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ON THE k-MERSENNE AND k-MERSENNE-LUCAS OCTONIONS

M. KUMARI1, K. PRASAD1∗, H. MAHATO1, §

Abstract. This paper aims to introduce the k-Mersenne and k-Mersenne-Lucas octo-
nions. We investigate the algebraic properties of these octonions in closed form and give
some well-known identities like Catalan identity, d’Ocagne identity, Simson identity, etc.
Moreover, we present various generating functions and partial sum formulae for these
octonions. Lastly, we study the combined identities and matrix representation for these
octonions.

Keywords: k-Mersenne Octonions, Binet Formula, Catalan’s Identity, Finite sum, Gen-
erating Function.
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1. Introduction

In 1843, W.R.Hamilton extended the concept of set of complex numbers to the set of
quaternions denoted as H. For a, b, c, d ∈ R, a quaternion q ∈ H is of the form q =
a+ bi+ cj + dl, where i2 = j2 = l2 = ijl = −1.
Inspired by Hamilton’s work, J.T. Graves defined the concept of the octonions in 1843.
Later, in 1845, A. Cayley also defined the octonions. The set of octonions is usually
denoted by O. With a natural basis {e0 = 1, e1 = i, e2 = j, e3 = l, e4 = e, e5 = ie, e6 =
je, e7 = le}, O forms an 8-dimensional non-associative division algebra over R.

If a ∈ O then it takes the form,

a =

7∑
r=0

arer, where ar ∈ R. (1)

And, the conjugate of the octonion a is given as

a = a0 −
7∑
r=1

arer. (2)
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The norm of an octonion a is given as

N(a) =
√
aā =

√
āa =

√√√√ 7∑
r=0

a2r . (3)

The octonion basis {e0 = 1, e1 = i, e2 = j, e3 = l, e4 = e, e5 = ie, e6 = je, e7 = le} follows
a special multiplication rule[1] given in the Table 1.

Table 1. The multiplication table for the basis of O

. 1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

For more reading on the quaternions and octonions, reader referred to [2, 3].
In recent years, recursive sequences are of great interest among the researchers. Study

of recursive sequences in division algebra was firstly presented by Horadam[4] where they
introduced Fibonacci and Lucas quaternions. Later, researchers extended this study to
other number sequences like Pell, Pell-Lucas, Jacobsthal, k-Jacobsthal, etc. (for example,
see[5, 6, 7, 8, 9]). Octonions with Fibonacci and Lucas components were introduced by
Akkus and Keçilioglu[10] and they studied their properties like Binet formula, generating
function and some well-known identities. Recently A.D. Godse[11] studied the hyperbolic

Octonions involving k-Fibonacci & k-Lucas sequences and Özkan et.al. [12] studied the
hyperbolic Octonions with k-Jacobsthal & k-Jacobsthal Lucas sequences. Some recent
work on octonions with a number sequence like Pell, Pell-Lucas, Jacobsthal, Mersenne,
Horadam etc. can be seen in[13, 8, 14, 15, 16].

Motivated essentially by recent works on octonions with the components from a recursive
sequence, here we are considering the generalized recursive sequences so-called the k-
Mersenne sequence and the k-Mersenne-Lucas sequence, a generalization of the Mersenne
sequence. Many papers are dedicated to Mersenne sequence and their generalizations (see,
for example [17, 18, 19, 20]). Daşdemir and Göksal [21] have defined Mersenne quaternions
and obtained Binet’s formula and generating function of them.
The Mersenne sequence {Mn}n≥0 is defined [22] by

M0 = 0, M1 = 1, Mn+1 = 3Mn − 2Mn−1, n ≥ 1,

and the k-Mersenne sequence {Mk,n}n≥0 is defined [23] recursively by

Mk,0 = 0, Mk,1 = 1, Mk,n+1 = 3kMk,n − 2Mk,n−1, n ≥ 1. (4)

The Mersenne-Lucas sequence {mn}n≥0 is defined [24] by

m0 = 2, m1 = 3, mn+1 = 3mn − 2mn−1, n ≥ 1,

and the k-Mersenne-Lucas sequence {mk,n}n≥0 is defined [19] by

mk,0 = 2, mk,1 = 3k, mk,n+1 = 3kmk,n − 2mk,n−1, n ≥ 1. (5)
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The Binet formulae of the k-Mersenne and k-Mersenne-Lucas sequences are given, respec-
tively, by

