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FRICTIONAL CONTACT PROBLEMS INVOLVING

P(X)-LAPLACIAN-LIKE OPERATORS

EUGENIO CABANILLAS L.1, §

Abstract. This article is dedicated to studying a class of frictional contact problems
involving the p(x)-Laplacian-like operator, on a bounded domain Ω ⊆ R2. Using an
abstract Lagrange multiplier technique and the Schauder fixed point theorem we establish
the existence of a weak solution. Furthermore, we also obtain the uniqueness of the
solution assuming that the datum f1 satisfies a suitable monotonicity condition. The
results here extend earlier theorems due to Cojocaru- Matei to the quasilinear case, with
semilinearity f1.
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1. Introduction

In this paper we discuss the existence of weak solutions for the following nonlinear ellip-
tic problem for the p(x)-Laplacian-like operator originated from a capillary phenomena.
Problem 1. Find u : Ω→ R such that

−M
(
L(u)

)[
div(|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
]

= f1(x, u) in Ω, (1)

u = 0 on Γ1, (2)

M(L(u))

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)
∂u

∂ν
= f2(x) on Γ2, (3)

∣∣∣M(L(u))

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)
∂u

∂ν

∣∣∣ ≤ g(x), (4)

M((L(u))

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)
∂u

∂ν
= −g u

|u|
, if u 6= 0 on Γ3 (5)
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where Ω ⊆ R2 is a bounded domain with smooth enough boundary Γ, partitioned in
three parts Γ1,Γ2,Γ3 such that meas (Γi) > 0, (i = 1, 2, 3); f1 : Ω× R→ R, f2 : Γ2 → R,
g : Γ3 → R and M : [0,+∞[→ [m0,+∞[ are given functions, p ∈ C(Ω) and L(u) =∫

Ω
|∇u|p(x)+

√
1+|∇u|2p(x)

p(x) dx .

The study of the p(x)- Kirchhoff type equations with nonlinear boundary conditions of
different class have been a very interesting topic in the recent years. Let us just quote[2,
5, 6, 12, 20, 28] and references therein. One reason of such interest is due to their frequent
appearance in applications such as the modeling of electrorheological fluids [25], image
restoration [13], elastic mechanics [29] and continuum mechanics [4]. The other reason is
that the nonlocal problems with variable exponent, in addition to their contributions to
the modelization of many physical and biological phenomena, are very interesting from a
purely mathematical point of view as well; we refer the reader to [1, 3, 11, 22, 23, 27].
Cojocaru-Matei [9] studied the unique solvability of problem (4) in the case M(s) =

1, f1(x, u) ≡ f1(x),without the term |∇u|2p(x)−2∇u√
1+|∇u|2p(x)

, p = constant ≥ 2, which models the

antiplane shear deformation of a nonlinearly elastic cylindrical body in frictional contact on
Γ3 with a rigid foundation; see, e.g. [26]. They used a technique involving dual Lagrange
multipliers, which allows to write efficient algorithms to approximate the weak solutions;
see [21]. For this situation, the behavior of the material is described by the Hencky-type
constitutive law:

σ(x) = ktrε(u(x))I3 + µ(x)‖εD(u(x))‖
p(x)−2

2 εD(u(x))

where σ is the Cauchy stress tensor, tr is the trace of a Cartesian tensor of second order, ε
is the infinitesimal strain tensor, u is the displacement vector, I3 is the identity tensor, k, µ
are material parameters, p is a given function; εD is the deviator of the tensor ε defined

by εD = ε− 1
3(trε)I3 where trε =

3∑
i=1

εii; see for instance [19].

Inspired by the above works, we study the existence of weak solutions for Problem 1,
under appropriate assumptions on M and f1, via Lagrange multipliers and the Schauder
fixed point theorem. In this sense, we extend and generalize the result the main result in
[9]. Also, we state a simple uniqueness result under suitable monotonicity condition on
f1.

The paper is designed as follows. In Section 2, we introduce the mathematical prelim-
inaries and give several important properties of p(x)-Laplacian-like operator. We deliver
a weak variational formulation with Lagrange multipliers in a dual space. Section 3, is
devoted to the proofs of main results.

