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IMPACT OF MODULATED MAGNETIC FIELD ON THE ADVENT OF

FERROCONVECTION IN A PERMEABLE MEDIUM

C. BALAJI1∗, C. RUDRESHA2, V. V. SHREE3, S. MARUTHAMANIKANDAN4, §

Abstract. The effect of time-periodic magnetic field modulation on the onset of ferro-
convection in a magnetic fluid saturated densely packed porous medium is examined. In
many systems, such as charges in electrostatic field and ferromagnetic resonance, mod-
ulation of a suitable parameter can have marked effects on the motion and can result
in increased stability of the system. Making use of isothermal boundary conditions, the
subsequent eigenvalue problem is attacked by means of the regular perturbation method
with the assumption of small amplitude of modulation. The onset criteria are derived
based on the assumption that the principle of exchange of stabilities holds good. The
thermal Rayleigh number shift is determined as a function of magnetic force, porous
parameters, and magnetic field modulation frequency. The influence of various physical
factors is perceived to be significant at moderate values of magnetic field modulation fre-
quency. It is found that subcritical instability is possible for low frequency magnetic field
modulation. The effect of magnetic mechanism is shown to be attenuating the stabilizing
influence of magnetic field modulation for moderate and large values of the frequency of
modulation. However, the stabilizing effect of magnetic field modulation gets amplified
due to an increase in the values of Vadasz number. Further, it is delineated that the
normalized porosity and magnetic field modulation work in tandem in destabilizing the
system for low frequency modulation. The study reveals that the effect of magnetic field
modulation could be exploited to control ferroconvective instability in a porous medium
saturated with magnetic fluids.
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1. Introduction

Ferromagnetic liquids are a type of smart liquids not available in nature freely, but
they can be synthesized by various processes. These fluids are also called ferrofluids or
magnetic fluids. They are magnetized by magnetic fields and are made by dissolving mi-
croscopic magnetic particles (iron-Fe, cobalt-Co, nickel-Ni, etc.) in a non-magnetic liquid
carrier (ester, kerosene, hydrocarbons, etc.) and wrapping these particles in a surfactant-
like organic solution to prevent particles aggregation in the presence of a magnetic field.
Ferromagnetic fluids draw the attention of many researchers in view of their diverse uses
in the domains such as magnetic imaging resonance, data storage devices, magnetic spe-
cific drug delivery, thermal engineering, aerospace and to mention a few (Popplewell [1],
Berkovsky et al., [2], Horng et al., [3] and Odenbach [4]). The notion of ferroconvection to
thermal expansion in a horizontal layer enclosing ferromagnetic fluid is similar to that of
Rayleigh-Bénard convection and has sparked considerable interest in the literature in view
of its potential values as heat exchanger. Finlayson [5] first described how an advection
of magnetic liquid with variability in magnetic susceptibility yields a non-uniformity in
magnetic body force resulting in thermomagnetic convection. Many researchers, drawing
sufficient inspiration from the work of Finlayson, have examined the ferroconvective insta-
bility problem under a variety of handy constraints (Stiles et al.,[6], Maruthamanikandan
[7], Sankar et al., [8], Soya Mathew et al., [9],Vidya shree et al., [10]). In recent times,
using the higher order Galerkin technique, Vidya shree et al., [11] revealed that the effect
of MFD viscosity on the onset of Brinkman-ferroconvection with second sound enhances
the ferroconvective threshold.

Modulation of an appropriate parameter may have significant effects on the motion of
various sectors such as charges in an electrode material and ferromagnetic resonant, and
can result in greater system’s stability. The alteration in the magnetic field with respect
to time on the threshold of ferroconvection and the conflict between harmonic and sub-
harmonic modes using the Floquet theory has been examined in some detail (Aniss et al.,
[12], Kaloni et al., [13], Matura and Lucke [14]). In an experimental study, Engler and
Odenbach [15] showed that, depending on the frequency of the external magnetic field,
the onset of thermomagnetic convection of a magnetic fluid is significantly affected by
stationary and periodically modulated magnetic field. The rate of temperature distribution
through an electrically charged couple stress liquid under the influence of a magnetic field
fluctuation with internal heat source is discussed in detail by Keshri et al., [16]. Of late,
Balaji et al., [17, 18] studied the effect of porous medium and couple stresses on the advent
of ferroconvection subjected to a time-dependent magnetic field by means of the regular
perturbation method with the assumption of minimum amplitude of modulation. It is
found that subcritical instability manifests by virtue of modulated magnetic field for low
frequency in the presence of porous media and magnetic field modulation has a stabilizing
effect on the system in the presence of both magnetization and couple stresses.