Mk,n =
λn1 − λn2
λ1 − λ2

, and mk,n = λn1 + λn2 , (6)

where λ1 =
3k +

√
9k2 − 8

2
and λ2 =

3k −
√

9k2 − 8

2
are the roots of the characteristic

equation λ2 − 3kλ+ 2 = 0 associated with the above recurrence relations.
Note that λ1 and λ2 satisfy the following properties:

λ1 + λ2 = 3k, λ1λ2 = 2, λ1 − λ2 =
√

9k2 − 8 (7)

and also

λ1
λ2

=
λ21
2
,

λ2
λ1

=
λ22
2
.

2. Octonions with k-Mersenne/k-Mersenne-Lucas Numbers

In this section first we define the k-Mersenne octonions, obtain their algebraic properties
in closed form and present some well-known identities. Then we define and investigate the
k-Mersenne-Lucas octonions. Let Mk,n and mk,n be the nth k-Mersenne and k-Mersenne-
Lucas numbers, respectively, throughout the paper.

Definition 2.1. For n ≥ 0, any nth k-Mersenne octonion MOk,n is defined as

MOk,n =
7∑
r=0

Mk,n+rer. (8)

Using the Definition 2.1 and equation (4), after some basic calculations, we get the
recurrence relation for the k-Mersenne octonions as follows:

MOk,n+1 = 3kMOk,n − 2MOk,n−1, n ≥ 1, (9)

where MOk,0 =
∑7

r=0Mk,rer and MOk,1 =
∑7

r=0Mk,r+1er.
By (2), the conjugate of the k-Mersenne octonion is defined as

MOk,n = Mk,0 −
7∑
r=1

Mk,n+rer. (10)

For k = 1 expression (9) gives the recursive formula for the Mersenne octonion i.e.

MOn+1 = 3MOn − 2MOn−1, n ≥ 1,

where MO0 =
∑7

r=0Mrer and MO1 =
∑7

r=0Mr+1er.

Theorem 2.1. For any n ∈ N∪ {0}, the norm of the nth k-Mersenne octonion MOk,n is

N(MOk,n) =

√
λ2n1 (1 + λ21 + ...+ λ141 ) + λ2n2 (1 + λ22 + ...+ λ142 )− 255.2n+1

9k2 − 8
.
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Proof. From (3), we have

N2(MOk,n) =

7∑
r=0

M2
k,n+r

=
7∑
r=0

(
λn+r1 − λn+r2

λ1 − λ2

)2

=
λ2n1 (1 + λ21 + ...+ λ141 ) + λ2n2 (1 + λ22 + ...+ λ142 )− 255.2n+1

9k2 − 8
.

�

Theorem 2.2. The closed form formula of the k-Mersenne octonions is given as

MOk,n =
αλn1 − βλn2√

9k2 − 8
, (11)

where α =
∑7

r=0 λ
r
1er and β =

∑7
r=0 λ

r
2er.

Proof. By using the Binet formula of k-Mersenne numbers sequences (6) in the Definition
2.1, we get

MOk,n =
7∑
r=0

(
λn+r1 − λn+r2

λ1 − λ2

)
er

=
1

λ1 − λ2

(
λn1

7∑
r=0

λr1er − λn2
7∑
r=0

λr2er

)

=
αλn1 − βλn2√

9k2 − 8
,

where α =
∑7

r=0 λ
r
1er and β =

∑7
r=0 λ

r
2er. �

With the help of this closed form formula, we give several identities of k-Mersenne
octonions given in the following theorems. Throughout the paper, we use α =

∑7
r=0 λ

r
1er

and β =
∑7

r=0 λ
r
2er. Note that O is a non-commutative algebra and hence αβ 6= βα.

Theorem 2.3. [Catalan’s Identity] For n, r ∈ N such that n ≥ r, we have

(1) MOk,n+rMOk,n−r −MO2
k,n =

2n−r[αβ(2r − λ2r1 ) + βα(2r − λ2r2 )]

9k2 − 8
,

(2) MOk,n−rMOk,n+r −MO2
k,n =

2n−r[αβ(2r − λ2r2 ) + βα(2r − λ2r1 )]

9k2 − 8
.

