RELATIVELY PRIME INVERSE DOMINATION ON VERTEX SWITCHING OF SOME GRAPHS

C. JAYASEKARAN ${ }^{1 *}$, L. ROSHINI ${ }^{1}$, §

Abstract

Let $G=(V, E)$ be a non-trivial graph. A subset D of the vertex set V of a graph G is called a dominating set of G if every vertex in $V-D$ is adjacent to a vertex in D. The domination number is the lowest cardinality of a dominating set, and it is denoted by $\gamma(G)$. If $V-D$ contains a dominating set S of G, then S is called an inverse dominating set with respect to D. In an inverse dominating set S, every pair of vertices u and v in S such that $(\operatorname{deg}(u), \operatorname{deg}(v))=1$, then S is called relatively prime inverse dominating set. The lowest cardinality of a relatively prime inverse dominating set is called the relatively prime inverse domination number and is denoted by $\gamma_{r p}^{-1}(G)$. In this paper, we find relatively prime inverse domination number on vertex switching of some graphs.

Keywords: Domination, Inverse domination, Relatively Prime Inverse domination, Vertex switching.

AMS Subject Classification: 05C69.

1. Introduction

When we refer to a graph, we mean a limited number, undirected one having no loops or numerous edges. We cite the book by Chartrand and Lesniak for terms related to graph theory [2]. In this work, it is assumed that every graph is non-trivial. The degree of a vertex v in a graph $G=(V, E)$ is denoted by the symbol $\operatorname{deg}(v)$ and is defined as the number of edges that intersect v. The lowest of $\{\operatorname{deg}(v): v \in V(G)\}$ is denoted by $\delta(G)$ and the total of $\{\operatorname{deg}(v): v \in V(G)\}$ is denoted by $\Delta(G)$. The subgraph produced by a set S of vertices of a graph G is denoted by $\langle S\rangle$, with $\mathrm{V}(\langle S\rangle)=S$ and $E(\langle S\rangle)=$ $\{u v \in E(G): u, v \in S\}$. One of the most rapidly expanding fields of graph theory is the study of domination and associated subset problems. A full survey of dominance can be seen in [4]. A set $D \subseteq V(G)$ in a graph G is a dominating set of G if for every vertex v in $V-D$, there exists a vertex u in D such that v is adjacent to u. A dominating set is also called γ-set. The least cardinality of a dominating set of a graph G is called the domination number of G and is represented by $\gamma(G)$. In [8], the concept of inverse domination in graph was introduced by Kulli V. R. et al. Let D be the γ-set of G. If

[^0]$V-D$ contains a dominating set S, then S is known as the inverse dominating set of G with respect to D. The inverse domination number $\gamma^{-1}(S)$ is the smallest cardinality of all the least inverse dominating sets of G. A crown graph on $2 n$ vertices is an undirected graph with two set of vertices $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and with an edge from u_{i} to $v_{i}, i \leq i \neq j \leq n[1]$. The book graph is defind as the cartisian product of star graph S_{n} and path $P_{2}[3]$. The graph obtained by joining disjoint cycles $u_{1} u_{2} \ldots u_{n} u_{1}$ and $v_{1} v_{2} \ldots v_{n} v_{1}$ with an edge $u_{1} v_{1}$ is called the dumbbell graph $D b_{n}[9]$. A set $S \subseteq V$ is said to be relatively prime dominating set if it is a dominating set with at least two elements and for every pair of vertices u and v in S such that $(\operatorname{deg}(u), \operatorname{deg}(v))=1$. The lowest cardinality of a relatively prime dominating set of a graph G is known as the relatively prime domination number of G and is represented by $\gamma_{r p}(G)$ [5]. The concept of relatively prime inverse domination of a graph was introduced in [7] and the lowest cardinality of a relatively prime inverse dominating set of a graph G is known as the relatively prime inverse domination number of G and is represented by $\gamma_{r p}^{-1}(G)$. The goal of this paper is to find the parameter $\gamma_{r p}^{-1}(G)$ in graph vertex switching.
Definition 1.1. [7] Let D be a γ - set of a graph G. If $V-D$ contains a dominating set S of G, then S is called an inverse dominating set with respect to D. If every pair of vertices u and v in S such that $(\operatorname{deg}(u), \operatorname{deg}(v))=1$, then S is called relatively prime inverse dominating set. The lowest cardinality of a relatively prime inverse dominating set of a graph G is called relatively prime inverse domination number of graph G and is denoted by $\gamma_{r p}^{-1}(G)$. If no such set S exists in $V-D$, then we denote $\gamma_{r p}^{-1}(G)=0$.
Definition 1.2. [6] For a finite undirected graph $G=(V, E)$ and $v \in V$, the graph G^{v} formed from G by removing all edges incident to v and adding edges that are not adjacent to v is the vertex switching of G by v.