2. Preliminaries

For the reader’s convenience, we point out some basic results on the theory of Lebesgue-
Sobolev spaces with variable exponent. In this context we refer the reader to [15, 25] for

details. Firstly we state some basic properties of spacesW 1,p(x)(Ω) which will be used later.
Denote by S(Ω) the set of all measurable real functions defined on Ω. Two functions in
S(Ω) are considered as the same element of S(Ω) when they are equal almost everywhere.
Write

C+(Ω) = {h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω},
h− := min

Ω
h(x), h+ := max

Ω
h(x) for every h ∈ C+(Ω).
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Define

Lp(x)(Ω) = {u ∈ S(Ω) :

∫
Ω
|u(x)|p(x) dx < +∞ for p ∈ C+(Ω)}

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf{λ > 0 :

∫
Ω

∣∣∣u(x)

λ

∣∣∣p(x)
dx ≤ 1},

and

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}
with the norm

‖u‖1,p(x) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Proposition 2.1 ([18], Theorem 1.3). The spaces Lp(x)(Ω) and W 1,p(x)(Ω) are separable
reflexive Banach spaces.

Proposition 2.2 ([18], Theorem 1.4). Set ρ(u) =
∫

Ω

∣∣∣u(x)
∣∣∣p(x)

dx. For any u ∈ Lp(x)(Ω),

then

(1) for u 6= 0, |u|p(x) = λ if and only if ρ(uλ) = 1;
(2) |u|p(x) < 1 (= 1;> 1) if and only if ρ(u) < 1 (= 1;> 1);

(3) if |u|p(x) > 1, then |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x);

(4) if |u|p(x) < 1, then |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x);

(5) limk→+∞ |uk|p(x) = 0 if and only if limk→+∞ ρ(uk) = 0;
(6) limk→+∞ |uk|p(x) = +∞ if and only if limk→+∞ ρ(uk) = +∞.

Proposition 2.3 ([16, 18], Theorem 1.2, Theorem 2.3). If q ∈ C+(Ω) and q(x) ≤ p∗(x)

(q(x) < p∗(x)) for x ∈ Ω, then there is a continuous (compact) embedding W 1,p(x)(Ω) ↪→
Lq(x)(Ω), where

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

Proposition 2.4 ([18], Theorem 1.15). The conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where
1

q(x) + 1
p(x) = 1 holds a.e. in Ω. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have the

following Hölder-type inequality∣∣ ∫
Ω
uv dx

∣∣ ≤ (
1

p−
+

1

q−
)|u|p(x)|v|q(x).

We introduce the following closed space of W 1,p(x)(Ω)

X = {v ∈W 1,p(x)(Ω) : γu = 0 a. e. on Γ1} (6)

where γ denotes the Sobolev trace operator and Γ1 ⊆ Γ, meas (Γ1) > 0, therefore X is a
separable reflexive Banach space. Now, we denote

‖u‖X = |∇u|p(x), u ∈ X.

This functional represents a norm on X.

Proposition 2.5 ([7], Theorem 2.5). There exists c > 0 such that

‖u‖1,p(x) ≤ C‖u‖X for all u ∈ X.
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Then, the norms ‖.‖X and ‖.‖1,p(x) are equivalent on X.
The derivative operator of L in weak sense L′ : X → X ′ is

〈L′u, v〉 =

∫
Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
.∇v dx, ∀u, v ∈ X. (7)

Proposition 2.6. The functional L : X → R is convex. The mapping L′ : X → X ′ is a
strictly monotone, bounded homeomorphism, and is of (S+) type, namely

un ⇀ u and lim sup
n→+∞

L′(un)(un − u) ≤ 0 implies un → u,

where X ′ is the dual space of X.

