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MORE ON PICTURE FUZZY SETS AND THEIR PROPERTIES

D. SAADI1, A. AMROUNE1∗, §

Abstract. In this paper, some basic properties of the set of a picture fuzzy set truth
values D∗ are studied. Also, using an adequate order � of D∗, some picture fuzzy sets
operations are introduced by meaning a punctual order (point by point). As well as
the order of D∗ is used to show some characteristic sets of a picture fuzzy set, such as
support, kernel, α-cut, strong α-cut and picture fuzzy line of degree α of a picture fuzzy
set, where α ∈ D∗, have been defined, some properties of them have been established
and some decomposition theorems of picture fuzzy sets have been proved. Finally, some
of Atanassov’s modal operators are extended to the picture fuzzy case.

Keywords: Picture fuzzy set, picture fuzzy sets operations, α-cuts, picture fuzzy line of
degree α, modal operators.
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1. Introduction

To deal with uncertainty, Zadeh (1965) [28] proposed the notion of fuzzy sets and
related concepts. Since its creation, this notion has not ceased to develop. Two years
after this invention, Goguen [20] introduced a fundamental generalization of fuzzy sets by
replacing the unit interval with a complete lattice. Interval-valued fuzzy sets are a further
development of fuzzy sets (IVFSs) introduced simultaneously by several researchers Zadeh,
Grattan-Guiness, Jahn and Sambuc [29, 21, 17, 25] (1975).

Intuitionistic fuzzy sets (IFSs) were first proposed by Atanassov in 1983 to address the
issue of non-membership. This concept has been found to be quite helpful in dealing with
vagueness, and it was followed by a general intuitionistic fuzzy set, the ”intuitionistic L-
fuzzy set,” introduced in 1984. As an extension of the fuzzy set, Gau and Buehrer [19]
presented the theory of vague sets in 1993. (later proven to be intuitionistic fuzzy sets;
see [7]).

1 University of M’sila, Faculty of Mathematics and Computer Science, Department of Mathematics,
M’sila 28000, Algeria.
e-mail: djazia.saadi@univ-msila.dz; ORCID: https://orcid.org/0000-0003-2149-2481.
e-mail: abdelaziz.amroune@univ-msila.dz; ORCID: https://orcid.org/0000-0002-0778-6566.

∗ Corresponding author.
§ Manuscript received: July 17, 2022; accepted: December 14, 2022.

TWMS Journal of Applied and Engineering Mathematics, Vol.14, No.3 © Işık University, Department
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The same thing as Zadeh’s fuzzy set has been introduced under the term ”type-1 fuzzy
set” (T1FS) in recent years. Some authors e.g., [8, 24], emphasize that T1FSs serve as
the foundation for fuzzy set expansions.

It is evident that a significant portion of these extensions consists of minor alterations
to previous fuzzy set extensions and already exist that have been ”re-branded” with new
names.

Picture fuzzy sets, a concept coined by Cuong Bui Cong and Vladik Kreinovich [10], is
an interesting expansion of both fuzzy sets and intuitionistic fuzzy sets (IFS).

The main work of Cuong Bui Cong and Vladik Kreinovich is the incorporation of the
concept of the positive, negative and neutral membership degree of an element. In other
words, an element of a picture fuzzy set A is characterized by three memberships degrees,
positive, negative and neutral membership degree µA (x) , ηA (x) , νA (x) , so that the total
of the three degrees cannot be greater than one. This gives an unusual but wonderful idea
of a mathematician and many valued-logic.

Not only does the resulting notion have a beautiful mathematical structure with con-
nections to various fields of mathematics, but it also has a broad range of applications
outside mathematics, for example in decision-making [2, 18, 27], Medical Diagnosis [15],
investment risk [6] and other applications [1, 26].

The picture fuzzy set is one of the most reliable techniques to handle the uncertainties
in the data throughout the decision-making process, in which an intuitionistic fuzzy set
may fail to produce good results. It is an effective mathematical tool for dealing with
uncertain real-life issues. It can function extremely effectively in ambiguous situations
that call for responses of the yes, no, abstain, and rejection types.

Fetanat and Tayebi are doing research to try to combine a new decision support system
(DSS) with a picture fuzzy set based combined compromise solution (PFS-CoCoSo) [16].

The rest of this paper is structured as follows: Preliminary concepts related to fuzzy
sets, L-fuzzy sets, intuitionistic fuzzy sets theory and picture fuzzy sets are summarized
in Section 2. In Section 3, we study some properties of D∗ (the set of membership values
of a picture fuzzy set). In Section 4, based on the study of D∗, we introduce the concepts
of picture fuzzy set union, picture fuzzy set intersection and we define the picture fuzzy
complement by using the standard negator. In Section 5, we provide some characteristic
sets of a picture fuzzy set such as support, kernel, α-cuts, strong α-cuts and picture fuzzy
line of degree α of a picture fuzzy set for α ∈ D∗, and investigate their properties, we finish
this section by giving some decomposition theorems for a picture fuzzy set. In Section 6,
we extend some of Attanassov’s modal operators to the picture fuzzy case. Finally, we
present some concluding remarks in Section 7.

2. Preliminaries

In this paper, U stands for a referential set (U 6= ∅).

2.1. Fuzzy sets and L-fuzzy sets.

Definition 2.1. [28] A fuzzy subset E extends the traditional bi-valence by defining a
generalized characteristic function µE : U −→ [0, 1], µE is said to be the membership
function of the subset E on U.

Definition 2.2. [20] For a complete lattice L, an L-fuzzy set µ is any application µ :
U −→ L.