2. Known Result

Theorem 2.1. [4] If G is a graph with no isolated vertices, then the complement $V-S$ of every minimal dominating set S is also a dominating set.
Theorem 2.2. [6] For a path $P_{n}, \gamma_{r p}^{-1}\left(P_{n}\right)= \begin{cases}2 & \text { if } 3 \leq n \leq 5 \\ 3 & \text { if } n=6,7 \\ 0 & \text { otherwise }\end{cases}$

3. Main Results

Theorem 3.1. Let C_{n} be the cycle and v be any vertex of C_{n}. Then for any integer $n \geq 3$, $\gamma_{r p}^{-1}\left(\bar{C}_{n}{ }^{v}\right)=\left\{\begin{array}{l}2 \text { if } n \text { is odd } \\ 0 \text { if } n \text { is even }\end{array}\right.$.
Proof. Let $v_{1} v_{2} \cdots v_{n}$ be the cycle C_{n} and \bar{C}_{n} be the complement graph of C_{n}. Clearly, $\bar{C}_{n}^{v_{i}} \cong \bar{C}_{n}^{v_{j}}, 1 \leq i, j \leq n$. Without losing generality, let v be v_{i} for some $i, 1 \leq i \leq n$. Then in ${\overline{C_{n}}}^{v}, v_{i}$ is adjacent with v_{i+1} and $v_{i-1} ; v_{i+1}$ and v_{i-1} are adjacent with every vertices except v_{i+2} and v_{i-2}, respectively for $1 \leq i \leq n$ and v_{j} is adjacent with every vertices except v_{j-1}, v_{j+1} and v_{i} for $1 \leq j \leq n$ where $j \neq i-1, i, i+1$. Clearly, in $\bar{C}_{n}{ }^{v}$, $\operatorname{deg}\left(v_{i}\right)=2, \operatorname{deg}\left(v_{i+1}\right)=\operatorname{deg}\left(v_{i-1}\right)=n-2$ and $\operatorname{deg}\left(v_{j}\right)=n-4$. Now we consider the following two cases.
Case 1. n is odd
Let $n=2 k+1, k \geq 1$. When $k=1, \bar{C}_{3}{ }^{v} \cong P_{3}$. Hence, by Theorem 2.2, $\gamma_{r p}^{-1}\left(\bar{C}_{3}{ }^{v}\right)=$ $\gamma_{r p}^{-1}\left(P_{3}\right)=2$.

Let $k \geq 2$. In $\bar{C}_{n}{ }^{v}, D=\left\{v_{i+1}, v_{i+2}\right\}$ is a γ-set and a corresponding γ^{-1}-set is $S=$ $\left\{v_{i-1}, v_{i-2}\right\}$ and $\left(\operatorname{deg}\left(v_{i-1}\right), \operatorname{deg}\left(v_{i-2}\right)\right)=(n-2, n-4)=1$, since n is odd. Hence, S is a minimum relatively prime inverse dominating set of $\bar{C}_{n}{ }^{v}$ and so $\gamma_{r p}^{-1}\left(\bar{C}_{n}^{v}\right)=2$.
Case 2. n is even
Let $n=2 k, k \geq 2$. When $k=2, \bar{C}_{4}{ }^{v}=K_{1} \cup K_{3}$ which has an isolated vertex given in Figure 1. By Theorem 2.2, $\gamma_{r p}^{-1}\left(\bar{C}_{4}{ }^{v}\right)=0$.

Figure 1

Now consider ${\overline{C_{2 k}}}^{v}$ where $k \geq 3$. For any given γ-set D of ${\overline{C_{2 k}}}^{v}$, any corresponding γ^{-1}-set S must contain at least two vertices and each vertex has even degree and so S cannot be a relatively prime inverse dominating set. Hence, $\gamma_{r p}^{-1}\left(\bar{C}_{n}{ }^{v}\right)=0$.

Example 3.1. The graphs C_{5}, \bar{C}_{5}, and $\bar{C}_{5}^{v_{1}}$ are given in the Figure 2. Clearly, $D=\left\{v_{2}, v_{3}\right\}$ is γ - set of $\bar{C}_{5}^{v_{1}}$. In $\bar{C}_{5}^{v_{1}}, S=\left\{v_{4}, v_{5}\right\}$ is a corresponding γ^{-1}-set with degree sequence $(1,3)$. This implies that S is a minimum relatively prime inverse dominating set of $\bar{C}_{5}^{v_{1}}$ and so $\gamma_{r p}^{-1}\left(\bar{C}_{5}^{v_{1}}\right)=2$.