Proof. This result is obtained in a similar manner as the one given in [24], Proposition
3.1. For the reader’s convenience we sketch briefly the proof that L′ is of (S+) type. Let
(uν) be a sequence of X such that uν ⇀ u in X. By the strict monotonicity of L′ we get

0 = lim sup
ν→∞

〈L′uν − L′u, uν − u〉 = lim
ν→∞
〈L′uν − L′u, uν − u〉,

thus limν→∞〈L′uν , uν − u〉 = 0. Hence

lim
ν→∞

∫
Ω

(
|∇uν |p(x)−2∇uν +

|∇uν |2p(x)−2∇uν√
1 + |∇uν |2p(x)

)
(∇uν −∇u) dx = 0. (8)

But, using estimation∫
Ω

(
|∇uν |p(x)−2∇uν +

|∇uν |2p(x)−2∇uν√
1 + |∇uν |2p(x)

)
(∇uν −∇u) dx ≥

∫
Ω

1

p(x)
|∇uν |p(x) dx

−
∫

Ω

1

p(x)
|∇u|p(x) dx+ C

(∫
Ω

1

p(x)

√
1 + |∇uν |2p(x) dx−

∫
Ω

1

p(x)

√
1 + |∇u|2p(x) dx

)
we obtain, by (8), that

lim
ν→∞

∫
Ω

(
1

p(x)
|∇uν |p(x) + C

∫
Ω

1

p(x)

√
1 + |∇uν |2p(x) dx

)
=

∫
Ω

(
1

p(x)
|∇u|p(x) + C

∫
Ω

1

p(x)

√
1 + |∇u|2p(x) dx

)
.

So, the integrals of the family{
1

p(x)
|∇uν −∇u|p(x) + C

1

p(x)

∣∣√1 + |∇uν | −
√

1 + |∇u|
∣∣2p(x)

}
are absolutely equicontinuous on Ω. Consequently

lim
ν→∞

∫
Ω

( 1

p(x)
|∇uν −∇u|p(x)

+ C
1

p(x)
|
√

1 + |∇uν | −
√

1 + |∇u||2p(x)
)
dx = 0.

Therefore

lim
ν→∞

∫
Ω

1

p(x)
|∇uν −∇u|p(x) dx = 0

and

lim
ν→∞

∫
Ω

1

p(x)
|
√

1 + |∇uν | −
√

1 + |∇u||2p(x) dx = 0.

Then, we conclude, from the last two equalities and Proposition 2.5 , that uν → u in X
as ν → +∞. �
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Now, we define the spaces

S =
{
u ∈W

1
p′(x) ,p(x)

(Γ) : ∃v ∈ X such that u = γv a.e on Γ
}

(9)

which is a real reflexive Banach space,
1

p(x)
+

1

p′(x)
= 1 for all x ∈ Ω, and

Y = S′, the dual of the space S. (10)

Let us introduce a bilinear form

b : X × Y −→ R : b(v, µ) = 〈 µ, γv 〉Y×S , (11)

a Lagrange multiplier λ ∈ Y ,

〈 λ, z 〉 = −
∫

Γ3

M (L(u))
(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)∂u
∂ν
zdΓ , ∀z ∈ S

and the set of Lagrange multipliers

Λ =
{
u ∈ Y : 〈 µ, z 〉 6

∫
Γ3

g(x)|z(x)| , ∀z ∈ S
}
. (12)

From (4) we deduce that λ ∈ Λ.
Let u be a regular enough function satisfying Problem 1. After some computations we

get (by using density results)

M (L(u))

∫
Ω

((
1 +

|∇u|p(x)√
1 + |∇u|2p(x)

)
|∇u|p(x)−2∇u

)
.∇vdx =

∫
Ω
f1(x, u)vdx

+

∫
Γ2

f2(x)γvdΓ +M (L(u))

∫
Γ3

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)∂u
∂ν
γvdΓ (13)

for all v ∈ X , where u satisfies (5) on Γ3.
Now, we write problem (13) as an abstract mixed variational problem (by means a

Lagrange multipliers technique)
We define the following operators:

i) A : X → X ′, given by

〈 Au, v 〉 = M (L(u))

∫
Ω

((
1 +

|∇u|p(x)√
1 + |∇u|2p(x)

)
|∇u|p(x)−2∇u

)
.∇v dx, u, v ∈ X.

ii) F : X → X ′, given by

〈 F (u), v 〉 =

∫
Ω
f1(x, u)vdx+

∫
Γ2

f2(x)γvdx , u, v ∈ X.

