)

2k

∣∣∣∣α (
∵ f ′′ ∈ Hα[0, 1)

)
≤ 1

(2!).2k(α+2)
. (∵ v ∈ [−1, 1) and 0 < θ < 1)

‖en‖22 =

∫ n

2k−1

n−1

2k−1

|en(f)|2|wn(t)|dt

≤
∫ 1

−1

1

(2!)2.22k(α+2)

√
1− v2
2k

dv =
π

2(2!)22k(2α+5)
.

‖f − S2k−1,1(f)‖22 =
2k−1∑
n=1

||en||22
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≤
2k−1∑
n=1

π

2(2!)22k(2α+5)
=

π

16.22k(α+2)

∴ ‖f − S2k−1,1(f)‖2 ≤
√
π

4.2k(α+2)
.

Hence,

W

(
f − S2k−1,1(f),

1

2k

)
= sup

0<h≤ 1

2k

||(f − S2k−1,1(f))(t+ h)− (f − S2k−1,1(f))(t)||2

= O

(
1

2k(α+2)

)
, k ≥ 1.

(ii)For m ≥ 2,

‖f − S2k−1,M‖22 =

2k−1∑
n=1

∞∑
m=M+1

|cn,m|2.

cn,m =

∫ 1

0
f(t)ψn,m(t)wn(t)dt

=

√
2

π
.2
k
2

∫ n

2k−1

n−1

2k−1

f(t)Um(2kt− 2n+ 1)w(2kt− 2n+ 1)dt

= 2
k
2

√
2

π

∫ π

0
f

(
cos θ + 2n− 1

2k

)
Um(cos θ)w(cos θ) sin θ

dθ

2k
,

=
1

2
k
2

√
2

π

∫ π

0
f

(
cos θ + 2n− 1

2k

)
Um(cos θ)w(cos θ) sin θdθ

=
1

2
(k−1)

2

1√
π

∫ π

0
f

(
cos θ + 2n− 1

2k

)
sin(m+ 1)θ sin θdθ

=
1

2
(k+1)

2

1√
π

∫ π

0
f

(
cos θ + 2n− 1

2k

)
[cosmθ − cos(m+ 2)θ]dθ

=
1

2
(k+1)

2

1√
π

[
f

(
cos θ + 2n− 1

2k

)(
sinmθ

m
− sin(m+ 2)θ

m+ 2

)π
0

]
1

2
(k+1)

2

1√
π

[∫ π

0
f ′
(

cos θ + 2n− 1

2k

)(
− sin θ

2k

)(
sinmθ

m
− sin(m+ 2)θ

m+ 2

)
dθ

]
,

=
1

2
(5k+1)

2

1√
π

∫ π

0
f ′′
(

cos θ + 2n− 1

2k

)
γm(θ)dθ, again integrating by parts

where γm(θ) =
sin θ

m

(
sin(m− 1)θ

m− 1
− sin(m+ 1)θ

m+ 1

)
− sin θ

m+ 2

(
sin(m+ 1)θ

m+ 1
− sin(m+ 3)θ

m+ 3

)
.

cn,m =
1

2
(5k+1)

2

1√
π

(∫ π

0

[
f ′′
(

cos θ + 2n− 1

2k

)
− f ′′

(
2n− 1

2k

)]
γm(θ)dθ

+ f ′′
(

2n− 1

2k

)∫ π

0
γm(θ)dθ

)
= I1 + I2.

I2 =
1

2
(5k+1)

2

1√
π
f ′′
(

2n− 1

2k

)∫ π

0
γm(θ)dθ = 0.
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cn,m =
1

2
(5k+1)

2

1√
π

∫ π

0

[
f ′′
(

cos θ + 2n− 1

2k

)
− f ′′

(
2n− 1

2k

)]
γm(θ)dθ

|cn,m| =

∣∣∣∣ 1

2
(5k+1)

2

1√
π

∫ π

0

[
f ′′
(

cos θ + 2n− 1

2k

)
− f ′′

(
2n− 1

2k

)]
γm(θ)dθ

∣∣∣∣
≤ 1

2
(5k+1)

2

1√
π

∫ π

0

∣∣∣∣cos θ

2k

∣∣∣∣α |γm(θ)|dθ, (∵ f ′′ ∈ Hα[0, 1))

≤ 1

2
(5k+1)

2

1√
π
.