Figure 2
Theorem 3.2. Let v be any vertex of the the dumbbell graph $D b_{n}$. Then
(1) for $n=3, \gamma_{r p}^{-1}\left(D b_{n}^{v}\right)=2$.
(2) for $n=4, \gamma_{r p}^{-1}\left(D b_{n}^{v}\right)=\left\{\begin{array}{l}3 \text { if } \operatorname{deg}_{D b_{n}}(v)=2 \\ 4 \text { if } \operatorname{deg}_{D b_{n}}(v)=3\end{array}\right.$.
(3) for $n=5, \gamma_{r p}^{-1}\left(D b_{n}^{v}\right)=\left\{\begin{array}{l}0 \text { if } \operatorname{deg}_{D b_{n}}(v)=2 \text { and } v \text { is adjacent to } \\ \text { a vertex of degree } 3 \\ 4 \text { otherwise }\end{array}\right.$.
(4) for $n \geq 6, \gamma_{r p}^{-1}\left(D b_{n}^{v}\right)=0$.

Proof. The dumbbell graph $D b_{n}$ is obtained by joining two disjoint cycles $u_{1} u_{2} \ldots u_{n} u_{1}$ and $v_{1} v_{2} \ldots . v_{n} v_{1}$ with an edge $u_{1} v_{1}$. Then in $D b_{n}, \operatorname{deg}(v)=2$ if $v \in\left\{u_{i}, v_{i}: 2 \leq i \leq n\right\}$ and $\operatorname{deg}(v)=3$ if $v \in\left\{u_{1}, v_{1}\right\}$. Let $D b_{n}^{v}$ be the vertex switching graph $D b_{n}$ with respect
to the vertex v. Let D be a γ - set of $D b_{n}^{v}$ and S be a minimum relatively prime inverse dominating set of $D b_{n}^{v}$ with respect to D. Now we consider the following five cases. Case 1. $n=3$

In $D b_{3}$, if $\operatorname{deg}(v)=3$, then v is either u_{1} or v_{1}. Clearly, $D b_{3}^{v_{1}} \cong D b_{3}^{u_{1}}$. Without losing generality, let v be u_{1}. The graphs $D b_{3}$ and $D b_{3}^{u_{1}}$ are given in Figur 3. A γ-set of $D b_{3}{ }^{u_{1}}$ is $D=\left\{u_{3}, v_{3}\right\}$ and a corresponding γ^{-1} - set $S=\left\{u_{2}, v_{2}\right\}$. In $D b_{n}^{u_{1}},\left(\operatorname{deg}\left(u_{2}\right), \operatorname{deg}\left(v_{2}\right)\right)=(1$, $3)=1$ and so S is a minimum relatively prime inverse dominating set of $D b_{n}^{u_{1}}$. Therefore, $\gamma_{r p}^{-1}\left(D b_{3}^{u_{1}}\right)=2$.

$D b_{3}$

Figure 3

In $D b_{3}$, if $\operatorname{deg}(v)=2$, then v is either u_{i} or v_{i} where $i=2,3$. Clearly, $D b_{3}^{v_{2}} \cong D b_{3}^{v_{3}} \cong$ $D b_{3}^{u_{2}} \cong D b_{3}^{u_{3}}$. Without losing generality, let v be u_{2}. The graph $D b_{3}^{u_{2}}$ is given in Figure 4. A γ-set of $D b_{3}{ }^{u_{2}}$ is $D=\left\{u_{1}, v_{1}\right\}$ and a corresponding γ^{-1}-set is $S=\left\{u_{3}, v_{3}\right\}$. In $D b_{n}^{u_{2}},\left(\operatorname{deg}\left(u_{3}\right), \operatorname{deg}\left(v_{3}\right)\right)=(1,3)=1$. Hence, S is a minimum relatively prime inverse dominating set of $D b_{n}^{u_{2}}$ and so $\gamma_{r p}^{-1}\left(D b_{3}^{u_{2}}\right)=2$.