(14)

So, we are led to the following variational formulation of Problem 1.
Problem 1’. Find u ∈ X and λ ∈ Λ such that

〈 Au, v 〉+ b(v, λ) = 〈 F (u), v 〉 , ∀v ∈ X (15)

b(u, µ− λ) ≤ 0 ∀µ ∈ Λ ⊆ Y.
To solve this problem, we will apply the Schauder fixed point theorem.

Firstly, we ”freeze” the state variable u on the function F , that is we fix w ∈ X such
that f = F (w) ∈ X ′.

Hence, we arrive at the following abstract mixed variational problem.
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Problem 2. Given f ∈ X ′ find u ∈ X and λ ∈ Λ such that

〈 Au, v 〉+ b(v, λ) = 〈 f, v 〉 , ∀v ∈ X

b(u, µ− λ) ≤ 0 ∀µ ∈ Λ ⊆ Y. (16)

The unique solvability of Problem 2 is given under the following generalized assumptions.
Let (X, ‖‖X) and (Y, ‖‖Y ) be two real reflexive Banach space.

(B1): A : X → X ′ is hemicontinuous;
(B2): ∃h : X → R such that

(a) h(tw) = tγh(w) with γ > 1 , ∀t > 0, w ∈ X;
(b) 〈 Au−Av, u− v 〉X×X ≥ h(v − u), ∀u, v ∈ X;
(c) ∀(xν) ⊆ X : xν ⇀ x inX =⇒ h(x) ≤ lim

ν→∞
suph(xν).

(B3): A is coercive.
(B4): The form b : X × Y is bilinear, and

(i) ∀(uν) ⊆ X : uν ⇀ u in X =⇒ b(uν , µ)→ b(u, µ), for all µ ∈ Λ.
(ii) ∀(λν) ⊆ Y : λν ⇀ y in Y =⇒ b(v, λν)→ b(v, λ), for all v ∈ X.

(iii) ∃ α̂ > 0 : inf
µ∈I
u6=0

sup
v∈X
v 6=0

b(v, µ)

|v|X |µ|Y
≥ α̂.

(B5): Λ is a bounded closed convex subset of Y such that 0Y ∈ Λ.
(B6): ∃C1 > 0, q > 0 : h(v) ≥ C1‖v‖qX , ∀v ∈ X.

Theorem 2.1. Assume (B1) - (B6). Then there exists a unique solution (u, λ) ∈ X × Λ
of Problem 2.

Proof. See [9], Theorem 1. �

To solve Problem 1’, we start by stating the following assumptions on M , f1 , f2 and g

(A1) M : [0,+∞[→ [m0,+∞[ is a locally Lipschitz-continuous and nondecreasing func-
tion; m0 > 0.

(A2) f1 : Ω× R→ R is a Caratheodory function satisfying

|f1(x, t)| ≤ c1 + c2|t|α(x)−1 , ∀(x, t) ∈ Ω× R,

α ∈ C+(Ω)with α(x) < p∗(x), α+ < p−.

(A3) f2 ∈ Lp
′(x)(Γ2), g ∈ Lp′(x)(Γ3), g(x) ≥ 0 a.e on Γ3.

We have the following properties about the operator A.

Proposition 2.7. If (A1) holds, then

(i) A is locally Lipschitz continuous.
(ii) A is bounded, strictly monotone. Furthermore

〈Au−Av, u− v〉 ≥ kp‖u− v‖p̂X
where

p̂ =

{
p− if ‖u− v‖X > 1,

p+ if ‖u− v‖X ≤ 1.

So, we can take h(v) = kp‖v‖p̂X .

(iii) 〈Au,u〉‖u‖X → +∞ as ‖u‖X → +∞.
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Proof. (i) Assume that M is Lipschitz in [0, R1] with Lipschitz constant LM , R1 > 0. We
have, for u, v, w ∈ B(0, R1)

〈Au−Av,w〉 = [M(L(u))−M(L(v))]

∫
Ω

[(
1 +

|∇u|p(x)√
1 + |∇u|2p(x)

)
|∇u|p(x)−2∇u

]
.∇w dx

+M(L(v))

∫
Ω

[(
1 +

|∇u|p(x)√
1 + |∇u|2p(x)

)
|∇u|p(x)−2∇u

−

(
1 +

|∇v|p(x)√
1 + |∇v|2p(x)

)
|∇v|p(x)−2∇v

]
.∇w dx.