1138 TWMS J. APP. AND ENG. MATH. V.14, N.3, 2024

2.2. Intuitionistic fuzzy sets.

Definition 2.3. [3, 4] An intuitionistic fuzzy set E on U is defined as the expression
E = {〈a, µE (a) , νE (a)〉 |a ∈ U}, where µE (a) + νE (a) ≤ 1, for all a ∈ U. µE : U −→
[0, 1] and νE : U −→ [0, 1] denote, respectively, the degree of membership and the degree
of non-membership of the element a in the set E.

Obviously, when νE (a) = 1 − µE (a) for every a in U, the intuitionistic fuzzy set E is
a fuzzy set.

Dealing with intuitionistic fuzzy ideas, need to investigate the mathematical model that
depicts this phenomenon, namely the set L∗ defined in the following definition.

Definition 2.4. [9, 14] Let L∗ =
{

(a1, a2) ∈ [0, 1]2 |a1 + a2 ≤ 1
}

and ≤L∗ be an order

in L∗ defined by ∀(a1, a2), (b1, b2) ∈ L∗ : (a1, a2) ≤L∗ (b1, b2) ⇔ (a1 ≤ b1 and a2 ≥ b2).
(L∗,≤L∗ ,∧L∗ ,∨L∗ , 0L∗ , 1L∗) is a complete lattice with

(a1, a2) ∧L∗ (b1, b2) = (min (a1,b1) ,max (a2, b2))
(a1, a2) ∨L∗ (b1, b2) = (max (a1,b1) ,min (a2, b2))

0L∗ = (0, 1) and 1L∗ = (1, 0) are the units of L∗.

2.3. Picture fuzzy sets.

Definition 2.5. [10] A picture fuzzy set E on U is defined as the expression E =
{〈a, µE (a) , ηE (a) , νE (a)〉 | a ∈ U} , with µE (a) + ηE (a) + νE (a) ≤ 1, for any a ∈ U.
µE (a) ∈ [0, 1], ηE (a) ∈ [0, 1] and νE (a) ∈ [0, 1] are called, respectively, the positive,

neutral and negative membership degrees of a in E.
The quantity πE (a) = 1−(µE (a) + ηE (a) + νE (a)) is said to be the refusal membership

degree of a in E.

PFS (U) stands for the set of all picture fuzzy sets on U.

The following section is essential in this paper because it leads to a good understanding
of the properties of picture fuzzy sets.

3. Structure of the set D∗

According to [12, 22], we consider the set D∗ defined by:

D∗ =
{
a = (a1, a2, a3) ∈ [0, 1]3 , a1 + a2 + a3 ≤ 1

}
Obviously, any picture fuzzy set: E = {〈a, µE (a) , ηE (a) , νE (a)〉 | a ∈ U} , corresponds

to a D∗-fuzzy subset, i.e., a mapping E : U −→ D∗ given by E (a) = (µE (a) , ηE (a) , νE (a))
∈ D∗.

We’ll suppose that for all a ∈ D∗, a1, a2 and a3, respectively, refer to the first, second
and third components of a, i.e., a = (a1, a2, a3).

3.1. Order of D∗.

Definition 3.1. According to [22, 23, 13], take � to be the order relation on D∗ given by

a � b if and only if (a1, a3) <L∗ (b1, b3) or ((a1, a3) = (b1, b3) and a2 ≤ b2)
i.e., (a1 < b1 and a3 ≥ b3) or (a1 = b1 and a3 > b3) or (a1 = b1, a3 = b3 and a2 ≤ b2) ,

for all a, b ∈ D∗.
Recalling that (D∗,�) is a bounded lattice [12, 22] with top element 1D∗ = (1, 0, 0) and

bottom element 0D∗ = (0, 0, 1). And for each a, b ∈ D∗, a f b and a g b are defined as
follows
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af b =

 a, if a � b,
b, if b � a,
(a1 ∧ b1, 1− a1 ∧ b1 − a3 ∨ b3, a3 ∨ b3) , otherwise.

ag b =

 b, if a � b,
a, if b � a,
(a1 ∨ b1, 0, a3 ∧ b3) , otherwise.

For two incomparable elements a, b ∈ D∗, the components of these elements verify (a1 >
b1 and a3 > b3) or (a1 < b1 and a3 < b3), and we write a ‖ b.

Remark 3.1. Let a, b ∈ D∗.
• a � b is equivalent to (a1 > b1 and a3 ≤ b3) or (a1 = b1 and a3 < b3) or

(a1 = b1, a3 = b3 and a2 > b2) .
• a � 0D∗ is equivalent to a1 > 0 or (a1 = 0 and a3 < 1).

Next, we give some properties that will be useful in the sequel.

Proposition 3.1. Let a, b, c ∈ D∗. Then

(1) af b � a, af b � b.
(2) a � ag b, b � ag b.
(3) af b � ag b.
(4) a � 0D∗ and b � 0D∗ if and only if af b � 0D∗.
(5) a � c and b � c if and only if af b � c.
(6) a � 0D∗ or b � 0D∗ if and only if ag b � 0D∗.
(7) If a � c or b � c, then ag b � c.
(8) a � c and b � c if and only if ag b � c.
(9) If b � c , then ag b � ag c and af b � af c.

Proof. Let a = (a1, a2, a3) , b = (b1, b2, b3) , c = (c1, c2, c3) ∈ D∗.
(1) There are three cases to distinguish.

Case 01: a � b. It follows that af b = a, hence af b � a and af b � b.
Case 02: b � a. It follows that af b = b, hence af b � a and af b � b.
Case 03: a ‖ b means (a1 > b1 and a3 > b3) or (a1 < b1 and a3 < b3).

The first sub-case gives
af b = (a1 ∧ b1, 1− a1 ∧ b1 − a3 ∨ b3, a3 ∨ b3) = (b1, 1− b1 − a3, a3) .