Figure 4
Case 2. $n=4$
In $D b_{4}$, if $\operatorname{deg}(v)=2$, then v is either u_{i} or $v_{i}, 2 \leq i \leq 4$. Clearly, $D b_{4}^{v_{2}} \cong D b_{4}^{v_{4}} \cong$ $D b_{4}^{u_{2}} \cong D b_{4}^{u_{4}}$ and $D b_{4}^{v_{3}} \cong D b_{4}^{u_{3}}$. The graphs $D b_{4}^{u_{2}}$ and $D b_{4}^{u_{3}}$ are given in Figure 5. Subcase 2.1. $v=u_{2}$

A γ-set of $D b_{4}{ }^{u_{2}}$ is $D=\left\{u_{2}, u_{4}\right\}$ and a corresponding γ^{-1}-set is $S=\left\{u_{3}, v_{1}, v_{3}\right\}$. In $D b_{4}^{u_{2}},\left(\operatorname{deg}\left(u_{3}\right), \operatorname{deg}\left(v_{1}\right)\right)=(1,4)=1,\left(\operatorname{deg}\left(v_{1}\right), \operatorname{deg}\left(v_{3}\right)\right)=(4,3)=1,\left(\operatorname{deg}\left(v_{3}\right), \operatorname{deg}\left(u_{3}\right)\right)$ $=(1,3)=1$. This implies that S is a minimum relatively prime inverse dominating set of $D b_{4}^{u_{2}}$ and so $\gamma_{r p}^{-1}\left(D b_{4}^{u_{2}}\right)=3$.

Figure 5

Subcase 2.2. $v=u_{3}$
A γ-set of $D b_{4}{ }^{u_{3}}$ is $D=\left\{u_{1}, v_{3}\right\}$ and a corresponding γ^{-1}-set is $S=\left\{u_{2}, u_{3}, u_{4}\right\}$. In $D b_{4}^{u_{3}}, \operatorname{deg}\left(u_{2}\right)=\operatorname{deg}\left(u_{4}\right)=1$ and $\operatorname{deg}\left(u_{3}\right)=5$, and thereby S is a minimum relatively prime inverse dominating set of $D b_{4}^{u_{3}}$. Therefore, $\gamma_{r p}^{-1}\left(D b_{4}^{u_{3}}\right)=3$.

In $D b_{4}$, if $\operatorname{deg}(v)=3$, then v is either u_{1} or v_{1}. Clearly, $D b_{4}^{u_{1}} \cong D b_{4}^{v_{1}}$. Without losing generality, let v be u_{1}. The graph $D b_{4}^{u_{1}}$ is given in Figure 6. A γ-set of $D b_{4}{ }^{u_{1}}$ is $D=\left\{u_{1}, u_{3}, v_{4}\right\}$ and a corresponding γ^{-1}-set is $S=\left\{u_{2}, u_{4}, v_{1}, v_{2}\right\}$. In $D b_{4}^{u_{1}}, \operatorname{deg}\left(u_{2}\right)=$ $\operatorname{deg}\left(u_{4}\right)=1 \operatorname{deg}\left(v_{1}\right)=2$ and $\operatorname{deg}\left(v_{2}\right)=3$. Hence, S is a minimum relatively prime inverse dominating set of $D b_{4}^{u_{1}}$ and so $\gamma_{r p}^{-1}\left(D b_{4}^{u_{1}}\right)=4$.

Figure 6

Case 3. $n=5$
In $D b_{5}$, if $\operatorname{deg}(v)=2$, then v is either u_{i} or $v_{i}, 2 \leq i \leq 4$. Clearly, $D b_{5}^{v_{2}} \cong D b_{5}^{v_{5}} \cong$ $D b_{5}^{u_{2}} \cong D b_{5}^{u_{5}}$ and $D b_{5}^{v_{3}} \cong D b_{5}^{u_{3}} \cong D b_{5}^{v_{4}} \cong D b_{5}^{u_{4}}$. The graphs $D b_{5}, D b_{5}^{u_{1}}, D b_{5}^{u_{2}}$ and $D b_{5}^{u_{3}}$ are given in Figure 7.
Subcase 3.1. $v=u_{2}$
The vertex u_{2} is adjacent to only u_{1} and u_{3} in $D b_{5}$ and so u_{2} is adjacent to all vertices except u_{1} and u_{3} in $D b_{5}^{u_{2}}$. Also the vertices u_{1} and u_{3} are non-adjacent in $D b_{5}^{u_{2}}$. Hence, a γ-set of $D b_{5}^{u_{2}}$ must contain exactly three vertices. Since the degree sequence of vertices of $D b_{5}^{u_{2}}$ is $(7,4,3,3,3,3,3,3,2,1)$, any corresponding γ^{-1}-set must contain at least two vertices of degree 3 and thereby there does not exist any relatively prime inverse dominating set. Therefore, $\gamma_{r p}^{-1}\left(D b_{5}^{u_{2}}\right)=0$.
Subcase 3.2. $v=u_{3}$