Proof (1). Using (11) in the LHS, we write

MOk,n+rMOk,n−r −MO2
k,n =

(αλn+r1 − βλn+r2√
9k2 − 8

)(αλn−r1 − βλn−r2√
9k2 − 8

)
−
(αλn1 − βλn2√

9k2 − 8

)2
=

αβλn1λ
n
2 + βαλn1λ

n
2 − αβλ

n+r
1 λn−r2 − βαλn−r1 λn+r2

9k2 − 8

=
2n[αβ(1− λr1λ

−r
2 ) + βα(1− λ−r1 λr2)]

9k2 − 8

=
2n−r[αβ(2r − λ2r1 ) + βα(2r − λ2r2 )]

9k2 − 8
.

The argument for identity (2) is similar to (1). �
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Theorem 2.4. For n ≥ 1, we have

(1) MOk,n+1MOk,n−1 −MO2
k,n =

2n−1[αβ(2− λ21) + βα(2− λ22)]
9k2 − 8

,

(2) MOk,n−1MOk,n+1 −MO2
k,n =

2n−1[αβ(2− λ22) + βα(2− λ21)]
9k2 − 8

.

Proof. For r = 1 in the Catalan’s identity given in the Theorem 2.3, we get the above
results. �

Theorem 2.5 (d’Ocagne’s Identity). Let n and r be any nonnegative integers, then the
d’Ocagne’s identity for k-Mersenne octonions is given by

MOk,rMOk,n+1 −MOk,r+1MOk,n =
αβλr1λ

n
2 − βαλn1λr2√
9k2 − 8

.

Proof. From Binet formula (11), we have

MOk,rMOk,n+1 −MOk,r+1MOk,n =

(
αλr1 − βλr2√

9k2 − 8

)(
αλn+1

1 − βλn+1
2√

9k2 − 8

)
−

(
αλr+1

1 − βλr+1
2√

9k2 − 8

)(
αλn1 − βλn2√

9k2 − 8

)
=

αβλr+1
1 λn2 + βαλn1λ

r+1
2 − αβλr1λ

n+1
2 − βαλn+1

1 λr2
9k2 − 8

=
αβλr1λ

n
2 (λ1 − λ2)− βαλn1λr2(λ1 − λ2)

9k2 − 8

=
αβλr1λ

n
2 − βαλn1λr2√
9k2 − 8

.

As required. �

Theorem 2.6 (Vajda’s Identity). Let n, r & s be any non-negative integers then we have

MOk,n+rMOk,n+s −MOk,nMOk,n+r+s =
2nMk,r[βαλ

s
1 − αβλs2]√

9k2 − 8
.

Proof. By using the Binet formula for the k-Mersenne octonions, we have
MOk,n+rMOk,n+s −MOk,nMOk,n+r+s

=

(
αλn+r1 − βλn+r2√

9k2 − 8

)(
αλn+s1 − βλn+s2√

9k2 − 8

)
−
(
αλn1 − βλn2√

9k2 − 8

)(
αλn+r+s1 − βλn+r+s2√

9k2 − 8

)
=

αβλn1λ
n+r+s
2 + βαλn+r+s1 λn2 − αβλ

n+r
1 λn+s2 − βαλn+s1 λn+r2

9k2 − 8

=
(λ1λ2)

n[αβλs2(λ
r
2 − λr1) + βαλs1(λ

r
1 − λr2)]

9k2 − 8

=
2nMk,r[βαλ

s
1 − αβλs2]√

9k2 − 8
.

As required. �

Theorem 2.7. The ordinary and exponential generating function for the k-Mersenne
octonions are given, respectively, as
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(1)
∑∞

n=0MOk,nx
n =

MOk,0 + x (MOk,1 − 3kMOk,0)

1− 3x+ 2x2
,

(2)
∑∞

n=0

MOk,nx
n

n!
=
αeλ1x − βeλ2x√

9k2 − 8
.