Using the Lipschitz continuity of M , the Holder inequality and observing that k(t) =(
1 + tp√

1+t2p

)
tp−2 satisfies conditions i)-iii) of Lemma 1 in [10] , so there exist constants

K1 ≥ 0,K2 > 0 and γ > 0 such that

|k(|z|)z − k(|y|)y| ≤ γ|z − y| [K1 +K2(|z|+ |y|)]p−2 if 2 ≤ p <∞,∀y, z ∈ Rn,

we get

|〈Au−Av,w〉| ≤ C‖u− v‖X‖w‖X ,

which implies ‖Au−Av‖X′ ≤ C‖u− v‖X .
ii)The functional S ≡ L′ : X → X ′ defined by

〈Su, v〉 =

∫
Ω

((
1 +

|∇u|p(x)√
1 + |∇u|2p(x)

)
|∇u|p(x)−2∇u

)
.∇v dx ∀u, v ∈ X, (17)

is bounded (see Proposition 2.6). Hence, since M is continuous and L is bounded, A is
bounded.

To obtain that A is strictly monotone, we observe that L′ is strictly monotone.Hence,

L is strictly convex. Moreover, since M is nondecreasing, M̂(t) =
∫ t

0 M(τ) dτ is convex in
[0,+∞[. Consequently, for all s,t ∈]0, 1[ with s+ t = 1 one has

M̂(L(su+ tv)) < M̂(sL(u) + tL(v)) ≤ sM̂(L(u)) + tM̂(L(v)), ∀u, v ∈ X,u 6= v.

This shows Ψ(u) = M̂(L(u)) is strictly convex, then Ψ′(u) = M(L(u))L′(u) is strictly
monotone, which means that A is strictly monotone.

To establish the inequality in ii), we apply Lemma 3 in [8] to obtain

〈Au−Av, u− v〉 ≥
∫

Ω

{
M(L(u))

[(
1 +

|∇u|p(x)√
1 + |∇u|2p(x)

)
|∇u|p(x)−2∇u

]

−M(L(v))

[(
1 +

|∇v|p(x)√
1 + |∇v|2p(x)

)
|∇v|p(x)−2∇v

]}
.(∇v −∇u) dx

≥m0

∫
Ω

1

p(x)
(|∇u−∇u|p(x)) dx ≥ m0

p+

∫
Ω
|∇u−∇u|p(x) dx

≥m0

p+
‖u− v‖p̂X .
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iii)For u ∈ X with ‖u‖X > 1 we have

〈Au, u〉
‖u‖X

=

M(L(u))

∫
Ω

[(
1 +

|∇u|p(x)√
1 + |∇u|2p(x)

)
|∇u|p(x)

]
dx

‖u‖

≥m0‖u‖p
−−1
X → +∞ as ‖u‖X → +∞.

�

Proposition 2.8. The form b : X × Y → R defined in (11) is bilinear and, it verifies i),
ii) and iii) in assumption (B4). Moreover

b(u, µ) ≤
∫

Γ3

g(x)|u(x)| dΓ for all µ ∈ Λ, (18)

b(u, λ) =

∫
Γ3

g(x)|u(x)| dΓ, (19)

b(u, µ− λ) ≤0 for all µ ∈ Λ. (20)

Moreover, Λ is bounded.

Proof. The assertions i), ii), iii) and Λ bounded are similarly as [9], Theorem 3, pages
138-139.

It is obvious to check (18). To justify (19), we have to show that, a.e. x ∈ Ω

−M((L(u))

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)
∂u(x)

∂ν
u(x) = g(x)|u(x)|

In fact, let x ∈ Ω . If |u(x)| = 0, then

−M((L(u))

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)
∂u(x)

∂ν
u(x) = 0 = g(x)|u(x)| on Γ3.

Otherwise, if |u(x)| 6= 0,then

−M((L(u))

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)
∂u(x)

∂ν
u(x) =g(x)

(u(x))2

|u(x)|
=g(x)|u(x)| on Γ3.