A γ-set of $D b_{5}{ }^{u_{3}}$ is $D=\left\{u_{1}, u_{3}, u_{5}\right\}$ and a corresponding $\gamma-1$-set is $S=\left\{u_{2}, u_{4}, v_{1}, v_{3}\right\}$. Since the degree sequence of vertices is S is $(4,3,1,1), S$ is a minimum relatively prime inverse dominating set of $D b_{5}^{u_{3}}$ and so $\gamma_{r p}^{-1}\left(D b_{5}^{u_{3}}\right)=4$.

Fgure 7

In $D b_{5}$, if $\operatorname{deg}(v)=3$, then v is either u_{1} or v_{1}. Clearly, $D b_{4}^{v_{1}} \cong D b_{5}^{u_{1}}$. Without losing generality, let v be u_{1}. A γ-set of $D b_{5}{ }^{u_{1}}$ is $D=\left\{u_{1}, u_{3}, u_{4}, v_{2}\right\}$ and a corresponding γ^{-1}-set is $S=\left\{u_{2}, u_{5}, v_{1}, v_{4}\right\}$. Since the degree sequence of vertices of S in $D b_{5}^{u_{1}}$ is $(3,2,1,1), S$ is a minimum relatively prime inverse dominating set of $D b_{5}^{u_{1}}$ and so $\gamma_{r p}^{-1}\left(D b_{5}^{u_{1}}\right)=4$.
Case 4. $n \geq 6$
In $D b_{n}$, if $\operatorname{deg}(v)=3$, then the degree sequence of $D b_{n}^{v}$ is $(n-4,3,3, \ldots, 3,2,1,1)$. Any γ-set D of $D b_{n}^{v}$ contains four vertices and any γ^{-1}-set S must contain at least two vertices of degree 3 and so $D b_{n}^{v}$ has no relatively prime inverse dominating set. This implies that $\gamma_{r p}^{-1}\left(D b_{n}^{v}\right)=0$.

In $D b_{n}$, if $\operatorname{deg}(v)=2$, then the degree sequence of $D b_{n}^{v}$ is $(n-3,4,3,3, \ldots, 3,2,1)$. Clearly, any γ-set D of $D b_{n}^{v}$ contains three vertices and any γ^{-1}-set S must contain at least two vertices of degree 3 and so $D b_{n}^{v}$ has no relatively prime inverse dominating set. This implies that $\gamma_{r p}^{-1}\left(D b_{n}^{v}\right)=0$.

The theorem follows from the above four cases.

Theorem 3.3. Let v be any vertex of the book graph B_{n}. Then

$$
\gamma_{r p}^{-1}\left(B_{n}^{v}\right)= \begin{cases}2 & \text { if } n=2 \text { and } \operatorname{deg}_{B_{n}}(v)=2 \\ 3 & \text { if } n \geq 3, \operatorname{deg}_{B_{n}}(v)=2 \text { and } 2 n \not \equiv 1(\bmod 3) \\ n & \text { if } \operatorname{deg}_{B_{n}}(v)=n+1 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Let $v_{0}, v_{1}, \ldots, v_{n}$ and $u_{0}, u_{1}, \ldots, u_{n}$ be the vertices of two copies of star $K_{1, n}$ with central vertices v_{0} and u_{0} respectively. Join u_{i} with v_{i} for all $i, 1 \leq i \leq n$. The resultant graph is book graph B_{n} with vertex set $V\left(B_{n}\right)=\left\{v_{0}, u_{0}, v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and edge set $E\left(B_{n}\right)=\left\{v_{0} u_{0}, v_{i} u_{i}, v_{0} v_{i}, u_{0} u_{i}: 1 \leq i \leq n\right\}$. Then B_{n} has $2 n+2$ vertices and $3 n+1$ edges. Also $\operatorname{deg}_{B_{n}}(v)=n$ for $v \in\left\{u_{0}, v_{0}\right\}$ and $\operatorname{deg}_{B_{n}}(v)=2$ otherwise. Let D be a γ-set
of B_{n} and S be a corresponding minimum relatively prime inverse dominating set of B_{n}. Now we consider the following three cases.
Case 1. $n=2$ and $\operatorname{deg}_{B_{n}}(v)=2$
Here v is either u_{i} or $v_{i}, 1 \leq i \leq 2$. Clearly, $B_{n}^{u_{1}} \cong B_{n}^{u_{2}} \cong B_{n}^{v_{1}} \cong B_{n}^{v_{2}}$. Without losing generality, let v be u_{1}. The graphs B_{2} and $B_{2}^{u_{1}}$ are given in Figure 8. A γ-set of $B_{n}^{u_{1}}$ is $D=\left\{u_{0}, v_{0}\right\}$ and a corresponding γ^{-1} - set is $S=\left\{u_{2}, v_{1}\right\}$. In $B_{n}^{u_{1}}, \operatorname{deg}\left(u_{2}\right)=3$, $\operatorname{deg}\left(v_{1}\right)=1$ and $\left(\operatorname{deg}\left(u_{n}\right), \operatorname{deg}\left(v_{1}\right)\right)=(3,1)=1$. Hence, S is a minimum relatively prime inverse dominating set of $B_{n}^{u_{1}}$ and so $\gamma_{r p}^{-1}\left(B_{n}^{u_{1}}\right)=2$.

