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REVISED INTERVAL ASM METHOD FOR MULTI-OBJECTIVE

INTERVAL TRANSPORTATION PROBLEMS

G. SUDHA1, K. GANESAN1, I. SILAMBARASAN2∗, §

Abstract. In this paper, a revised version of interval ASM method is proposed for solv-
ing multi objective interval transportation problems without converting them to their
crisp equivalent forms. Multi-objective transportation problems (MOITP) involving in-
terval parameters are considered. By assigning suitable weights to each objective func-
tion, the multiple objective interval transportation problem is reduced to a single objec-
tive interval transportation problem (SOITP). Initial basic feasible solution is obtained
by applying the proposed method with the help of new interval arithmetic and ranking
functions and the optimality is tested using the interval version of MODI method. A
numerical example is provided to illustrate the efficiency of the proposed method.

Keywords: Interval Numbers, New interval arithmetic, Ranking, Interval initial feasible
solution, ASM method.

AMS Subject Classification: 90C08, 90C70, 90B06, 90C29, 90C90.

1. Introduction

Transportation problem (TP) is a special category of linear programming problem. The
main objective of a transportation problem involves origins and destinations, for example,
factories where products are produced, and a demanded quantity of these manufactured
products are supplied to a particular number of destinations in such a way that the total
transportation cost is minimum. When some or all the decision parameters (say cost, sup-
ply, demand etc) of the transportation problem are interval numbers, then it is called an
interval transportation problem. Multi-objective interval transportation model involves
searching for the best transportation set-up that meets the decision maker’s preferences
by considering the conflicting objectives/criteria such as transportation cost, transporta-
tion time, environmental and social issues.The purpose of this study is to investigate the
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best compromise solution of multi-objective interval transportation problem under interval
version of revised ASM method.

Several methods exist in the literature to solve these kinds of problems. The interval and
fuzzy extensions of traditional shipping issues have been developed by Chanas et al. [3].
Das et al. [5] introduced a multi-objective shipping issue with interval price, supply, as well
as end factors. Solving linear indoctrination with interval coefficients has been discussed
by Chinneck and Ramadan [4]. New arithmetic procedures for interval numbers have
been proposed by Ganesan and Veeramani [6]. The properties of interval matrices have
been discussed by Ganesan [7]. Hitchcock [9] spoke about the distribution of a product
from multiple suppliers to a variety of locations. Pandian and Natrajan [14] projected
a latest technique designed for solving completely interval integer shipping issues that
finds the best answer. Sudhakar and Navaneetha Kumar [22] suggested a latest method
for solving integer interval shipping problems. Roy and Mahapatra [17] created a multi-
objective interval-valued shipping probabilistic problem using log-normal distributions. A
duality speculation for interval linear indoctrination trouble was suggested by Ramesh
and Ganesan [15]. Abdul Quddoos et al. [2] discussed an improved adaptation of the
ASM-method for addressing transportation issues. Grey position management speculation
based on grey statistics was used by Jignasha Patel and Jayesh Dhodiya [11] to solve
a multi-objective interval shipping problem. Shraddha Mishra [19] investigated several
approaches to resolving transportation issues. Akilbasha and Natarajan [1] presented an
original correct method for resolving completely interval numeral transportation troubles.
Sophia Porchelvi and Anitha [20] conducted a qualified research of the best solution for
the trouble of interval shipping and interval transhipment. Ramesh et al. [16] suggested
an unique method for solving the multi-objective interval transportation issue. Muzaffa
Makhmudov and Chang seong Ko [13] projected a fuzzy set theory-based conciliation
variance resolution technique to the uncertain transportation problem. In the field of
sustainable development, Gurupada Maity et al. [8] suggested a time modification multi-
objective interval-valued shipping trouble. Sudha and Ganesan [21] presented a time-
saving alternative strategy for solving an interval numeral transportation problem. Indira
and Jayalakshmi [10] suggested a entirely interval numeral transportation problem and
used the Row-Column Minima technique to get the best interval elucidation. In this paper
précised contributions is solved multi-objective interval transportation problems as well
as can use n- number of objective interval transportation problem the proposed method
to get the minimum time and maximum profit. The advantage for solving the interval
transportation problem without affecting interval nature of the transportation problem
we have obtained the interval optimum solution.