Proof (1). Let gMO(x) be the ordinary generating function for the k-Mersenne octonion
{MOk,n}n≥0, i.e.

gMO(x) =

∞∑
n=0

MOk,nx
n.

Now using the closed form formula (11), we obtain
∞∑
n=0

MOk,nx
n =

∞∑
n=0

(
αλn1 − βλn2√

9k2 − 8

)
xn

=
1√

9k2 − 8

[
α
∞∑
n=0

(λ1x)n − β
∞∑
n=0

(λ2x)n

]

=
1√

9k2 − 8

[
α

(
1

1− λ1x

)
− β

(
1

1− λ2x

)]
=

1√
9k2 − 8

[
(α− β) + x (βλ1 − αλ2)

1− 3kx+ 2x2

]
=

MOk,0 + x (MOk,1 − 3kMOk,0)

1− 3kx+ 2x2
.

Proof of (2 ) is same as of (1 ), so we omit it. �

Theorem 2.8. For k 6= 1, the finite sum formula for k-Mersenne octonions is given by,
n∑
s=0

MOk,s =
2MOk,n −MOk,n+1 +MOk,1 +MOk,0(1− 3k)

3(1− k)
.

Proof. Using the Binet formula in LHS, we write
n∑
s=0

MOk,s =
n∑
s=0

(
αλs1 − βλs2√

9k2 − 8

)

=
1√

9k2 − 8

[
α

n∑
s=0

λs1 − β
n∑
s=0

λs2

]

=
1√

9k2 − 8

[
α

(
λn+1
1 − 1

λ1 − 1

)
− β

(
λn+1
2 − 1

λ2 − 1

)]
=

λ1λ2(αλ
n
1 − βλn2 )− (αλn+1

1 − βλn+1
2 ) + (βλ1 − αλ2) + (α− β)√

9k2 − 8(λ1λ2 − (λ1 + λ2) + 1)

=
2MOk,n −MOk,n+1 +MOk,1 +MOk,0(1− 3k)

3(1− k)
.

As required. �

2.1. k-Mersenne-Lucas Octonions. Now, we define the k-Mersenne-Lucas Octonions
and present their properties like the Binet formula, generating function, combinatorial
identities, etc.
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Definition 2.2. For n ≥ 0, the nth k-Mersenne-Lucas octonion mOk,n is defined as

mOk,n =
7∑
r=0

mk,n+rer, (12)

where mk,n is the nth k-Mersenne-Lucas number.

Using expression (5) in the Definition 2.2 and after some basic calculations gives the
recurrence relation for the k-Mersenne-Lucas octonions as follows:

mOk,n+1 = 3kmOk,n − 2mOk,n−1, n ≥ 1, (13)

where mOk,0 =
∑7

r=0mk,rer and mOk,1 =
∑7

r=0mk,r+1er.
Note that for k = 1, we have the definition of the Mersenne-Lucas octonion given recur-
sively by

mOn+1 = 3mOn − 2mOn−1, n ≥ 1, (14)

where mO0 =
∑7

r=0mrer and mO1 =
∑7

r=0mr+1er.
The conjugate of the k-Mersenne-Lucas octonion mOk,n can be written as

mOk,n = mk,0 −
7∑
r=1

mk,n+rer. (15)

Theorem 2.9. For n ≥ 0, the norm of the nth k-Mersenne-Lucas octonion mOk,n is

N(mOk,n) =
√
λ2n1 (1 + λ21 + ...+ λ141 ) + λ2n2 (1 + λ22 + ...+ λ142 ) + 255.2n+1. (16)

Proof. By the definition of norm, we have

N2(mOk,n) =

7∑
r=0

m2
k,n+r

=
7∑
r=0

(
λn+r1 + λn+r2

)2
= λ2n1 (1 + λ21 + ...+ λ141 ) + λ2n2 (1 + λ22 + ...+ λ142 ) + 255.2n+1.

As required. �

Theorem 2.10. The closed form formula of the k-Mersenne-Lucas octonions is given as

mOk,n = αλn1 + βλn2 , (17)

where α =
∑7

r=0 λ
r
1er and β =

∑7
r=0 λ

r
2er.