Figure 8
Case 2. $n \geq 3$ and $\operatorname{deg}_{B_{n}}(v)=2$
Here v is either u_{i} or $v_{i}, 1 \leq i \leq n$. Clearly, $B_{n}^{u_{1}} \cong B_{n}^{u_{2}} \cong \ldots \cong B_{n}^{u_{n}} \cong B_{n}^{v_{1}} \cong B_{n}^{v_{2}} \cong \ldots \cong$ $B_{n}^{v_{n}}$. Without losing generality, let v be u_{1}. The graphs B_{4} and $B_{4}^{u_{1}}$ are given in Figure 9. Consider the graph $B_{n}{ }^{u_{1}}$. In $B_{n}{ }^{u_{1}}, \operatorname{deg}\left(u_{1}\right)=2 n-1, \operatorname{deg}\left(u_{i}\right)=\operatorname{deg}\left(v_{i}\right)=3,2 \leq i \leq n$, $\operatorname{deg}\left(v_{1}\right)=1, \operatorname{deg}\left(u_{0}\right)=n-1$ and $\operatorname{deg}\left(v_{0}\right)=n+1$. A γ-set of $B_{n}{ }^{u_{1}}$ is $D=\left\{u_{0}, v_{0}\right\}$ and a corresponding γ^{-1}-set is $S=\left\{u_{1}, u_{n}, v_{1}\right\}$. In $B_{n}{ }^{u_{1}},\left(\operatorname{deg}\left(u_{1}\right), \operatorname{deg}\left(v_{1}\right)\right)=(2 n-3,1)=$ $1,\left(\operatorname{deg}\left(u_{n}\right), \operatorname{deg}\left(v_{1}\right)\right)=(3,1)=1$ and $\left(\operatorname{deg}\left(u_{1}\right), \operatorname{deg}\left(u_{n}\right)\right)=(2 n-1,3)$. Hence, S is a minimum relatively prime inverse dominating set if and only if ($2 n-1,3$) $=1$ if and only if $2 n-1 \not \equiv 0(\bmod 3)$ if and only if $2 n \not \equiv 1(\bmod 3)$.

Figure. 9
Case 3. $\operatorname{deg}_{B_{n}}(v)=n+1$
Here v is either u_{0} or v_{0}. Without losing generality, let v be u_{0} since $B_{n}^{u_{0}} \cong B_{n}^{v_{0}}$. The graphs B_{5} and $B_{5}^{u_{0}}$ are given in Figure 10. In $B_{n}^{u_{0}}, \operatorname{deg}\left(u_{0}\right)=\operatorname{deg}\left(v_{0}\right)=n, \operatorname{deg}\left(u_{i}\right)=1$ and $\operatorname{deg}\left(v_{i}\right)=3,1 \leq i \leq n$. A γ-set of $B_{n}^{u_{0}}$ is $D=\left\{u_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and a corresponding γ^{-1}-set is $S=\left\{v_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$. Also in $B_{n}^{u_{0}},\left(\operatorname{deg}\left(v_{1}\right), \operatorname{deg}\left(u_{j}\right)\right)=(3,1)=1,2 \leq j \leq n$ and $\left(\operatorname{deg}\left(u_{l}\right), \operatorname{deg}\left(u_{m}\right)\right)=(1,1)=1$ for $2 \leq l \neq m \leq n$. Hence, S is a minimum relatively prime inverse dominating set of $B_{n}^{u_{0}}$ and so $\gamma_{r p}^{-1}\left(B_{n}^{u_{0}}\right)=n$.