In this paper we propose an interval version of revised ASM method under a new
interval arithmetic to solve the problem of multi-objective interval transportation without
converting into crisp form. The structure of this article is given as follows: Section 2 deals
with the basic definitions. Section 3 deals with the problem of multi-objective interval
transportation and the related results. Section 4 introduces revised interval ASM method
under generalized interval arithmetic. Section 5 provides an example to illustrate the
theory developed in this paper. Section 6 concludes this paper.

2. Preliminaries

The purpose of this segment is to provide some observations, ideas and results which
are useful in our further consideration.
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2.1. Interval numbers. Let ã = [a1, a2] = {x ∈ R : a1 ≤ x and a1, a2 ∈ R} be an interval
on the real line R. If ã = a1 = a2 = a, then ã = [a, a] = a is a real number (or a degenerate
interval). We shall make use of the terms interval and interval number interchangeably.
The mid-point and width (or half-width) of an interval number ã = [a1, a2] are defined as

m(ã) =

(
a1 + a2

2

)
and w(ã) =

(
a2 − a1

2

)
The interval number ã can also be expressed

in terms of its midpoint and width as ã = [a1, a2] = 〈m(ã), w(ã)〉 We use IR to denote
the set of all interval numbers definedon the real line R.

2.2. Ranking of Interval Numbers. Sengupta and Pal [17] suggested an easy and
powerful index to compare any two intervals on IR through the satisfaction of decision-
makers.

Definition 2.1. Let � be an extended order relation between the interval numbers ã =
[a1, a2], b̃ = [b1, b2] in IR then for m(ã) < m(b̃) we construct a premise (ã � b̃) which

implies that ã is inferior to b̃ (or b̃ is superior to ã).
An acceptability function A� : IR× IR→ [0,∞) is defined as:

A�(ã, b̃) = A(ã � b̃) =
m(b̃)−m(ã)

w(b̃) + w(ã)
, where w(b̃) + w(ã) 6= 0.

A� may be interpreted as the grade of acceptability of the first interval number to be

inferior to the second interval number. For any two interval numbers ã and b̃ in IR
either A(ã � b̃) ≥ 0 (or) A(b̃ � ã) � 0 (or) A(ã � b̃) = 0 (or) A(b̃ � ã) = 0 (or)

A(ã � b̃) +A(b̃ � ã) = 0. If A(ã � b̃) = 0 and A(b̃ � ã) = 0, then we say that the interval

numbers ã and b̃ are equivalent (non-inferior to each other) and we denote it by ã ≈ b̃.

Also if A(ã � b̃) ≥ 0, then ã � b̃ and if A(b̃ � ã) ≥ 0, then b̃ � ã.

2.3. A New Interval Arithmetic. Ming Ma et al. [10] suggested a new fuzzy arithmetic
focused on the index of locations and the index function of fuzziness. For the ordinary
arithmetic the position index number is taken, while in the lattice L the fuzziness index
functions are assumed to obey the lattice law which is the least upper bound and the
greatest lower bound. That is for a, b ∈ L we define a∨b = max{a, b} and a∧b = min{a, b}.

For any two intervals ã = [a1, a2], b̃ = [b1, b2] ∈ IR and for ∗ ∈ {+,−, ·,÷} the arithmetic

operations on ã and b̃ are defined as:

ã ∗ b̃ = [a1, a2] ∗ [b1, b2] = 〈m(ã), w(ã)〉 ∗ 〈m(b̃), w(b̃)〉

= 〈m(ã) ∗m(b̃),max{w(ã), w(b̃)}〉
We must be relevant the interval arithmetic operations of addition, subtraction, mul-

tiplication, and division in scrupulous here. Applying the Ming Ma’s new arithmetic
operations the fuzzy number in its parametric form is similar to expressing the interval
number in midpoint width form. We can use only maximum or only the minimum of width
for all the four arithmetic operations. Also maximum width can be used for addition and
multiplication and minimum width can be used for subtraction and division.