Furthermore, for all µ ∈ Λ :

b(u, µ− λ) = b(u, µ)− b(u, λ) = 〈 µ, γu 〉Y×S − 〈 λ, γu 〉Y×S . (21)

Hence, thanks to (18), (19) and (21), we obtain (20). �

3. Existence and uniqueness of solutions

We are ready to solve Problem 1’ (then Problem 1). For this, we consider the Banach
spaces X and Y given in (6) and (10) respectively, the bilinear form b in (11) and the set
Λ in (12).

Theorem 3.1. Suppose (A1) − (A3) hold. Then Problem 1’ admits a solution (u, λ) ∈
X × Λ.
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Proof. We apply the Schauder fixed point theorem.
As has been said before, we ”freeze” the state variable u on the function F , that is, we

fix w ∈ X and consider the problem:
Find u ∈ X and λ ∈ Λ such that

〈 Au, v 〉+ b(v, λ) = 〈 f, v 〉 , ∀v ∈ X, (22)

b(u, µ− λ) ≤ 0 ∀µ ∈ Λ ⊆ Y (23)

with f = F (w) ∈ X ′. Note that by the hypotheses on α and f1, given in (A2), we have

f1(w) ∈ Lα′(x)(Ω) ↪→ X ′.
By Theorem 2.1, problem (22)-(23) has a unique solution (uw, λw) ∈ X × Λ.
Here we drop the subscript w for simplicity. Setting v = u in (22) and µ = 0Y in (23),

using proposition 2.7 ii), we get

kp‖u‖p̂X ≤ (2C1Cα‖w‖σX + 2C2Cα|Ω|+ cp|f2|p′(x),Γ2
)‖u‖X (24)

where

σ =

{
α− if ‖w‖X > 1,

α+ if ‖w‖X ≤ 1,

and Cχ is the embedding constant of X ↪→ Lχ(x)(Ω).
Then

‖u‖X ≤ [C(1 + ‖w‖X)]
1
p̂−1 .

Therefore, either ‖u‖X ≤ 1 or

‖u‖X ≤ [C(1 + ‖w‖X)]
1

p−−1 . (25)

Since p− > α+ + 1, we have

tp
−−1 − Ctσ − C → +∞ as t→ +∞

Hence, there is some R̄1 > 0 such that

R̄1
p−−1 − CR̄1

σ − C ≥ 0. (26)

From (25) and (26) we infer that if ‖w‖X ≤ R̄1 then ‖u‖X ≤ R̄1.
Thus there exists R1 = min{1, R̄1} such that

‖u‖X ≤ R1 for all u ∈ X. (27)

For this constant, define K as

K = {v : v ∈ Lα(x)(Ω), ‖v‖X ≤ R1}

which is a nonempty, closed, convex subset of Lα(x)(Ω). We can define the operator

T : K → Lα(x)(Ω), Tw = uw

where uw is the first component of the unique pair solution of the problem (22)-(23),
(uw, λw) ∈ X × Λ.

From (27) ‖Tw‖X ≤ R1, for every w ∈ K, so that T (K) ⊆ K.
Moreover, if (uν)ν≥1 (uwν ≡ uν) is a bounded sequence in K, then from (27) is also

bounded in X. Consequently, from the compact embedding X ↪→ Lα(x)(Ω), (Twν)ν≥1 is

relatively compact in Lα(x)(Ω) and hence, in K.
To prove the continuity of T , let (wν)ν≥1 be a sequence in K such that

wν → w strongly in Lα(x)(Ω) (28)
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and suppose uν = Twν . The sequence {(uν , λν)}ν≥1 satisfies

〈 Auν , v 〉+ b(v, λν) = 〈 F (wν), v 〉 , ∀v ∈ X

b(uν , µ− λν) ≤ 0 ∀µ ∈ Λ.