Then

 a1 ∧ b1 = b1 < a1 and a3 ∨ b3 = a3, hence af b � a.
And
a1 ∧ b1 = b1 and a3 ∨ b3 = a3 > b3, hence af b � b.

Similarly, we obtain the same result in the second sub-case.
Therefore, we conclude that af b � a, af b � b, for all a, b ∈ D∗.

(2) Similar to (1).
(3) From (1) and (2).
(4) Suppose that a � 0D∗ , b � 0D∗ . Then

af b =

 a, if a � b,
b, if b � a,
(a1 ∧ b1, 1− a1 ∧ b1 − a3 ∨ b3, a3 ∨ b3) , otherwise.

The result is clear if af b = a or af b = b, it remains to prove that the property
is true in the case af b = (a1 ∧ b1, 1− a1 ∧ b1 − a3 ∨ b3, a3 ∨ b3) .
Since a � 0D∗ and b � 0D∗ , it follows that
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or
a1 = 0 and a3 < 1 (2)

and

 b1 > 0 and b3 < 1 (3)
or
b1 = 0 and b3 < 1 (4)

,

Then we distinguish four cases:
Case 01: We have (1) and (3) , i.e., (a1 > 0 and a3 < 1) and (b1 > 0 and
b3 < 1), give a1 ∧ b1 > 0 and a3 ∨ b3 < 1. It follows that af b � 0D∗ .

Case 02: We have (1) and (4) , i.e., (a1 > 0 and a3 < 1) and (b1 = 0 and
b3 < 1), give a1 ∧ b1 = 0 and a3 ∨ b3 < 1. It follows that af b � 0D∗ .

Case 03: We have (2) and (3) , i.e., (a1 = 0 and a3 < 1) and (b1 > 0 and
b3 < 1), give a1 ∧ b1 = 0 and a3 ∨ b3 < 1. It follows that af b � 0D∗ .

Case 04: We have (2) and (4) , i.e., (a1 = 0 and a3 < 1) and (b1 = 0 and
b3 < 1), give a1 ∧ b1 = 0 and a3 ∨ b3 < 1. It follows that af b � 0D∗ .

Conversely, suppose that a f b � 0D∗ and a = 0D∗ . Then a f b = 0D∗ f b = 0D∗ ,
for each b ∈ D∗. This is a contradiction. Thus, if af b � 0D∗ implies a � 0D∗ and
b � 0D∗ .

(5) Similar to (4).
(6) Suppose that a � 0D∗ . Since ag b � a , then ag b � 0D∗ .

Conversely, suppose that agb � 0D∗ , a = 0D∗ and b = 0D∗ . Then agb = 0D∗g0D∗ =
0D∗ . This is a contradiction. Thus, if ag b � 0D∗ implies a � 0D∗ or b � 0D∗ .

(7) Similar to (6).
(8) Suppose that a � c and b � c.

The result is clear if ag b = a or ag b = b.
If ag b = (a1 ∨ b1, 0, a3 ∧ b3) , then a1 ∨ b1 ≤ c1, a3 ∧ b3 ≥ c3 and 0 ≤ c2. Hence

ag b � c.
Conversely, suppose that ag b � c.
Since a � ag b and b � ag b, then a � c and b � c.

(9) Suppose that b � c.
Since a � ag c and b � c � ag c, then from (8) ag b � ag c.
Since af b � a and af b � b � c, then from (5) af b � af c.

�

Remark 3.2. Generally, the converse implication on (7) is not true. Indeed,
let a = (0.2, 0.4, 0.3) , b = (0.1, 0.3, 0.2) , c = (0.2, 0.5, 0.3) .
ag b = (0.2, 0, 0.2) � (0.2, 0.5, 0.3) = c, but a � c and b ‖ c.

3.2. Picture fuzzy negators of D∗. Picture fuzzy negators of D∗ are a generalization
of fuzzy negators and intuitionistic fuzzy negators.

Definition 3.2. [12] A picture fuzzy negator is any non-increasing mapping N : D∗ −→
D∗ satisfying N (0D∗) = 1D∗ and N (1D∗) = 0D∗.
N is called an involutive picture fuzzy negator, if N (N (a)) = a, for all a ∈ D∗.

Proposition 3.2. Let a = (a1, a2, a3) ∈ D∗. The mappings N1 and NS defined respec-
tively by N1 (a) = (a3, a2, a1) and NS (a) = (a3, 1− a1 − a2 − a3, a1), for all a ∈ D∗, are
involutive picture fuzzy negators and NS is called the standard picture fuzzy negator.

4. Picture fuzzy sets operations

4.1. Picture fuzzy inclusion.
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Definition 4.1. For E,F ∈ PFS(U). We say that E ⊆ F , if E (a) � F (a), for all
a ∈ U, where � is the order of D∗. In more detail,
E ⊆ F ⇐⇒ (µE (a) , ηE (a) , νE (a)) � (µF (a) , ηF (a) , νF (a)) , for all a ∈ U.

⇐⇒


µE (a) < µF (a) and νE (a) ≥ νF (a) ,
or
µE (a) = µF (a) and νE (a) > νF (a) ,
or
µE (a) = µF (a) , νE (a) = νF (a) and ηE (a) ≤ ηF (a) .

As seen in Definition 3.1 the picture fuzzy inclusion is an order on PFS(U).

Definition 4.2. For E,F ∈ PFS(U). We say that E = F , if E (a) = F (a), for all
a ∈ U.

4.2. Picture fuzzy intersection and picture fuzzy union.

Definition 4.3. Let E,F ∈ PFS(U). According to Definition 3.1, we define the picture
fuzzy intersection by (E ∩ F ) (a) = E (a)f F (a) . In more detail,

E ∩ F = {〈a, µE∩F (a) , ηE∩F (a) , νE∩F (a)〉 | a ∈ U} , where

µE∩F (a) = µE (a) ∧ µF (a) ,

ηE∩F (a) =

 ηA (a) , if E (a) � F (a) ,
ηF (a) , if F (a) � E (a) ,
1− µE (a) ∧ µF (a)− νE (a) ∨ νF (a) , otherwise.