3. Main results

Consider a fully interval transportation problem with m sources and n destinations
involving interval numbers. Let ãi � 0̃ be the availability at source i and b̃j(b̃j � 0̃) be

the requirement at destination j. Let c̃ij(c̃ij � 0̃) be the unit interval transportation cost
from source i to destination j. Let x̃ij denote the number of units to be transported from
source i to destination j. Now the problem is to find a feasible way of transporting the
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available amount at each source to satisfy the demand at each destination so that the total
interval transportation cost is minimized.

3.1. General interval transportation problem. The mathematical model of an inter-
val transportation problem is as follows

Minimize Z̃ ≈
m∑
i=1

n∑
j=1

c̃ij x̃ij

subject to
n∑

j=1

x̃ij ≈ ãi, i = 1, 2, 3, · · · ,m

m∑
i=1

x̃ij ≈ b̃j , j = 1, 2, 3, · · · , n (1)

m∑
i=1

ãi ≈
n∑

j=1

b̃j , where 1, 2, 3, · · · ,m; j = 1, 2, 3, · · ·n

and x̃ij � 0̃ for all i and j.

and ãi, b̃j , c̃ij , x̃ij in IR where c̃ij is the interval unit transportation cost from ith source

to the jth destination.

3.2. General form of interval transportation problems with multiple objectives.
The mathematical formulation of interval transportation problems with multiple objectives
when all the cost coefficient, supply and demand are interval numbers is given by:

Figure 1. Multi objective transportation problem
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Minimize Z̃M ≈
m∑
i=1

n∑
j=1

c̃kij x̃ij wherek = 1, 2, · · · ,K

subject to
n∑

j=1

x̃ij ≈ ãi, i = 1, 2, 3, · · · ,m

m∑
i=1

x̃ij ≈ b̃j , j = 1, 2, 3, · · · , n (2)

m∑
i=1

ãi ≈
n∑

j=1

b̃j , where 1, 2, 3, · · · ,m; j = 1, 2, 3, · · ·n

and x̃ij � 0̃ for all i and j.

Where Z̃k ≈ {Z̃1, Z̃2, · · · Z̃K} is a vector of K objective functions and the superscript on

both Z̃k and cij are used to identify the number of objective functions (k = 1, 2, · · · ,K).

3.3. Weighted sum. By assigning suitable weights wk > 0 such that
K∑
k=1

wk = 1 to the

K objective functions, the multiple objective interval transportation problem (2) becomes
a single objective interval transportation problem

Minimize Z̃ ≈
K∑
k=1

wkZ̃
k where

K∑
k=1

wk = 1 and wk > 0.

subject to
n∑

j=1

x̃ij ≈ ãi, i = 1, 2, 3, · · · ,m

m∑
i=1

x̃ij ≈ b̃j , j = 1, 2, 3, · · · , n (3)

m∑
i=1

ãi ≈
n∑

j=1

b̃j , where 1, 2, 3, · · · ,m; j = 1, 2, 3, · · ·n

and x̃ij � 0̃ for all i and j.

Definition 3.1. (Non-dominated solution). A feasible vector x̃∗ ∈ X (X is the feasible
region) yields a non-dominated solution of (2) if and only if, there is no other feasible

vector x̃∗ such that
m∑
i=1

n∑
j=1

c̃kij x̃ij �
m∑
i=1

n∑
j=1

c̃kij x̃
∗
ij, for all k and

m∑
i=1

n∑
j=1

c̃kij x̃
∗
ij ≺

m∑
i=1

n∑
j=1

c̃kij x̃
∗
ij,

for some k, k = 1, 2, · · ·K.

Definition 3.2. (Efficient solution). A point x̃∗ ∈ X efficient iff there does not exist

another x̃ ∈ X such that
m∑
i=1

n∑
j=1

c̃kij x̃ij �
m∑
i=1

n∑
j=1

c̃kij x̃
∗
ij all k and

m∑
i=1

n∑
j=1

c̃kij x̃
∗
ij 6≈

m∑
i=1

n∑
j=1

c̃kij x̃
∗
ij,

for some k.

Definition 3.3. (Compromise solution). A feasible vector x̃∗ ∈ X is called a compromise

solution of (2) if and only if x̃∗ ∈ IRn and Z̃(x̃∗)∧x̃∈X Z̃(x̃), where ∧ stands for minimum
and X is the set of efficient solutions.