Using (27)-(28) we can extract a subsequence (uνk) of (uν) and a subsequence (wνk) of
(wν) such that

uνk → u∗weakly inX,

uνk → u∗ strongly in Lα(x)(Ω) and a.e. in Ω,

wνk → w a.e. in Ω,

L(uνk)→ t0, for some t0 ≥ 0,

(29)

and in view of continuity of M

M(L(uνk))→M(t0). (30)

We shall show that u∗ = Tw. To this end, by choosing uνk−u∗ as a test function, we have

〈 Auνk , uνk − u
∗ 〉+ b(uνk − u

∗, λν) = 〈 F (wνk), uνk − u
∗, 〉

〈 Au∗, uνk − u
∗ 〉+ b(uνk − u

∗, λ∗) = 〈 F (w), uνk − u
∗ 〉 .

(31)

Then

[M(L(u∗)−M(L(uνk)]

∫
Ω

(
1 +

|∇u∗|p(x)√
1 + |∇u∗|2p(x)

)
|∇u∗|p(x)−2∇u∗.(∇uνk −∇u

∗) dx+

M(L(uνk))

∫
Ω

[(
1 +

|∇u∗|p(x)√
1 + |∇u∗|2p(x)

)
|∇u∗|p(x)−2∇u∗ −

1 +
|∇uνk |p(x)√

1 + |∇uνk |2p(x)


|∇uνk |

p(x)−2∇uνk

]
.(∇uνk −∇u

∗) dx+ b(uνk − u
∗, λ∗ − λνk)

= 〈 F (w)− F (wνk), uνk − u
∗ 〉 .

(32)
Since b(uνk−u∗, λ∗−λνk) ≥ 0, again by the inequality of Lemma 3 in [8], p ≥ 2, we obtain

m0Cp

∫
Ω
|∇uνk −∇u

∗|p(x) dx+ [M(L(u∗)−M(L(uνk)]

∫
Ω

(
1 +

|∇u∗|p(x)√
1 + |∇u∗|2p(x)

)
|∇u∗|p(x)−2∇u∗.(∇uνk −∇u

∗) dx ≤ | 〈 F (wνk)− F (w), uνk − u
∗ 〉 |.

(33)

But, using (29) we get

|[M(L(u∗)−M(L(uνk)]

∫
Ω

(
1 +

|∇u∗|p(x)√
1 + |∇u∗|2p(x)

)
|∇u∗|p(x)−2∇u∗.(∇uνk −∇u

∗) dx|

≤ ϑνk
p−
|
∫

Ω

(
1 +

|∇u∗|p(x)√
1 + |∇u∗|2p(x)

)
|∇u∗|p(x)−2∇u∗.(∇uνk −∇u

∗) dx| → 0 as k →∞,

(34)

where ϑνk = max{‖uνk‖
p−

X , ‖uνk‖
p+

X }+ max{‖u∗‖p
−

X , ‖u∗‖p
+

X } is bounded.
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Also, by (A2), (29) and the compact embedding of X ↪→ Lα(x)(Ω) we deduce, thanks
to the Krasnoselki theorem, the continuity of the Nemytskii operator

Nf1 : Lα(x)(Ω)→ Lα
′(x)(Ω)

w 7−→ Nf1(w),
(35)

given by (Nf1(w))(x) = f1(x,w(x)), x ∈ Ω.
Hence

‖f1(wνk)− f1(w)‖α′(x) → 0.

It follows from the definition of F and the above convergence that

| 〈 F (wνk)− F (w), uνk − u
∗ 〉 | → 0. (36)

Thus, from (33)-(36) we conclude that

uνk → u∗ strongly in X.

Since the possible limit of the sequence (uν)ν≥1 is uniquely determined, the whole sequence
converges toward u∗ ∈ X

Therefore, from (28) and the continuous embedding X ↪→ Lα(x)(Ω), we get u∗ = Tw ≡
uw.

On the other hand

b(v, λ)

‖v‖X
=
〈F (w), v〉 − 〈Au, v〉

‖v‖X
≤ 〈F (w), v〉

‖v‖X
+ ‖Au‖X′

≤ 1

‖v‖X

[∫
Ω
f1(x,w)v dx+

∫
Γ2

f2(x)γv dΓ

]
+ LA‖u‖X + ‖A0‖X′

≤ C(‖f1(w)‖α′(x) + ‖f2‖p′(x),Γ2
+ ‖A0‖X′ + 1).