νE∩F (a) = νE (a) ∨ νF (a) .

And picture fuzzy union by (E ∪ F ) (a) = E (a)g F (a) . In more detail,

E ∪ F = {〈a, µE∪F (a) , ηE∪F (a) , νE∪F (a)〉 | a ∈ U} , where

µE∪F (a) = µE (a) ∨ µF (a) .

ηE∪F (a) =

 ηF (a) , if E (a) � F (a) ,
ηE (a) , if F (a) � E (a) ,
0 otherwise.

νE∪F (a) = νE (a) ∧ νF (a) .

Also, according to Definition 3.1 (PFS(U),⊆,∩,∪, ∅,U) is a bounded lattice.

Example 4.1. Let U = {a, b, c} and let E,F,G ∈ PFS(U), where
E = {〈a, 0.01, 0.30, 0.52〉 , 〈b, 0.02, 0.11, 0.36〉 , 〈c, 0.13, 0.40, 0.32〉} ,
F = {〈a, 0.01, 0.35, 0.52〉 , 〈b, 0.28, 0.33, 0.15〉 , 〈c, 0.21, 0.00, 0.09〉} ,
G = {〈a, 0.00, 0.44, 0.21〉 , 〈b, 0.05, 0.51, 0.27〉 , 〈c, 0.21, 0.07, 0.53〉} .
Note that for all x ∈ U, E (x) � F (x) , then E ⊆ F. Moreover, E∩F = E and E∪F =

F. On the other hand, there exists a ∈ U such that E (a) ‖G (a) , then neither E ⊆ G nor
G ⊆ E. Moreover, E ∩G = {〈a, 0.00, 0.48, 0.52〉 , 〈b, 0.02, 0.11, 0.36〉 , 〈c, 0.13, 0.34, 0.53〉}
and E ∪G = {〈a, 0.01, 0.00, 0.21〉 , 〈b, 0.05, 0.51, 0.27〉 , 〈c, 0.21, 0.00, 0.32〉} .

Proposition 4.1. Let E,F,G ∈ PFS(U). As in classical set theory, the definitions we
have just given lead to the following properties:

(1) E ∩ (F ∩G) = (E ∩ F ) ∩G, E ∪ (F ∪G) = (E ∪ F ) ∪G.
(2) E ∩ F = F ∩ E, E ∪ F = F ∪ E.
(3) E ∩ (E ∪ F ) = E, E ∪ (E ∩ F ) = E.
(4) E ∩ E = E, E ∪ E = E.
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(5) E ∪ F ⊇ E ⊇ E ∩ F, E ∪ F ⊇ F ⊇ E ∩ F.
(6) E ∪ ∅ = E, E ∪U = U, ∀E ∈ PFS(U).
(7) E ∩ ∅ = ∅, E ∩U = E, ∀E ∈ PFS(U).

Proof. Using the properties in Proposition 3.1, the proofs are straightforward. �

4.3. Picture fuzzy complement of a picture fuzzy set.

Definition 4.4. Let E ∈ PFS(U). Using the negators NS and N1 in Proposition 3.2, we
define EC and E respectively by
EC = NS (E) = {〈a, νE (a) , 1− µE (a)− ηE (a)− νE (a) , µE (a)〉 | a ∈ U} ,
E = N1 (E) = {〈a, νE (a) , ηE (a) , µE (a)〉 | a ∈ U} .

Example 4.2. The complement of the picture fuzzy sets given in Example 4.1 is
EC = {〈a, 0.52, 0.17, 0.01〉 , 〈b, 0.36, 0.51, 0.02〉 , 〈c, 0.32, 0.15, 0.13〉} ,
F C = {〈a, 0.52, 0.12, 0.01〉 , 〈b, 0.15, 0.24, 0.28〉 , 〈c, 0.09, 0.70, 0.21〉} ,
GC = {〈a, 0.21, 0.35, 0.00〉 , 〈b, 0.27, 0.17, 0.05〉 , 〈c, 0.53, 0.19, 0.21〉} .

Unlike classical subsets, a picture fuzzy set E usually satisfies EC ∩E 6= ∅ and EC ∪E 6=
U, however, some other properties of classical set theory are satisfied, such as:

Proposition 4.2. For E,F ∈ PFS(U), the complement of picture fuzzy sets C verifies
the following properties:

(1) (E ∩ F )C = EC ∪ F C , (E ∪ F )C = EC ∩ F C .
(2) (∅)C = U, (U)C = ∅.
(3)

(
EC
)C

= E.

(4) E ⊆ F implies F C ⊆ EC .

Proof. (1) Let a ∈ U

(E ∩ F ) (a) =

 E (a) , if E (a) � F (a) .
F (a) , if F (a) � E (a) .
(µE∩F (a) , ηE∩F (a) , νE∩F (a)) , otherwise.

Where µE∩F (a) = µE (a) ∧ µF (a) ,
ηE∩F (a) = 1− µE (a) ∧ µF (a)− νE (a) ∨ νF (a) ,
νE∩F (a) = νE (a) ∨ νF (a) .

Hence,

(E ∩ F )C (a) =

 EC (a) , if F C (a) � EC (a) .
F C (a) , if EC (a) � F C (a) .
{〈a, νE (a) ∨ νF (a) , 0, µE (a) ∧ µF (a)〉 | a ∈ U} , otherwise.

In other hand,
EC = {〈a, νE (a) , 1− µE (a)− ηE (a)− νE (a) , µE (a)〉 | a ∈ U} ,
F C = {〈a, νF (a) , 1− µF (a)− ηF (a)− νF (a) , µF (a)〉 | a ∈ U} .