Convective heat transfer through fluid saturated porous materials has elicited a lot of
attention in view of its diverse utilization in science and technology including geothermal
power resource usage, nuclear waste eradication, building thermal shielding, waste removal
in aquifers, drying processes and so forth. The pioneering work on fluid saturated perme-
able structure located between two identically flat surfaces and heated directly beneath
in the traditional composition was elucidated by Horton and Rogers [19], and Lapwood
[20], and the overall problem is now known as the Horton-Rogers-Lapwood problem or
Darcy-Bénard problem. However, several researchers have dealt with the topic in depth
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and the expanding body of research in the area is well documented (Nield and Bejan [21],
and Vafai [22]).

Vadasz [23] investigated the effect of Darcy porous medium subjected to Coriolis effect
using the linear and weakly nonlinear stability theory. Govender [24] described the impact
of the Vadasz number on the resonance of a rotating porous medium located far from
the rotational axes. It is demonstrated that a frozen period estimation is adequate for
large Vadasz numbers if indeed the impact of resonance is signified by slight changes in
the Rayleigh number. Thomas and Maruthamanikandan [25] examined the role of the
Vadasz number on the threshold of ferroconvective instability problem under the impact
of varying gravity field in respect to time and confirmed that the strength of the Vadasz
number reinforces the destabilizing effect of gravity modulation for small and moderate
frequency values. Further, many authors made a study on the porous medium instability
problem under a variety of handy constraints (Saravanan and Sivakumar [26], Saravanan
[27], Jagadeesha et al., [28, 29], Sankar et al., [30], Vasanth and Hanumagowda [31]). The
effect of magnetic parameters, Vadasz number and temperature modulation in the cases
of symmetric, asymmetric and bottom wall modulation, were discussed by Thomas et al.,
[32]. Of late, Rudresha et al., [33, 34] investigated the influence of electric field modulation
on the onset of electroconvection in a fluid saturated compactly packed isotropic and
anisotropic porous layer using the regular perturbation method.

Convection control is a phenomenon that is vital and intriguing in a wide range of mag-
netic fluid technologies and at the same time it is conceptually challenging. The problem
of unmodulated Rayleigh-Bénard convection in ferromagnetic liquids has received ample
attention. However, no significant attention has been devoted to studying the impact of
modulated magnetic field on the advent of ferroconvection in a magnetic fluid saturated
porous layer. In this paper, the analysis presented is based on the assumption that the
amplitude of magnetic field modulation is very minimal and the convective currents are
weak resulting in the avoidance of nonlinear effects. As a result, depending on the fre-
quency of magnetic field modulation, the advent of ferroconvection can be advanced or
delayed in the presence of a porous medium.

Figure 1. Schematic representation of the problem.
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2. Mathematical formulation

We consider a Boussineq ferrofluid layer saturated densely packed porous medium placed
in the middle of two horizontal infinite planes with d as the thickness of the fluid layer,
gravity force acts on the fluid towards down. A time-periodic magnetic field is imposed

in vertical direction ~Hext
0 (t) = H0 (1 + ε cosωt) k̂ as shown in Fig. 1. The origin of the

Cartesian coordinate system (x, y, z) is at the bottom of the fluid layer, and the z-axis is
directed vertically upward. The upper and lower surfaces are retained at different uniform
temperatures with a gradient ∆T .