(37)

Next, using the boundedness of the operator Nf1 and the sequence (uν)ν≥1, and the inf-sup
property of the form b, we get ‖λν‖Y ≤ C. It follows that up to a subsequence

λν → λ0 weakly in Y

for some λ0 ∈ Y .
So (u∗, λ∗) and (u∗, λ0) are solutions of problem (22)-(23).Then, by the uniqueness

λ0 = λ∗ ≡ λw. This shows the continuity of T .
To prove that T is compact, let (wν)ν≥1 ⊆ K be bounded in Lα(x)(Ω) and uν = T (wν).

Since (wν)ν≥1 ⊆ K, ‖wν‖X ≤ C and then, up to a subsequence again denoted by (wν)ν≥1

we have

wν → w weakly in X.

By the compact embedding Xinto Lα(x)(Ω), it follows that

wν → w strongly in Lα(x)(Ω).

Now, following the same arguments as in the proof of the continuity of T we obtain

uν = T (wν)→ T (w) = u strongly in X.

Thus

T (wν)→ T (w) strongly in Lα(x)(Ω).

Hence, we can apply the Schauder fixed point theorem to obtain that T possesses a
fixed point. This gives us a solution of (u, λ0) ∈ X × Λ of Problem 1’, then a solution of
Problem 1, which concludes the proof. �
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Next, we consider the uniqueness of solutions of (15). To this end, we also need the
following hypothesis on the nonlinear term f1.

(A4) There exists b0 ≥ 0 such that

(f(x, t)− f(x, s))(t− s) ≤ b0|t− s|p(x) a.e. x ∈ Ω,∀t, s ∈ R.

Our uniqueness result reads as follows.

Theorem 3.2. Assume that (A1) − (A4) hold. If, in addition 2 ≤ p for all x ∈ Ω̄, then
(15) has a unique weak solution provided that

kp

b0λ
−1
∗

< 1,

where

λ∗ = inf
u∈X\{0}

∫
Ω |∇u|

p(x) dx∫
Ω |u|p(x) dx

> 0.

Proof. Theorem 3.1 gives a weak solution (u, λ) ∈ X × Λ. Let (u1, λ1), (u2, λ2) be two
solutions of (15). Considering the weak formulation of u1 and u2 we have

〈 Aui, v 〉+ b(v, λi) = 〈 F (ui), v 〉 , ∀v ∈ X, (38)

b(ui, µ− λi) ≤ 0 ∀µ ∈ Λ ⊆ Y i = 1, 2.

By choosing v = u1 − u2, µ = λ2 if i = 1 and µ = λ1 if i = 2, we have

〈Au1 −Au2, u1 − u2 〉+ b(u1 − u2, λ1 − λ2) = 〈F (u1)− F (u2), u1 − u2 〉 , ∀v ∈ X,

b(u1 − u2, λ2 − λ1) ≤ 0 ∀µ ∈ Λ ⊆ Y. (39)

It gives

〈Au1 −Au2, u1 − u2 〉 ≤ 〈F (u1)− F (u2), u1 − u2 〉 .
Then, from (39) and repeating the argument used in the proof of Proposition 2.7, ii),

we get

kp

∫
Ω
|∇u1 −∇u2|p(x) dx ≤ | 〈 f1(u1)− f1(u2), u1 − u2 〉 |

≤ |
∫

Ω
(f1(x, u1)− f1(x, u2))(u1 − u2) dx|

≤ |
∫

Ω
|u1 − u2|p(x) dx ≤ b0λ−1

∗

∫
Ω
|∇u1 −∇u2|p(x) dx.

Consequently when
kp

b0λ
−1
∗
< 1, it follows that u1 = u2. This completes the proof. �

4. Conclusions

In this paper, we considered a class of frictional contact problems involving the p(x)-
Laplacian-like operator, on a bounded domain Ω ⊆ R2. . First, we establish important
operator properties of p(x)-Laplacian-like operator and bilinear form. Then, under suitable
assumptions (A1)−(A4), using an abstract Lagrange multiplier technique and the Schauder
fixed point theorem, we showed that problem (1)-(5) possesses a unique weak solution.
This method allows to write efficient algorithms in order to approximate the weak solutions
and can be applied for solving similar nonlinear elliptic inequalities.
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