Hence,(
EC ∪ F C

)
(a) =

 EC (a) , if F C (a) � EC (a) .
F C (a) , if EC (a) � F C (a) .
{〈a, νE (a) ∨ νF (a) , 0, µE (a) ∧ µF (a)〉 | a ∈ U} , otherwise.

Therefore (E ∩ F )C = EC ∪ F C .
In a similar way, it can be shown that (E ∪ F )C = EC ∩ F C .



D. SAADI, A. AMROUNE: MORE ON PICTURE FUZZY SETS AND THEIR PROPERTIES 1143

(2) For all a ∈ U, (∅)C (a) = (∅ (a))C = (0, 0, 1)C = (1, 0, 0) = 1D∗ .

Hence (∅)C = {〈a, 1, 0, 0〉 | a ∈ U} = U.

Dually, (U)C = ∅.
Finally, (3) and (4) are easy to verify. �

In what follows we denote by D∗0 = D∗ − {0D∗} ,D∗1 = D∗ − {1D∗} .

5. Characteristic sets of a picture fuzzy set

Among the crucial notions in fuzzy set theory, are the notions of support, kernel, cuts
and fuzzy line of degree α of a fuzzy set, where α ∈ D∗. In the sequel, we generalize these
notions to the notions of a picture fuzzy set with respect to the order � in Definition 3.1.

5.1. Support of a picture fuzzy set.

Definition 5.1. Let E ∈ PFS(U). The support of E is the classical subset S(E) on U
given by

S(E) = {a ∈ U | E(a) � 0D∗} .
According to Remark 3.1, S(E) = {a ∈ U | µE (a) > 0 or (µE (a) = 0 and νE (a) < 1)} .

5.2. Kernel of a picture fuzzy set.

Definition 5.2. Let E ∈ PFS(U). The kernel of E is the classical subset Ker(E) on U
given by

Ker(E) = {a ∈ U | E(a) = 1D∗} .

5.3. α-cuts and Strong α-cuts of a picture fuzzy set.

Definition 5.3. Let E ∈ PFS(U). For α = (α1, α2, α3) ∈ D∗0, the α-cut of E is the
classical subset Eα on U given by

Eα = {a ∈ U | E (a) � α} .

According to Definition 3.1, Eα = {a ∈ U| (µE (a) > α1 and νE (a) ≤ α3) or (µE (a) = α1

and νE (a) < α3) or (µE (a) = α1, νE (a) = α3 and ηE (a) ≥ α2)} .

Definition 5.4. Let E ∈ PFS(U). For α = (α1, α2, α3) ∈ D∗1, the strong α-cut of E is
the classical subset E+

α on U given by

E+
α = {a ∈ U | E (a) � α} .

According to Remark 3.1, E+
α = {a ∈ U | (µE (a) > α1 and νE (a) ≤ α3) or (µE (a) = α1

and νE (a) < α3) or (µE (a) = α1, νE (a) = α3 and ηE (a) > α2)} .

Proposition 5.1. Let E,F ∈ PFS(U). For any α, β ∈ D∗, we have

(1) E+
α ⊆ Eα.

(2) E ⊆ F if and only if Eα ⊆ Fα, for all α ∈ D∗0.
(3) E ⊆ F if and only if E+

α ⊆ F+
α , for all α ∈ D∗1.

(4) α � β implies Eα ⊇ Eβ, for all α, β ∈ D∗0.

(5) α � β implies E+
α ⊇ E+

β , for all α, β ∈ D∗1.

(6) (E ∩ F )α = Eα ∩ Fα.
(7) (E ∪ F )α ⊇ Eα ∪ Fα.

Proof. Let a ∈ U.

(1) Clear.
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(2) Assume E ⊆ F and suppose that a ∈ Eα, then E (a) � α. Since F (a) � E (a) for
all a ∈ U, it follows that F (a) � α. Thus a ∈ Fα.
Conversely, assume Eα ⊆ Fα.
Put E (a) = α. It is clear that if α = 0D∗ , F (a) � 0D∗ .
If α 6= 0D∗ , then for all a ∈ Eα implies a ∈ Fα. Thus F (a) � α = E (a) , for all
a ∈ U. Hence E ⊆ F.

(3) The direct implication is similar to the previous proof.
For the converse implication, suppose for a contradiction that E+

α ⊆ F+
α , for all

α ∈ D∗1 but that E * F .
Then there exists a ∈ U such that E (a) � F (a) or E (a) ‖F (a) .
If E (a) � F (a), we can take α between E (a) and F (a) i.e., E (a) � α � F (a) .
This contradicts the fact that E+

α ⊆ F+
α .

If E (a) ‖F (a) , we have two cases: µE (a) < µF (a) and νE (a) < νF (a) or µF (a) <
µE (a) and νF (a) < νE (a) .

For the first case, take λ =
(
µE (a) , ηE(a)+ηF (a)2 , νE(a)+νF (a)2

)
, it is clear that λ <

E (a) and λ‖F (a) . This is also a contradiction.
Similarly, we obtain the same result in the second case.

(4) Assume α � β and suppose that a ∈ Eβ. Then E (a) � β � α. Thus a ∈ Eα.
(5) Similar to (4).
(6) (E ∩ F )α = {a ∈ U | (E ∩ F ) (a) � α}

= {a ∈ U | E (a)f F (a) � α}
= {a ∈ U | E (a) � α and F (a) � α}
= {a ∈ U | E (a) � α} ∩ {a ∈ U | F (a) � α}
= Eα ∩ Fα.

(7) Similar to (6).