Proof. By using the Binet formula for k-Mersenne-Lucas in the Definition 2.2, we get

mOk,n =

7∑
r=0

(
λn+r1 + λn+r2

)
er

=

(
λn1

7∑
r=0

λr1er + λn2

7∑
r=0

λr2er

)
= αλn1 + βλn2 ,

where α =
∑7

r=0 λ
r
1er and β =

∑7
r=0 λ

r
2er. �

Theorem 2.11 (Catalan’s Identity). For n, r ∈ N such that n ≥ r, we have
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(1) mOk,n+rmOk,n−r −mO2
k,n = 2n−r[αβ(λ2r1 − 2r) + βα(λ2r2 − 2r)],

(2) mOk,n−rmOk,n+r −mO2
k,n = 2n−r[αβ(λ2r2 − 2r) + βα(λ2r1 − 2r)].

Proof. Using the Binet formula for k-Mersenne-Lucas octonions, we write

mOk,n+rmOk,n−r −mO2
k,n =

(
αλn+r1 + βλn+r2

) (
αλn−r1 + βλn−r2

)
− (αλn1 + βλn2 )2

= αβλn+r1 λn−r2 + βαλn−r1 λn+r2 − αβλn1λn2 − βαλn1λn2
= 2n[αβ(λr1λ

−r
2 − 1) + βα(λ−r1 λr2 − 1)]

= 2n−r[αβ(λ2r1 − 2r) + βα(λ2r2 − 2r)].

By a similar argument, (2) can be proved so we omit it. �

Theorem 2.12. For n ≥ 1, the Cassini’s identity is given as

(1) mOk,n+1mOk,n−1 −mO2
k,n = 2n−1[αβ(λ21 − 2) + βα(λ22 − 2)],

(2) mOk,n−1mOk,n+1 −mO2
k,n = 2n−1[αβ(λ22 − 2) + βα(λ21 − 2)].

Proof. The results can be established by substituting r = 1 in the Catalan’s identity given
in the Theorem 2.11. �

Theorem 2.13. Let n, r be any nonnegative integers, then d’Ocagne’s identity for k-
Mersenne-Lucas octonions is given by

mOk,rmOk,n+1 −mOk,r+1mOk,n = (
√

9k2 − 8)(βαλn1λ
r
2 − αβλr1λn2 ).

Proof. By the Binet formula (17), we have

mOk,rmOk,n+1 −mOk,r+1mOk,n = (αλr1 + βλr2)
(
αλn+1

1 + βλn+1
2

)
−
(
αλr+1

1 + βλr+1
2

)
(αλn1 + βλn2 )

= αβλr1λ
n+1
2 + βαλn+1

1 λr2 − αβλr+1
1 λn2 − βαλn1λr+1

2

= αβλr1λ
n
2 (λ2 − λ1) + βαλn1λ

r
2(λ1 − λ2)

= (
√

9k2 − 8)(βαλn1λ
r
2 − αβλr1λn2 ).

As required. �

Theorem 2.14. Let n, r and s be any non-negative integers then the Vajda identity is
given as

mOk,n+rmOk,n+s −mOk,nmOk,n+r+s = 2nMk,r(
√

9k2 − 8)(αβλs2 − βαλs1).

Proof. By the Binet formula (17), we have

mOk,n+rmOk,n+s −mOk,nmOk,n+r+s =
(
αλn+r1 + βλn+r2

) (
αλn+s1 + βλn+s2

)
− (αλn1 + βλn2 )

(
αλn+r+s1 + βλn+r+s2

)
= αβλn+r1 λn+s2 + βαλn+s1 λn+r2 − αβλn1λn+r+s2

−βαλn+r+s1 λn2
= (λ1λ2)

n[αβλs2(λ
r
1 − λr2) + βαλs1(λ

r
2 − λr1)]

= 2nMk,r(
√

9k2 − 8)(αβλs2 − βαλs1).
As required. �

Theorem 2.15. The ordinary and exponential generating function for the k-Mersenne-
Lucas octonions are given, respectively, as

(1)
∑∞

n=0mOk,nx
n =

mOk,0 + x (mOk,1 − 3kmOk,0)

1− 3kx+ 2x2
,
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(2)
∑∞

n=0

mOk,nx
n

n!
= αeλ1x + βeλ2x.