The current study’s governing equations thus take the form [12, 25]

∇ · ~q = 0 (1)

ρ0

[
1

εp

∂~q

∂t
+

1

ε2
p

(~q · ∇) ~q

]
= −∇p+ ρ~g −

µf
K
~q +∇ ·

(
~H ~B
)

(2)

εpC1
DT

Dt
+ (1− εp) (ρ0C)s

∂T

∂t
+ µ0 T

(
∂ ~M

∂T

)
V,H

· D
~H

Dt
= K1∇2T (3)

ρ = ρ0 [1− α (T − Ta)] (4)

where C1 = ρ0CV,H − µ0
~H ·
(
∂ ~M
∂T

)
V ,H

.

The simplified Maxwell’s equations for a non-conducting fluid [5] without considering
displacement current are as follows

∇ · ~B = 0,∇× ~H = 0, ~B = µ0

(
~H + ~M

)
. (5)

The linearized magnetic equation of state is

M = M0 + χm (H −H0)−Km (T − Ta) (6)

The lower and upper surface temperatures respectively are T = Ta + (1/2) ∆T at z = 0
and T = Ta − (1/2) ∆T at z = d.

2.1. Boundary conditions. In a ferromagnetic fluid saturated porous layer of Darcy
model, we use the impermeable condition for velocity and isothermal conditions for both
temperature and magnetic potential. The boundary conditions at z = 0 and z = 1 are

w = T =
∂φ

∂z
= 0 (7)

2.2. Basic state. The solution pertaining to the basic quiescent basic state is given by

~q = ~qb = ~0, p = pb(z), ρ = ρb(z), T = Tb(z),

~H = ~Hb = (0, 0, H0(z, t)) = Hext
0 (t)k̂, ~M = ~Mb = (0, 0,M0(z)),

~B = ~Bb = (0, 0, B0(z)).

(8)

In the basic state, the pressure, magnetic field, temperature, magnetic induction and
magnetization equations are as follows
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−∂pb
∂z
− ρbg +B0

∂Hb

∂z
= 0, Tb = Ta + ∆T

(
1

2
− z

d

)
, Bb = µ0 (M0 +H0) ,

ρb = ρ0

(
1− α∆T

(
1

2
− z

d

))
, Hb =

[
1 +

γa ∆T

(1 + χ0)

(
1

2
− z

d

)]
H0 (1 + εG)

(1 + χ0)
,

Mb =

[
M0 +

H0γa ∆T

(1 + χ0)

(
1

2
− z

d

)]
(1 + εG)

(1 + χ0)

(9)

where χ0 = M0
H0
, γa = χ0

Ta
and G = Re

(
e−iωt

)
= cosωt.

3. Linear stability analysis

The perturbed state is taken into account in order to look into the conditions under
which the quiescent solution is balanced against small disturbances. We study the stability
of the basic state using the method of small perturbations. On the basic state we superpose
infinitesimal perturbations of the form

~q = ~qb + ~q ′, p = pb + p′, ρ = ρb + ρ′, T = Tb + T ′,

~H = ~Hb + ~H ′, ~M = ~Mb + ~M ′, ~B = ~Bb + ~B′
(10)

where the primes represent infinitesimal perturbations. Substituting (10) into Eqs. (1)
through (6) and using the basic state solution, we obtain the following equations

∇ · ~q ′ = 0 (11)

ρ0

εp

[
∂~q ′

∂t

]
= −∇p′ + αρ0gT

′k̂ −
µf
K
~q ′ + µ0 (M0 +H0)

∂ ~H ′

∂t

−
(
µ0χ0H0 (1 + εG) ∆T

Ta (1 + χ0) d

)
∂φ′

∂z
k̂

+

(
µ0χ

2
0H

2
0 (1 + εG)2∆T

T 2
a (1 + χ0)3d

)
T ′ k̂

(12)

C3
∂T ′

∂t
− εpC2

(
∆T

d

)
w′ +

εpµ0χ0H
2
0

Ta(1 + χ0)2

(
∂T ′

∂t
− w′

∆T

d

)
(1 + εG)2

− µ0χ0

(1 + χ0)