�

Remark 5.1. Concerning this proposition, it is important to note the following details:

• Generally, the converse of (4) and (5) is not true. Indeed,
Let U = {a, b} and let E,F ∈ PFS(U) given by
E = {〈a, 1, 0, 0〉 , 〈b, 0.55, 0.23, 0.11〉}, F = {〈a, 0.75, 0.12, 0.02〉 , 〈b, 1, 0, 0〉}.
And take α = (0.61, 0.01, 0.21) , β = (0.62, 0.01, 0.22) . It is easy to observe that

Eα = {a} ⊆ Eβ = {a} and E+
α = {a} ⊆ E+

β = {a} but α‖β.
• The converse of (4) and (5) is true when α and β are comparable.
• As seen in Remark 3.2, the converse of (7) is not true.

Corollary 5.1. For all E,F ∈ PFS(U), we have

(1) E = F if and only if Eα = Fα, for all α ∈ D∗0.
(2) E = F if and only if E+

α = F+
α , for all α ∈ D∗1.

(3) If E is a crisp subset on U, then Eα = E, for all α ∈ D∗0
(4) if α = 0D∗, then E+

α = S (E) and Eα = U.
(5) if α = 1D∗, then Eα is the kernel of E.

5.4. Picture fuzzy line of degree α of a picture fuzzy set.

Definition 5.5. Let E ∈ PFS(U). For α = (α1, α2, α3) ∈ D∗, the picture fuzzy line of
degree α of E is the classical subset Lα (E) on U given by

Lα (E) = {a ∈ U | E (a) = α} .

Proposition 5.2. Let E,F ∈ PFS(U). For all α, β ∈ D∗, we have
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(1) Lα (E) ⊆ Eα, L1D∗ (E) = Ker (E) .
(2) E = F if and only if Lα (E) = Lα (F ) .
(3) If α 6= β, then Lα (E) ∩ Lβ (E) = ∅.
(4) Lα (E) ∩ Lα (F ) ⊆ Lα (E ∩ F ) .
(5) Lα (E) ∪ Lβ (F ) ⊆ Lαgβ (E ∪ F ) .
(6) Lα (E ∩ F ) ⊆ Eα ∩ Fα.

Proof. Let a ∈ U and let α, β ∈ D∗.
(1) Clear.
(2) Assume E = F and suppose that a ∈ Lα (E) . Then F (a) = E (a) = α, hence

a ∈ Lα (F ) .
Conversely, suppose that Lα (E) = Lα (F ) .
Put E (a) = α, that is, a ∈ Lα (E) . This equivalent to a ∈ Lα (F ) , i.e., F (a) = α.
Therefore, E = F.

(3) Suppose that α 6= β and a ∈ Lα (E) , that is, E (a) = α 6= β, then a /∈ Lβ (E) .
Thus Lα (E) ∩ Lβ (E) = ∅.

(4) Suppose that a ∈ Lα (E) ∩ Lα (F ) . Then a ∈ Lα (E) and a ∈ Lα (F ) , imply that
E (a) = α and F (a) = α. Hence E (a) f F (a) = α, this gives (E ∩ F ) (a) = α.
Consequently a ∈ Lα (E ∩ F ) .

(5) Similar to (4).
(6) Suppose that a ∈ Lα (E ∩ F ) . Then (E ∩ F ) (a) = α, that is, E (a)fF (a) = α, it

follows that E (a) � α and F (a) � α. Thus a ∈ Eα and a ∈ Fα. Hence a ∈ Eα∩Fα.
�

Remark 5.2. Concerning this proposition, it is important to note the following details:

• The converse of (3) holds if Lα (E) 6= ∅ or Lβ (E) 6= ∅.
• Generally, the converse inclusion of (4) and (5) is not true. Indeed,

Let U = {a, b} and let E,F ∈ PFS(U) given by
E = {〈a, 0.10, 0.30, 0.40〉 , 〈b, 0.30, 0.20, 0.10〉},
F = {〈a, 0.20, 0.20, 0.50〉 , 〈b, 0.20, 0.40, 0.30〉}.
Then, E ∩ F = {〈a, 0.10, 0.40, 0.50〉 , 〈b, 0.20, 0.40, 0.30〉} .
Take α = (0.10, 0.40, 0.50) , hence Lα (E ∩ F ) = {a} and Lα (E) = Lα (F ) = ∅
Note that Lα (E ∩ F ) * Lα (E) ∩ Lα (F ) .
In the same way, take α = (0.20, 0.10, 0.50) and β = (0.08, 0.31, 0.40) , It is easy

to see that Lαgβ (E ∪ F ) = {a} , Lα (E) = ∅ and Lβ (F ) = ∅.
Hence, Lαgβ (E ∪ F ) * Lα (E) ∪ Lβ (F ).

5.5. Some decomposition theorems of a picture fuzzy set. These theorems permit
to express any picture fuzzy subset on U in terms of its α-cuts, strong α-cut and picture
fuzzy line of degree α.

Theorem 5.1. Let E ∈ PFS(U). Then

E (a) = g
α∈D∗

αEα (a) , for all a ∈ U.

Where

Eα (a) =

{
1 if a ∈ Eα,
0 otherwise.

Proof. Let a ∈ U.
Put E (a) = λ, where λ ∈ D∗0, then Eλ (a) = 1.
We can express D∗ as the union of three sets D1, D2, D3, where D1 = {α ∈ D∗ | α � λ} ,

D2 = {α ∈ D∗ | α � λ} and D3 = {α ∈ D∗ | α ‖ λ} .
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It holds that

g
α∈D∗

αEα (a) =

(
g

α∈D1

{αEα (a)}
)
g

(
g

α∈D2

{αEα (a)}
)
g

(
g

α∈D3

{αEα (a)}
)
.

If α ∈ D1, then Eα (a) = 1. Hence g
α∈D∗

αEα (a) = g
α∈D1

αEα (a) = g
α∈D1

α = λ.