1

2kα

∫ π

0
|γm(θ)|dθ.∫ π

0
|γm(θ)|dθ =

∫ π

0

∣∣∣∣sin θm
(

sin(m− 1)θ

m− 1
− sin(m+ 1)θ

m+ 1

)
− sin θ

m+ 2(
sin(m+ 1)θ

m+ 1
− sin(m+ 3)θ

m+ 3

)∣∣∣∣ dθ
≤

[
1

m

(
1

m− 1
+

1

m+ 1

)
+

1

m+ 2

(
1

m+ 1
+

1

m+ 3

)]∫ π

0
dθ

= π

[(
1

m− 1
− 1

m

)
+

(
1

m
− 1

m+ 1

)
+

(
1

m+ 1
− 1

m+ 2

)
+

(
1

m+ 2
− 1

m+ 3

)]
=

4π

(m− 1)(m+ 3)
.

|cn,m| ≤
4
√
π

2(5k+1)/2(m+ 3)(m− 1)
.

1

2kα

∴ ‖f − S2k−1,M (f)‖22 =
2k−1∑
n=1

∞∑
m=M+1

16π

2(5k+1)(m+ 3)2(m− 1)2
.

1

22kα

=
16π

2(5k+1)

1

22kα

∞∑
m=M+1

2k−1

(m+ 3)2(m− 1)2

≤ 16π

2(4k+2)

1

22kα

[
4

3M3

]
.

‖f − S2k−1,M (f)‖2 ≤ 8
√
π

2(2k+1)

1

2kα
4√

3.M3/2

= O

(
1

2k(α+2).M3/2

)
, k ≥ 1, M ≥ 2.

Hence,

W

(
f − S2k−1,M (f),

1

2k

)
= sup

0<h≤ 1

2k

||(f − S2k−1,M (f))(t+ h)− (f − S2k−1,M (f))(t)||2

= O

(
1

2k(α+2).M3/2

)
, k ≥ 1, M ≥ 2.

�
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4. Solution of differential equations using second kind Chebyshev wavelet

4.1. Second kind Chebyshev wavelet Operational matrix of Integration. In this
section, second kind Chebyshev wavelet operational matrix of integration is obtained for
k=2, M=3.
In this case, basis functions are as follows:

ψ1,0(t) = 2
√

2
π

ψ1,1(t) = 2
√

2
π (8t− 2)

ψ1,2(t) = 2
√

2
π (64t2 − 32t+ 3)

ψ1,3(t) = 2
√

2
π (512t3 − 384t2 + 80t− 4)


0 ≤ t < 1

2

ψ2,0(t) = 2
√

2
π

ψ2,1(t) = 2
√

2
π (8t− 6)

ψ2,2(t) = 2
√

2
π (64t2 − 96t+ 35)

ψ2,3(t) = 2
√

2
π (512t3 − 1152t2 + 848t− 204)


1
2 ≤ t < 1

Integrating above functions from 0 to t and expressing in terms of basis functions,

∫ t
0 ψ1,0(t

′)dt′ =


2

√
2

π
t, 0 ≤ t < 1

2√
2

π
, 1

2 ≤ t < 1

= 1
4ψ1,0(t) + 1

8ψ1,1(t) + 1
2ψ2,0(t)

∫ t
0 ψ1,1(t

′)dt′ =


4

√
2

π
(2t2 − t), 0 ≤ t < 1

2

0, 1
2 ≤ t < 1

= −3
16 ψ1,0(t) + 1

16ψ1,2(t).

Similarly,
∫ t
0 ψ1,2(t

′)dt′ = 1
12ψ1,0(t) + −1

24 ψ1,1(t) + 1
24ψ1,3(t) + 1

6ψ2,0(t)∫ t
0 ψ1,3(t

′)dt′ = −1
16 ψ1,0(t) + 1

32ψ1,2(t)∫ t
0 ψ2,0(t

′)dt′ = 1
4ψ2,0(t) + 1

8ψ2,1(t)∫ t
0 ψ2,1(t

′)dt′ = −3
16 ψ2,0(t) + 1

16ψ2,2(t)∫ t
0 ψ2,2(t

′)dt′ = 1
12ψ2,0(t) + −1

24 ψ2,1(t) + 1
24ψ2,3(t)∫ t

0 ψ2,3(t
′)dt′ = −1

16 ψ2,0(t) + −1
32 ψ2,2(t).