(
∂φ′

∂z

)
∂

∂t
H0 (1 + εG) − µ0χ0

(1 + χ0)
H0 (1 + εG)

∂

∂t

(
∂φ′

∂z

)
− µ0χ0H0

Ta(1 + χ0)2 (1 + εG)T ′
∂

∂t
H0 (1 + εG)

+
µ0χ

2
0H

2
0 ∆T

Ta(1 + χ0)3d
(1 + εG)2w′ = K1∇2T ′

(13)

(1 + χ0)∇2φ′ −
(
H0 (1 + εG)χ0

Ta (1 + χ0)

)
∂T ′

∂z
= 0 (14)

where C3 = εpC2 + (1− εp) (ρ0C)s, C2 = ρ0CV,H , ~q ′ = (u′, v′, w′) and ~H = ∇φ′. We elim-
inate the pressure term in Eq. (12) and then render the resulting equation and Eqs. (13)
and (14) dimensionless by means of the following transformations (x∗, y∗, z∗) =

(
x
d ,

y
d ,

z
d

)
,
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W ∗ = w′(
K1
C2 d

) , T ∗ = T ′

∆T , t∗ = t(
C2 d

2

K1

) , ω∗ = ω(
K1
C2 d

2

) and φ∗ = φ′(
km∆Td

(1+χ0)2

) to obtain (after

dropping the asterisks for simplicity)(
1

V a

∂

∂t
+ 1

)
∇2W =

[
R+RM1(1 + ε cosωt)2

]
∇2

1T

−RM1(1 + ε cosωt)2 ∂

∂z

(
∇2

1φ
) (15)

λp
∂T

∂t
−W +

M2

εp

(
(1 + εG)2

(1 + χ0)2

)
W +M2

(
(1 + εG)2

χ0 (1 + χ0)

)(
∂T

∂t
−W

)

−M2
1

H0

∂

∂t

H0 (1 + εG)

(1 + χ0)

(
∂φ

∂z

)
− M2

(
(1 + εG)2

(1 + χ0)

)
∂

∂t

(
∂φ

∂z

)
−M2

1

H0
T
∂

∂t
H0 (1 + εG) = ∇2T

(16)

(
∂2

∂z2
+∇2

1

)
φ =

∂T

∂z
. (17)

The parameter M2 is equivalent to the order of 10−6 . Hence M2 can be omitted in
further calculations (Finlayson [5]). It is suitable to state the whole problem in terms of
the vertical component of the velocity W . Upon combining Eqs. (15), (16) and (17), we
obtain the following equation(

1

V a

∂

∂t
+ 1

)(
λp

∂

∂t
−∇2

)
∇4W = R∇2∇2

1W

+RM1(1 + εf)2∇4
1W

(18)

The boundary conditions in Eq. (7) can be expressed in terms of W in the form [25]

W =
∂2W

∂z2
=
∂4W

∂z4
= 0 at z = 0 and z = 1. (19)

4. Method of solution

We seek the eigenfunctions W and the eigenvalues R associated with the system of
Eqs. (18)-(19) for a modulated magnetic field that is different from the constant magnetic
field by a small amplitude (ε < 1). The eigenfunction W and eigenvalue R should be a
function of ε and they should be obtained for a given buoyancy-magnetization parameter
M1, Vadasz number V a and frequency ω. Since ε is assumed to be very small, we expand
these eigenfunctions and eigenvalues in a power series of ε, in accordance with the theory
of small parameter perturbation, in the form (Vanezian [35])

(W,R) = (W0, R0) + ε(W,R1) + ε2(W2, R2) + ............. (20)

where R0 is the Rayleigh number of Darcy ferroconvection without modulation. Substi-
tuting (20) into Eq. (18) and equating the coefficients of like powers of ε, we obtain the
following system of equations up to O

(
ε2
)
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LW0 = 0 (21)

LW1 = R1∇2∇2
1W0 +R1M1∇4

1W0 + 2GR0M1∇4
1W0 (22)