Otherwise, Eα (a) = 0. Then g
α∈D∗

αEα (a) = 0.

Therefore, g
α∈D∗

αEα (a) = λg 0g 0 = λ = E (a) . �

Theorem 5.2. Let E ∈ PFS(U). Then

E (a) = g
α∈D∗

αE+
α (a) , for all a ∈ U.

Proof. Similar to the previous proof, it suffices to take D1 = {α ∈ D∗ | α ≺ λ} , D2 =
{α ∈ D∗ | α � λ} and D3 = {α ∈ D∗ | α ‖ λ} . �

Theorem 5.3. Let E ∈ PFS(U). Then

E (a) = g
α∈D∗

αLα (E) (a) , for all a ∈ U.

Proof. Let a ∈ U.
Put E (a) = λ, where λ ∈ D∗, then Lλ (E) (a) = 1.

g
α∈D∗

αLα (E) (a) =

(
g
α=λ
{αLα (E) (a)}

)
g

(
g
α 6=λ
{αLα (E) (a)}

)
= λ g 0 = λ = E (a) .

�

Proposition 5.3. Let E ∈ PFS(U). Then for all α, λ ∈ D∗,

Eα = ∪
α�λ

Eλ.

Proof. Direct. �

6. Modal operators defined on picture fuzzy sets

In this section, we extend some of Atanassov’s modal operators to the picture fuzzy set
case.

6.1. Necessity and Possibility operators. Now, we define two operators on the set
of picture fuzzy sets that transform every picture fuzzy set into an intuitionistic fuzzy
set. These operators extend Atanasov’s operators ([3], [5]) ”necessity” and ”possibility”
defined in certain modal logics.

Definition 6.1. For E ∈ PFS(U), the following associated picture fuzzy sets �E (neces-
sity) and ♦E (possibility) on U are given by:
�E = {〈a, µE (a) , ηE (a) , 1− ηE (a)− µE (a)〉 | a ∈ U} .
♦E = {〈a, 1− ηE (a)− νE (a) , ηE (a) , νE (a)〉 | a ∈ U} .

With the involutive negator N1 in Proposition 3.2, the operators �,♦ verify a similar
relation like that seen between modal operators on  Lukasiewicz-Moisil algebras.

Recalling that E = N1 (E) = {〈a, νE (a) , ηE (a) , µE (a)〉 | a ∈ U}.

Proposition 6.1. Let E ∈ PFS(U). Then

(1) �E = ♦E.

(2) ♦E = �E.

Proof. Let a ∈ U,
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(1) �E = �{〈a, µE (a) , ηE (a) , νE (a)〉 | a ∈ U},
= � {〈a, νE (a) , ηE (a) , µE (a)〉 | a ∈ U},
= {〈a, νE (a) , ηE (a) , 1− νE (a)− ηE (a)〉 | a ∈ U},
= {〈a, 1− νE (a)− ηE (a) , ηE (a) , νE (a)〉 | a ∈ U} ,
= ♦E.

(2) Is obtained dually.

�

Proposition 6.2. For any E ∈ PFS(U), the operators � and ♦ verify the following
proprieties.

(1) ♦ is extensive and � is retractive (i.e., �E ⊆ E ⊆ ♦E ).
(2) ♦,� are idempotent (i.e., ♦♦E = ♦E and ��E = �E).
(3) �♦E = ♦E.
(4) ♦�E = �E.

Proof. Direct. �

Remark 6.1. Obviously, if E is a crisp set, then �E = E = ♦E.

Proposition 6.3. For any E ∈ PFS(U), we have

(1) S (�E) ⊆ S (E) .
(2) S (♦E) = S (E) .
(3) Ker (E) = Ker (�E) .
(4) Ker (E) ⊆ Ker (♦E) .

Proof. Let a ∈ U.

(1) Suppose that a ∈ S (�E) i.e., �E (a) � 0D∗ , which means µ�E (a) = µE (a) > 0
or µ�E (a) = µE (a) = 0 and ν�E (a) = 1 − µE (a) − ηE (a) < 1. Thus µE (a) > 0
or µE (a) = 0 and ηE (a) > 0. Since µE (a) + ηE (a) + νE (a) ≤ 1, it follows that
µE (a) > 0 or µE (a) = 0 End νE (a) < 1, that is, E (a) � 0. Hence a ∈ S (E) .

(2) The direct inclusion is similar to the previous proof. It remains to show that,
S (E) ⊆ S (♦E) .
Suppose that a ∈ S (E) i.e., E (a) � 0D∗ , means µE (a) > 0 or µE (a) = 0 and
νE (a) < 1. We discuss two cases:
If µE (a) > 0, then µ♦E (a) = 1− ηE (a)− νE (a) ≥ µE (a) > 0. Thus a ∈ S (♦E) .
If µE (a) = 0 and νE (a) < 1, then µ♦E (a) = 1− ηE (a)− νE (a) ≥ µE (a) = 0 and
ν♦E (a) = νE (a) < 1. Thus a ∈ S (♦E) .

(3) Suppose that a ∈ Ker (E) i.e., E (a) = 1D∗ , that is, µE (a) = 1, ηE (a) = 0 and
νE (a) = 0. Which is equivalent to µ�E (a) = µE (a) = 1, η�E (a) = ηE (a) = 0 and
ν�E (a) = 1− µE (a)− ηE (a) = 0. Hence a ∈ Ker (�E) .

(4) Suppose that a ∈ Ker (E) i.e., E (a) = 1D∗ , that is, µE (a) = 1, ηE (a) = 0 and
νE (a) = 0. This implies that, µ♦E (a) = 1−ηE (a)−νE (a) = 1, η♦E (a) = ηE (a) =
0 and ν♦E (a) = νE (a) = 0. Hence a ∈ Ker (♦E) .