Proof. Let gmO(x) =
∑∞

n=0mOk,nx
n be the ordinary generating function for the k-

Mersenne-Lucas octonion mOk,n. Now using the closed form formula (17), we obtain
∞∑
n=0

mOk,nx
n =

∞∑
n=0

(αλn1 + βλn2 )xn

= α

∞∑
n=0

(λ1x)n + β

∞∑
n=0

(λ2x)n

= α

(
1

1− λ1x

)
+ β

(
1

1− λ2x

)
=

(α+ β)− x (βλ1 + αλ2)

1− 3kx+ 2x2

=
mOk,0 + x (mOk,1 − 3kmOk,0)

1− 3kx+ 2x2
.

As required.
Proof of (2 ) is same as of (1 ), so we omit it. �

Theorem 2.16. For k 6= 1, the finite sum formula for k-Mersenne-Lucas octonions is
given by

n∑
s=0

mOk,s =
2mOk,n −mOk,n+1 +mOk,1 +mOk,0(1− 3k)

3(1− k)
.

Proof. Using the Binet formula for k-Mersenne-Lucas octonions, we write
n∑
s=0

mOk,s =
n∑
s=0

(αλs1 + βλs2) = α
n∑
s=0

λs1 + β
n∑
s=0

λs2

= α

(
λn+1
1 − 1

λ1 − 1

)
+ β

(
λn+1
2 − 1

λ2 − 1

)
=

λ1λ2(αλ
n
1 + βλn2 )− (αλn+1

1 + βλn+1
2 )− (αλ2 + βλ1) + (α+ β)

λ1λ2 − (λ1 + λ2) + 1

=
2mOk,n −mOk,n+1 +mOk,1 +mOk,0(1− 3k)

3(1− k)
.

As required. �

For k = 1, some of the properties of the k-Mersenne and k-Mersenne-Lucas octonions
are presented in [16].

3. Combined identity and Matrix representation

Now we give combined identities for the k-Mersenne and k-Mersenne-Lucas octonions
then we present their matrix representation. Further, we give closed formula for these
octonions viz determinant of tridiagonal matrices.

By following a similar argument to Theorem 2.8, for k 6= ±1 the finite sum of even and
odd indexed k-Mersenne/k-Mersenne-Lucas octonions are, respectively

n∑
s=0

Ok,2s =
4Ok,2n −Ok,2(n+1) + 3kOk,1 − (9k2 − 3)Ok,0

9(1− k2)
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and
n∑
s=0

Ok,2s+1 =
4Ok,2n+1 −Ok,2n+3 + 3Ok,1 − 6kOk,0

9(1− k2)
,

where either Ok,n = MOk,n or mOk,n.

Theorem 3.1. The ordinary generating function for even and odd indexed k-Mersenne/k-
Mersenne Lucas octonions are given by

∞∑
n=0

Ok,2nx
n =

Ok,0 + x
(
3kOk,1 + (2− 9k2)Ok,0

)
1− 5x+ 4x2

and
∞∑
n=0

Ok,2n+1x
n =

3kOk,0 + Ok,1 + 2x (Ok,1 − 3kOk,0)

1− 5x+ 4x2
,

where either Ok,n = MOk,n or mOk,n.

Proof. The argument is very similar to Theorem 2.7. �

For any sequence {an}, let ξ(x) =
∑∞

n=0
anxn

n! be the exponential generating functions
then clearly it satisfy

ξ(x) + ξ(−x) = 2
∞∑
n=0

a2nx
2n

2n!
and ξ(x)− ξ(−x) = 2x

∞∑
n=0

a2n+1x
2n

(2n+ 1)!
.

Simplifying and replacing x with
√
x gives the generating function for even and odd indexed

sequence an as

ξa2n(x) =
ξ(
√
x) + ξ(−

√
x)

2
=

∞∑
n=0

a2nx
n

2n!

and

ξa2n+1(x) =
ξ(
√
x)− ξ(−

√
x)

2
√
x

=

∞∑
n=0

a2n+1x
n

(2n+ 1)!
.