LW2 = R1∇2∇2
1W1 +R2∇2∇2

1W0 +R1M1∇4
1W1

+R2M1∇4
1W0 + 2GR0M1∇4

1W1 + 2GR1M1∇4
1W0

(23)

where

L =

(
1

V a

∂

∂t
+ 1

)(
λp

∂

∂t
−∇2

)
∇4 −R0

[
∂2

∂z2
+ (1 +M1)∇2

1

]
∇2

1. (24)

In the absence of magnetic field modulation, the zeroth order solution is similar to that
of the corresponding Rayleigh-Bénard ferroconvective problem in a permeable medium.
Therefore, the problem’s marginally stable solution in the absence of modulation is taken
to be

W0 =
[
ei(αxx+αyy)

]
sinπz (25)

where αx and αy are wavenumbers in x and y directions respectively. Substituting (25)
into Eq. (21), we obtain the following Rayleigh number equation

R0 =

(
π2 + α2

)3
α2 [π2 + (1 +M1)α2]

. (26)

Equation (26) is the expression for the thermal Rayleigh number as a function of
wavenumber and buoyancy-magnetization parameter for the unmodulated Rayleigh-Bénard
ferroconvection problem. The variation of Rayleigh number R0 versus wavenumber α for
different values of buoyancy-magnetization parameter M1 is displayed in Fig. 2. The
destabilizing influence of buoyancy-magnetization mechanism is apparent from Fig. 2.
Moreover, in the limiting case of M1 = 0, one recovers the classical result concerning
Darcy porous medium convection in a Newtonian fluid (Nield and Bejan [21]). Following
the analysis of Venezian [35] and Maruthamanikandan et al., [36], we obtain the following
expression for R2 (the correction to the thermal Rayleigh number)

R2 = − R2
0M

2
1α

6

[π2 + (1 +M1)α2]

∞∑
n=1

Cn
Dn

. (27)

where

Cn = 2

(
−ω2 λp

V a

(
n2π2 + α2

)2
+
(
n2π2 + α2

)3 −R0α
2
[
n2π2 + (1 +M1)α2

])

Dn =

(
−ω2 λp

V a

(
n2π2 + α2

)2
+
(
n2π2 + α2

)3 −R0α
2
[
n2π2 + (1 +M1)α2

])2

+ω2

(
1

V a

(
n2π2 + α2

)3
+ λp

(
n2π2 + α2

)2)2
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Figure 2. Variation of thermal Rayleigh number R0 versus wavenumber
α for different values of buoyancy-magnetization parameter M1.

5. Results and discussion

The influence of time-periodically varying magnetic field on the commencement of
thermal convection in a horizontal ferromagnetic smart fluid saturated densely packed
porous structure is studied analytically using linear stability theory. The shift in the
thermal Rayleigh number is computed using the regular perturbation technique, which is
based on minimal magnetic field modulation amplitude. The expression for the correc-
tion Rayleigh number R2 is obtained as a function of the modulation frequency ω, the
buoyancy-magnetization parameter M1, the Vadasz number V a and the normalized poros-
ity λp. The influence of these parameters on the stability of the system is investigated
meticulously. The sign of R2c is responsible for the stabilizing and destabilizing effect of
magnetic field modulation on the stability of the system. A positive R2c implies that the
magnetic field modulation effect is stabilizing, while a negative R2c is indicative of the
destabilizing effect of magnetic field modulation.

The variation of critical correction Rayleigh number R2c with frequency ω for various
values of different parameters arising in the study is shown in Figs. 3 through 8. We find
from these figures that R2c is negative over a small range of values of ω (when ω is below
5), indicating that the effect of magnetic field modulation is to destabilize the system, with
ferroconvection commencing faster than that of the unmodulated system. However, there
exists a moderate and large range of frequency (when ω is between 5 and 200) over which
magnetic field modulation has the stabilizing effect on the system with ferroconvection
occurring at a later point compared to the unmodulated system. As a result, subcritical
instability arises over a small range of values of ω and supercritical instability is possible
over a moderate and large range of values of frequency. It is also worth noting that when
ω is large enough, the magnetic field modulation effect vanishes altogether.