�

From the operators �,♦, two new relations are defined as follows:
E ⊆� F ⇐⇒ µE (a) ≤ µF (a) and ηE (a) ≤ ηF (a) , for all a ∈ U.
E ⊆♦ F ⇐⇒ ηE (a) ≥ ηF (a) and νE (a) ≥ νE (a) , for all a ∈ U.
These two new relations lead to the following results, which are straightforward.

Proposition 6.4. Let E,F ∈ PFS(U). Then
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(1) E ⊆� F if and only if �E ⊆ �F.
(2) E ⊆♦ F if and only if ♦E ⊆ ♦F.
(3) E ⊆� F and E ⊆♦ F implies E ⊆ F.

6.2. Operators Dλ and Fα. In the following, two other Atanassov’s modal operators
Dλ, Fα (see [5]) will be extended to the picture fuzzy set case.

These operators are extensions of the operators � and ♦.

Definition 6.2. Let E ∈ PFS(U). Define the operator Dλ by

Dλ (E) = {〈a, µE (a) + λ.πE (a) , ηE (a) , νE (a) + (1− λ) .πE (a)〉 | a ∈ U} ,

where λ is a fixed number in [0, 1] .

Proposition 6.5. Let E ∈ PFS(U). Then for all λ1, λ2 ∈ [0, 1] , the following properties
hold:

(1) If λ1 ≤ λ2, then Dλ1 (E) ⊆ Dλ1 (E) .
(2) D0 (E) = �E.
(3) D1 (E) = ♦E.

Proof. Direct. �

Definition 6.3. Let E ∈ PFS(U). For all α ∈ D∗, define the operator Fα by

Fα (E) = {〈a, µE (a) + α1.πE (a) , ηE (a) + α2.πE (a) , νE (a) + α3.πE (a))〉 |a ∈ U} .

Proposition 6.6. Let E ∈ PFS(U) and let α, β ∈ D∗. Then the following properties
hold:

(1) If α ≤ β, then Fα (E) ⊆ Fβ (E) .
(2) F0D∗ (E) = �E.
(3) F1D∗ (E) = ♦E.
(4) Dλ (E) = F(λ,0,1−λ) (E) .

(5) Fα
(
E
)

= Fα (E) .

Proof. The statements (1), (2), (3) and (4) are easy to check. Using the negator N1, the
proof of (5) is direct. �

Theorem 6.1. Let E ∈ PFS(U) and let α, β ∈ D∗. Then the following property holds:

Fα (Fβ (E)) = Fγ (E) , where

γ = (β1 + α1. (1− β1 − β2 − β3) , β2 + α2. (1− β1 − β2 − β3) , β3 + α3. (1− β1 − β2 − β3)) .

Proof. Let α, β ∈ D∗. For all a ∈ U,
Fβ (E) = {〈a, µE (a) + β1.πE (a) , ηE (a) + β2.πE (a) , νE (a) + β3.πE (a)〉 |a ∈ U} Then

Fα (Fβ (E)) =
{〈
a, µFα(Fβ(E)) (a) , ηFα(Fβ(E)) (a) , νFα(Fβ(E)) (a)

〉
| a ∈ U

}
, where

µFα(Fβ(E)) (a) = (µE (a) + β1.πE (a)) + α1.πFβ(E) (a) ,

= (µE (a) + β1.πE (a)) + α1. (1− µE (a)− β1.πE (a)−
ηE (a)− β2.πE (a)− νE (a)− β3.πE (a)) ,

= µE (a) + (β1 + α1 − α1.β1 − α1.β2 − α1.β3) .πE (a) .
= µE (a) + (β1 + α1. (1− β1 − β2 − β3)) .πE (a) .
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ηFα(Fβ(E)) (a) = (ηE (a) + β2.πE (a)) + α2.πFβ(E) (a) ,

= (ηE (a) + β2.πE (a)) + α2. (1− µE (a)− β1.πE (a)−
ηE (a)− β2.πE (a)− νE (a)− β3.πE (a)) ,

= ηE (a) + (β2 + α2 − α2.β1 − α2.β2 − α3.β3) .πE (a) ,
= ηE (a) + (β2 + α2. (1− β1 − β2 − β3)) .πE (a) .

νFα(Fβ(E)) (a) = (νE (a) + β3.πE (a)) + α3.πFβ(E) (a) ,

= (νE (a) + β3.πE (a)) + α3. (1− µE (a)− β1.πE (a)−
ηE (a)− β2.πE (a)− νE (a)− β3.πE (a)) ,

= νE (a) + (β3 + α3 − α3.β1 − α3.β2 − α3.β3) .πE (a) ,
= νE (a) + (β3 + α3. (1− β1 − β2 − β3)) .πE (a) .

�

7. Conclusions

In this paper, we have established a number of properties and decompositions for picture
fuzzy sets. More precisely, the algebraic structure of D∗ was investigated, in particular its
properties that we have extensively used in the work. Next, we have defined some picture
fuzzy set operations, with respect to the order of D∗ noted � and the two corresponding
laws f and g of D∗. Chunxin Bo and Xiaohong Zhang [6] defined the intersection and
the union in almost the same way, and the difference is only in the definitional conditions,
which were on the sets for them, while they were on the elements of the sets in our
definition. Support, kernel, α-cut, strong α-cut and picture fuzzy line of degree α of a
picture fuzzy set have been defined for all α ∈ D∗ with respect also the order � of D∗, some
properties of these notions have been established as well as some decomposition theorems
of a picture fuzzy set. At last, we have extended some of Attanassov’s modal operators
to the picture fuzzy set case, these operators transform every picture fuzzy set into an
intuitionistic fuzzy set.
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