The theorem follows from cases 1,2 and 3 .

Figure 10

Theorem 3.4. Let v be any vertex of the Barbell graph $B_{n, n}$. Then

$$
\gamma_{r p}^{-1}\left(B_{n, n}^{v}\right)=\left\{\begin{array}{l}
0 \text { if } \operatorname{deg}_{B_{n, n}}(v)=n \text { and } n \text { is even } \\
2 \text { otherwise }
\end{array}\right.
$$

Proof. Consider two copies of K_{n} with the vertex sets $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Join u_{1} and v_{1}, we get the barbell graph $G=B_{n, n}$ with the vertex set $V\left(B_{n, n}\right)=\left\{u_{i}, v_{i}\right.$: $1 \leq i \leq n\}$ and edge set $E\left(B_{n, n}\right)=\left\{u_{1} v_{1}, u_{i} u_{j}, v_{i} v_{j}: 1 \leq i<j \leq n\right\}$. Also in $B_{n, n}$, $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(v_{1}\right)=n, \operatorname{deg}\left(u_{i}\right)=\operatorname{deg}\left(v_{i}\right)=n-1,2 \leq i \leq n$. Let $B_{n, n}^{v}$ be the vertex switching of $B_{n, n}$ with respect to the vertex v. Let D be a γ-set of $B_{n, n}^{v}$ and S be a corresponding γ^{-1}-set. We consider the following two cases.
Case 1. $\operatorname{deg}_{B_{n, n}}(v)=n-1$
Here v is either u_{i} or $v_{i}, 2 \leq i \leq n$. Clearly, $B_{n, n}^{u_{i}} \cong B_{n, n}^{v_{i}} \cong B_{n, n}^{u_{j}} \cong B_{n, n}^{u_{j}}, 2 \leq i \neq j \leq n$. Without losing generality, v be u_{2}. In $B_{n, n}^{v}, v$ is adjacent to $v_{i}, 1 \leq i \leq n$, and a γ-set of $B_{n, n}^{v}$ is $D=\left\{v, u_{i}\right\}$, for some $i, 2 \leq i \leq n$ and a corresponding γ^{-1} - set is $S=\left\{v_{i}, u_{1}\right\}$, for some $i, 2 \leq i \leq n$. Also in $B_{n, n}^{v},\left(\operatorname{deg}\left(v_{i}\right), \operatorname{deg}\left(u_{1}\right)\right)=(n, n-1)=1$. Hence, S is a minimum relatively prime inverse dominating set of $B_{n, n}^{v}$ and so $\gamma_{r p}^{-1}\left(B_{n, n}^{v}\right)=2$.
Case 2. $d e g_{B_{n, n}}(v)=n$
Here v is either u_{1} or v_{1}. Let v be u_{1}. In $B_{n, n}^{v}, v$ is adjacent to $v_{i}, 1 \leq i \leq n$, $d_{B_{n, n}^{v}}(v)=n$. A γ-set of $B_{n, n}^{v}$ is $D=\left\{u_{i}, v_{i}\right\}, 1 \leq i \leq n$. and a corresponding γ^{-1}-set is $S=\left\{u_{j}, v_{j}\right\}, 2 \leq i \leq n, i \neq j$. Also in $B_{n, n}^{v},\left(\operatorname{deg}\left(v_{j}\right), \operatorname{deg}\left(u_{j}\right)\right)=(n, n-2)$. Hence, S is a minimum relatively prime inverse dominating set of $B_{n, n}^{v}$ if and only if $(n, n-2)=1$ if and only if n is odd. This implies that $\gamma_{r p}^{-1}\left(B_{n, n}^{v}\right)=2$ if and only if n is odd.

Thus the theorem follows from the above two cases.

Theorem 3.5. Let $H_{n, n}$ be a crown graph and v be any vertex of $H_{n, n}$. Then

$$
\gamma_{r p}^{-1}\left(H_{n, n}^{v}\right)= \begin{cases}2 & \text { if } n \text { is odd } \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Consider the complete bipartite graph $K_{n, n}$ with vertex set $V\left(K_{n, n}\right)=\left\{u_{i}, v_{i}: 1 \leq\right.$ $i \leq n\}$. By removing the edges $u_{i} v_{i}, 1 \leq i \leq n$, we get the crown graph with vertex set $V\left(H_{n, n}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and edge set $E\left(H_{n, n}\right)=\left\{u_{i} v_{j}: 1 \leq i \neq j \leq n\right\}$. In $H_{n, n}$, $\operatorname{deg}\left(u_{i}\right)=\operatorname{deg}\left(v_{i}\right)=n-1,1 \leq i \leq n$. Let D be a γ-set of $H_{n, n}^{v}$ and S be a minimum relatively prime inverse dominating set with respect to D.