Thus,
∫ t
0 ψ8×1(t

′)dt′ = P8×8ψ8×1(t), where ψ(t) = [ψ1,0 ψ1,1 ψ1,2 ψ1,3 ψ2,0 ψ2,1 ψ2,2 ψ2,3 ]T .

Hence, second kind Chebyshev wavelet operational matrix of integration is given by
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P8×8 =



1
4

1
8 0 0 1

2 0 0 0
−3
16 0 1

16 0 0 0 0 0
1
12

−1
24 0 1

24
1
6 0 0 0

−1
16 0 −1

32 0 0 0 0 0
0 0 0 0 1

4
1
8 0 0

0 0 0 0 −3
16 0 1

16 0
0 0 0 0 1

12
−1
24 0 1

24
0 0 0 0 −1

16 0 −1
32 0


(5)

4.2. Algorithm for solving non-linear singular differential equations using sec-
ond kind Chebyshev wavelet operational matrix of integration. Consider the
following non-linear singular differential equation

y′′(t) +
m

t
y′(t) + f(t, y) = g(t), 0 ≤ t < 1, m ≥ 1 (6)

with initial conditions

y(0) = a, y′(0) = b. (7)

For solving the differential eq.(9), multiply it by t,

ty′′(t) +my′(t) + tf(t, y) = tg(t), 0 ≤ t < 1, m ≥ 1 (8)

and approximate y′′(t) as

y′′(t) ≈
2∑

n=1

3∑
m=0

cn,mψn,m(t) = CTψ(t). (9)

Integrating eq.(12) w.r.t. t twice from 0 to t,

y′(t) ≈ CTPψ(t) + y′(0)

= CTPψ(t) +ATψ(t), (10)

y(t) ≈ CTP 2ψ(t) + ty′(0) + y(0)

= CTP 2ψ(t) +BTψ(t), (11)

where A and B are unknown which can be calculated from initial conditions (10). Here,
P is the 8× 8 second kind Chebyshev wavelet operational matrix of integration given by
eq.(8). Also approximate e(t) = t, f(t, y) and g(t) as

e(t) = t ≈ ETψ(t), (12)

f(t, y) ≈
n∑
j=0

1

j!

(
(t− t0)

∂

∂t
+ (y − y0)

∂

∂y

)j
f(t0, y0)

= F Tψ(t), (13)

g(t) ≈
n∑
j=0

g(j)(t0)

j!
(t− t0)j

= GTψ(t). (14)

Substituting the values from eqs.(12)-(17) in eq.(11),

ETψ(t)CTψ(t) +m(CTPψ(t) +ATψ(t)) + ETψ(t)F Tψ(t) = ETψ(t)GTψ(t). (15)

Solving the system of algebraic equations (18), the eq.(9) can be solved.
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4.3. Solution of Lane-Emden equation of index p=1. Consider the general Lane-
Emden equation of index p,

y′′(t) +
2

t
y′(t) + yp(t) = 0, 0 ≤ t < 1, (16)

with initial conditions y(0) = 1, y′(0) = 0. ([17])
This eq.(19) is reduced from eq.(9) when f(t, y) = yp(t), g(t) = 0.
For p=1, the eq.(19) reduces to

y′′(t) +
2

t
y′(t) + y(t) = 0, y(0) = 1, y′(0) = 0. (17)

The exact solution of eq.(20) is y(t) =
sin t

t
.

The numerical solution of eq.(20) using the method described in the section (4.2) is given
in Table 1.

The Table 1 compares the numerical solution of Lane-Emden equation of index p=1
with the exact solution. The absolute error shows that the numerical values obtained
using second kind Chebyshev wavelet are in good agreement with the exact values at
those points. The graphs of exact and approximate solutions obtained by second kind
Chebyshev wavelet are plotted in Figure 1. The graphs of exact and approximate solutions
coincide almost everywhere.