Figs. 3 and 4 show the impact of the buoyancy-magnetization parameter M1 on the
stability of the system. The parameter M1 is the ratio of magnetic force to gravitational
force. It is noticed that R2c increases with an increase in the parameter M1 over a small
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Figure 3. Variation of R2c with ω for distinct values of M1.

Figure 4. Variation of R2c with ω for distinct values of M1.

range of values of the frequency ω. However, the reverse pattern occurs over a moderate
and large range of values of the frequency ω. Furthermore, when ω is small, the parameter
M1 minimizes the destabilizing influence of magnetic field modulation, whereas for mod-
erate and large values of ω, the parameter M1 reduces the stabilizing effect of magnetic
field modulation. This is due to the fact that when M1 increases, either magnetic force
increases or gravitational force decreases, which shows that increasing M1 increases the
magnetic force and makes the system more unstable. It is also noted that R2c increases
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Figure 5. Variation of R2c with ω for distinct values of V a.

Figure 6. Variation of R2c with ω for distinct values of V a.

with increasing the values of ω, reaches a peak, and then decreases with further increase
of ω. The intensity of magnetic forces determines the frequency in which the peak value
is reached.

The influence of Vadasz number V a on the stability of the system is shown in Figs.
5 and 6 with the parameters M1 and λp are being fixed. The parameter V a includes
the Prandtl and Darcy numbers as well as the porosity of the porous domain. It should
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Figure 7. Variation of R2c with ω for distinct values of λp.

Figure 8. Variation of R2c with ω for distinct values of λp.

be mentioned that when V a increases, either porosity and Prandtl number increases or
Darcy number decreases. We find from these figures that critical correction Rayleigh
number R2c increases with increasing the values of V a over entire range of values of ω
(when ω lies between 0 and 200) indicating that the effect of Vadasz number has the
stabilizing influence on ferroconvection in a magnetic field modulated ferrofluid saturated
porous medium. It can also be seen that increase in V a results in the delay of porous
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medium ferroconvection. This is due to the increase in pore space and the viscous effect,
which is responsible for slowing down ferrconvective instability. Further, irrespective of the
magnitude of the modulation frequency ω, the Vadasz number V a enhances the stabilizing
effect of magnetic field modulation.

The variation of critical correction Rayleigh number R2c versus frequency ω for different
values of the normalized porosity λp is depicted in Figs. 7 and 8. The normalized porosity
is the fraction of porosity to that of specific heat ratio. It is clear that when λp increases,
either porosity increases or specific heat ratio decreases. We find from these figures that
an increase in λp increases R2c, provided ω is moderate and large, which indicates that the
role of λp is to enhance the stability of the system. On the other hand, when ω is small,
a strong destabilizing effect of λp can be seen from Fig. 7. Therefore, the normalized
porosity exhibits a dual impact on the stability of the magnetic field modulated ferrofluid
saturated porous layer. In addition, the effect of normalized porosity λp is to augment the
destabilizing nature of magnetic field modulation when ω is small (when ω lies below 15)
and to amplify the stabilizing influence of magnetic field modulation when ω is moderate
and large (when ω lies between 15 and 200).

6. Conclusions

The combined influence of modulated magnetic field and the fluid saturated densely
packed permeable structure on the threshold of ferroconvection is studied by means of the
regular perturbation technique. The following conclusions are drawn:

1. Subcritical instability is noticeable for low frequency of the magnetic field modu-
lation .

2. For moderate and large values of the frequency of magnetic field modulation,
buoyancy-magnetization mechanism destabilizes the system and it reduces the
stabilizing effect of magnetic field modulation.

3. The effect of the Vadasz number is to stabilize the system and the stabilizing effect
of magnetic field modulation is enhanced due to increasing the values of the Vadasz
number regardless of the magnitude of the frequency of magnetic field modulation.

4. Porous medium ferroconvection can be delayed by enhancing the normalized poros-
ity provided the frequency of magnetic field modulation is moderate and large.

5. The effects of buoyancy-magnetization mechanism, porous medium and magnetic
field modulation are nullified for large values of the frequency of magnetic field
modulation.
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