Clearly, $H_{n, n}^{u_{1}} \cong H_{n, n}^{u_{2}} \cong \ldots \cong H_{n, n}^{u_{n}} \cong H_{n, n}^{v_{1}} \cong H_{n, n}^{v_{2}} \cong \ldots \cong H_{n, n}^{v_{n}}$. Let v be u_{1}. The graphs $H_{3,3}$ and $H_{3,3}^{u_{1}}$ are given in Figure 12. In $H_{n, n}^{u_{1}}, \operatorname{deg}\left(u_{i}\right)=n, 1 \leq i \leq n, \operatorname{deg}\left(v_{1}\right)=n$, $\operatorname{deg}\left(v_{i}\right)=n-2,2 \leq i \leq n$ and hence the degree sequence of $H_{n, n}^{u_{1}}$ contains only the numbers $n-2$ and n. A γ - set of $H_{n, n}^{u_{1}}$ is $D=\left\{u_{n}, v_{n}\right\}$ and a corresponding γ^{-1}-set is $S=\left\{u_{n-1}, v_{n-1}\right\}$. In $H_{n, n}^{u_{1}},\left(\operatorname{deg}\left(u_{n-1}\right), \operatorname{deg}\left(v_{n-1}\right)\right)=(n, n-2)$. Hence, S is a minimum relatively prime inverse dominating set if and only if $(n, n-2)=1$ if and only if n is odd. This implies that $\gamma_{r p}^{-1}\left(H_{n, n}^{u_{1}}\right)=2$ if and only if n is odd.

Figure 12

4. CONCLUSION

In this paper, we have found the relatively prime inverse domination number on vertex switching of some standard graphs like dumbbell graph, book graph, barbell graph, and crown graph.

References

[1] Agarwal P. K., Alon N., Aronov B., Suri S., (1994), Can visibility graphs be represented compactly, Discrete and Computational Geometry, 12(1), pp. 347-365.
[2] Chartrand G., Lesniak L., (2005), Graphs and Digraphs, Fourth ed., CRC press, BoCa Raton.
[3] Gallian J., (2018), Dynamic Survey of Graph Labelling, Elec. J. Combin, DS6, 21.
[4] Haynes W., Hedetniemi S. T., Slater P. J., (1998), Domination in Graphs : Advanced Topics, Marcel Dekker, New York.
[5] Jayasekaran C., Jancy Vini A., (2017), Results on relatively prime dominating sets in graphs, Annals of Pure and Applied Mathematics, 14(3), pp. 359-369.
[6] Jayasekaran C., Jancy Vini A., (2020), Results on relatively prime domination number of vertex switching of complement graphs, Advances in Mathematics: Scientific Journal, 9(4), pp. 1601-1609.
[7] Jayasekaran C., Roshini L., (2020), Relatively prime inverse dominating sets in graphs, Malaya Journal of Matematik, 8(4), pp. 2292-2295.
[8] Kulli V. R., Sigarkant S. C., (1991), Inverse domination in graphs, Nat. Acad Sci. Letters, 14, pp. 473-475.
[9] Wang J. F., Belardo F., Li Marzi E. M., (2009), A note on the spectral characterization of dumbbell graphs, Linear Algebra Appl, 431, pp. 1707-1714.

Dr. C. Jayasekaran, is working as an Associate Professor of Mathematics, Pioneer Kumaraswamy College, Nagercoil, Tamilnadu, India. Under his guidance, 12 scholars have been awarded Ph.D. degree and 5 have been submitted their doctoral thesis. He is a referee for 5 International journals. He has published 86 research papers in foreign journals. His current research focuses on switching and domination in graph theory.

L. Roshini is a Research Scholar in the Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil, Tamil Nadu, India.

[^0]: ${ }^{1}$ Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil, 629003, Tamil Nadu, India. e-mail: jayacpkc@gmail.com; ORCID: https://orcid.org/0000-0001-5731-0980.

 * Corresponding author.
 e-mail: jerryroshini92@gmail.com; ORCID: https://orcid.org/0009-0006-2031-1166.
 § Manuscript received: September 15, 2022; accepted: April 07, 2023.
 TWMS Journal of Applied and Engineering Mathematics, Vol.14, No. 3 © Issık University, Department of Mathematics, 2024; all rights reserved.