t Cheby. sol. Exact sol. Abs. error
0.0000001 0.99999008 0.99999998 9.9×10−6

0.000001 0.99999008 0.99999998 9.9×10−6

0.00001 0.99999008 0.99999998 9.9×10−6

0.0001 0.99999011 0.99999998 9.87×10−6

0.001 0.99999023 0.99999983 9.6×10−6

0.01 0.99997634 0.99998333 6.99×10−6

0.1 0.99833665 0.99833416 2.49×10−6

0.2 0.98509001 0.99334665 8.25×10−3

0.3 0.98506630 0.98506735 1.05×10−6

0.4 0.97354834 0.97354855 2.1×10−7

0.5 0.95884292 0.958851077 8.16×10−6

0.6 0.94107292 0.94107078 2.14×10−6

0.7 0.92031014 0.92031098 8.4×10−7

0.8 0.89669436 0.89669511 7.5×10−7

0.9 0.87036538 0.87036323 2.15×10−6

Table 1. Chebyshev solution of Lane-Emden equation of index 1

4.4. Solution of Chandrasekhar’s white dwarf equation. Consider the white dwarf
equation ([1])

y′′(t) + 2
t y
′(t) + (y2(t)− c)

3
2 = 0, ∀t ∈ [0, 1), y(0) = 1, y′(0) = 0.

The numerical solutions of eq.(21), for different values of c i.e. c=0, c=0.1, c=0.2, c=0.3,
using the method described in the section (4.2) are given in Table 2. The numerical
solutions of Chandrasekhar’s white dwarf equation using second kind Chebyshev wavelet,
for different values of c, have also been plotted as shown in Figure 2.
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t c=0 c=0.1 c=0.2 c=0.3
0.0000001 0.99997051 0.99997596 0.99998087 0.99998523
0.000001 0.99997051 0.99997596 0.99998087 0.99998523
0.00001 0.99997051 0.99997596 0.99998087 0.99998523
0.0001 0.99997060 0.99997603 0.99998093 0.99998528
0.001 0.99997128 0.99997658 0.99998136 0.99998560
0.01 0.99996256 0.99996883 0.99997459 0.99997982
0.1 0.99834326 0.99858506 0.99881389 0.99902875
0.2 0.99337005 0.99433773 0.99525348 0.99611331
0.3 0.98519882 0.98735409 0.98939482 0.99131203
0.4 0.97397751 0.97775430 0.98133311 0.98469805
0.5 0.95986121 0.96566332 0.97116653 0.97634603
0.6 0.94320905 0.95137700 0.95913323 0.96644229
0.7 0.92424055 0.93507135 0.94537067 0.95509060
0.8 0.90336430 0.91708308 0.93015004 0.94250321
0.9 0.88048890 0.89774890 0.91374252 0.92889238

Table 2. Chebyshev solution of Chandrasekhar’s white dwarf equation

Figure 1. Solution of
Lane-Emden eqn.

Figure 2. Sol. of Chan-
drasekhar’s white dwarf
eqn.

5. Conclusions

1. By theorem (3.1),
(i) W (f − S2k−1,0(f), 1

2k
) = O

(
1

2kα

)
(ii) W (f − S2k−1,1(f), 1

2k
) = O

(
1

2k(α+2)

)
(iii) W (f − S2k−1,M (f), 1

2k
) = O

(
1

2k(α+2).M
3
2

)
, all vanishes as k,M →∞.

2. By cor.1,
(ii) E2k−1,0 = O

(
1

2kα

)
, k ≥ 1,

(ii) E2k−1,1 = O
(

1
2k(α+2)

)
, k ≥ 1,
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(iii)E2k−1,M = O

(
1

2k(α+2)(M)
3
2

)
, k ≥,M ≥ 2.

W (f − S2k−1,0(f),
1

2k
) ≤ 2E2k−1,0, W (f − S2k−1,1(f),

1

2k
) ≤ 2E2k−1,1

and W (f − S2k−1,M (f),
1

2k
) ≤ 2E2k−1,M ,

therefore, moduli of continuity, W (f − S2k−1,0(f), 1
2k

),W (f − S2k−1,1(f), 1
2k

),

W (f − S2k−1,M (f), 1
2k

) are better and sharper than the approximations, E2k−1,0, E2k−1,1,
E2k−1,M respectively.
3. The second kind Chebyshev wavelet operational matrix of integration has been
constructed which helps in solving non-linear singular differential equations efficiently,
since solving these equations with other methods is a tedious work.
4. The method of operational matrix of integration developed in this paper has been
employed to Lane-Emden equation of index p=1, which gives high agreement with the
exact solution, hence verifying the applicability of the method developed.
5. The method of operational matrix of integration has been employed for getting the
numerical solution of Chandrasekhar’s white dwarf equation using lesser order matrix
than used in Kaur et al.([8]), demonstrating the efficiency of the method developed.
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