For k-Mersenne octonions, using Theorem 2.2 the exponential generating function ξ(x)
satisfy

ξ(x)± ξ(−x) =
1√

9k2 − 8

(
α(eλ1x ± e−λ1x)− β(eλ2x ± e−λ2x)

)
Using the trigonometric identity sinh(rx) = (erx− e−rx)/2 and cosh(rx) = (erx+ e−rx)/2,
we have

ξ(x) + ξ(−x) =
2√

9k2 − 8
(α coshλ1x− β coshλ2x)

and

ξ(x)− ξ(−x) =
2√

9k2 − 8
(α sinhλ1x− β sinhλ2x).

which gives

ξMOk,2n
(x) =

1√
9k2 − 8

(α coshλ1
√
x− β coshλ2

√
x)

and ξMOk,2n+1
(x) =

1
√
x
√

9k2 − 8
(α sinhλ1

√
x− β sinhλ2

√
x).
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Similarly, the exponential generating function for even and odd indexed k-Mersenne-Lucas
octonions are, respectively

ξmOk,2n
(x) = (α coshλ1

√
x+ β coshλ2

√
x)

and ξmOk,2n+1
(x) =

1√
x

(α sinhλ1
√
x+ β sinhλ2

√
x).

Theorem 3.2. For positive integer n, let define the matrices F (n), F (0) and G(k) as

F (n)(Ok,r) =

[
Ok,n+2 Ok,n+1

Ok,n+1 Ok,n

]
, F (0)(Ok,r) =

[
Ok,2 Ok,1

Ok,1 Ok,0

]
and G(k) =

[
3k −2
1 0

]
.

Then we have

F (n)(MOk,r) = (G(k))nF (0)(MOk,r) and F (n)(mOk,r) = (G(k))nF (0)(mOk,r).

Proof. We prove the result using inductive hypothesis. For first identity (k-Mersenne

octonion), for n = 1 the equality holds i.e. G(k)F (0)(MOk,r) = F (1)(MOk,r). Now we
verify the fact for n+ 1 by assuming that the hypothesis is true for n > 1. We have

(G(k))n+1F (0)(MOk,r) = G(k)(G(k))nF (0)(MOk,r)

= G(k)F (n)(MOk,r)

= F (n+1)(MOk,r).

Thus the proof is completed and by a similar assertion the second identity (k-Mersenne-
Lucas octonion) can be verified easily. �

From Theorem 3.2 we have F (n)(MOk,r) = (G(k))nF (0)(MOk,r) and taking determinant
on both sides give the Simson identity for Mersenne/Mersenne-Lucas octonions given by
following identities:

MOk,n+1MOk,n−1 − (MOk,n)2 = 2n−1(MOk,2MOk,0 − (MOk,1)
2),

MOk,n−1MOk,n+1 − (MOk,n)2 = 2n−1(MOk,0MOk,2 − (MOk,1)
2),

mOk,n+1mOk,n−1 − (mOk,n)2 = 2n−1(MOk,2mOk,0 − (mOk,1)
2),

mOk,n−1mOk,n+1 − (mOk,n)2 = 2n−1(mOk,0mOk,2 − (mOk,1)
2).

The nth term of Mersenne octonions (MOk,n) can also be expressed by the determinant
of the tridiagonal matrix defined as follow:

Tk,n =



MOk,2 MOk,1

2 3k 1
2 3k 1

. . .
. . .

. . .

2 3k 1
2 3k


n×n

,

where determinant of Tk,n satisfy

det(Tk,n) = MOk,n+1. (18)

Similarly, if we replace the first row of the above tridiagonal matrix with [mOk,2,mOk,1, 0,
0, . . . , 0] then its determinant gives the (n+ 1)th term of the k-Mersenne Lucas octonions
i.e. det(Tk,n) = mOk,n+1.
The above identity can be also verified with the hypothesis of mathematical induction on
n.
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4. Conclusion

In our present study, we have defined the octonions involving the k-Mersenne and
k-Mersenne-Lucas sequences and obtained the closed form formulas of these octonions.
Moreover, we have presented various results including norm, generating functions, Cata-
lan’s identity, Simson identity, d’Ocagne’s identity, Vajda’s identity, and the finite sum
formula of these octonions. Lastly, we have studied the combined identities and matrix
representation for these octonions.
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