Theorem 3.1. If x̃∗ ∈ X is an optimum solution the single objective interval trans-
portation problem (3), then it is also a compromised (Pareto optimal) solution to the
multi-objective interval transportation problem (2).
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Figure 2. Flow chart: 1 Revised ASM method

4. Interval version of Revised ASM method

Step 1: Present the problem of multi-objective interval transportation in the transport
table.

Step 2: Examine if the total supply is equal to the total demand, then it is a balanced
problem, If not, add dummy row / column with zero cost and profit.

Step 3: Express the all interval parameters (supply, demand and unit transportation

cost, profit etc) in the Multi-objective shipping problem in 〈m(ã), w((̃a)〉 form.
Step 4: Construct the single objective interval transportation problem (3) by giving

suitable weights wk > 0 such that
K∑
k=1

wk = 1 to the K objective functions.

Step 5: In the resultant tableau, subtract the lowest ingredient of every row from every
element of the relevant row, and then subtract the lowest ingredient of each
column from every ingredient of the relevant column.

Step 6: Every row and column into the shortened tableau has at least one interval zero.
choose the first interval zero and calculate the number of interval zeros in the
row and column (except the selected one) as a subscript of the selected interval
zero. In the transportation tableau, repeat this technique for all interval zeros.

Step 7: Choose the cell with the smallest value of subscript that has an interval zero
and enter the highest amount possible in that cell. If there is a tie for any
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interval zeros in Step 6, choose the cell of that interval zero to break the tie
so that the sum of all the components in the strip and column is the highest.
Give everything you have to that cell.

Step 8: Cross out the row (or column) for which a certain source’s supply is depleted
for future consideration (or the demand for a given destination is satisfied). If
both the column and row demand are completely satisfied at the same time, the
column (or row, but not both) is simply eliminated, and the left behind row (or
column) is assigned a zero supply (or demand) interval for future calculations.

Step 9: Do again the process until all of the demands have been met and all of the
supplies have been depleted.

Step 10: Check the optimality of the IBFS obtained by means of the interval descrip-
tion of the MODI method. Stepping stone method is available to check the
optimality of the initial basic feasible solution. But the stepping stone method,
we have to draw as many closed paths as equal to the unoccupied cells for
their evaluation. To the contrary, in MODI method, only closed path for the
unoccupied cell with highest opportunity cost is drawn.

5. Mathematical Example

Consider a multi-objective interval transport issue discussed by Muzaffar Maakhmudov
and Chang Seong Ko [13]

Table 1. Interval transportation time

T1 T2 T3 T4 Supply
P1 [1, 2] [1, 3] [5, 9] [4, 8] 8
P2 [1, 2] [7, 10] [2, 6] [3, 5] 19
P3 [7, 9] [7, 11] [3, 5] [5, 7] 17

Demand 11 3 14 16

Table 2. Interval transportation profit

T1 T2 T3 T4 Supply
P1 [3, 5] [2, 6] [2, 4] [1, 5] 8
P2 [4, 6] [7, 9] [7, 10] [9, 11] 19
P3 [4, 8] [1,3] [3, 6] [1, 2] 17

Demand 11 3 14 16

Since
m∑
i=1

ãi ≈
n∑

j=1
b̃j , the given MOITP is balanced. In the Ming Ma’s new arithmetic

operations, we can use minimum for subtraction and division and maximum for addition
and multiplication. If we use minimum instead of maximum the width of the final solution
will be minimum.
We have expressed all of the interval parameters in terms of their midpoints and widths
form, we have
Since Income = − cost (max z = −min(−z)). By multiplying by −1, the income table is
transformed into a price table.
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Table 3. Interval transportation time in mid-point and width form

T1 T2 T3 T4 Supply
P1 〈1.5, 0.5〉 〈2, 1〉 〈7, 2〉 〈6, 2〉 〈8, 0〉
P2 〈1.5, 0.5〉 〈8.5, 1.5〉 〈4, 2〉 〈4, 1〉 〈19, 0〉
P3 〈8, 1〉 〈9, 2〉 〈4, 1〉 〈6, 1〉 〈17, 0〉

Demand 〈11, 0〉 〈3, 0〉 〈14, 0〉 〈16, 0〉 〈44, 0〉

Table 4. Interval transportation profit in 〈m(ã), w(ã)〉 form

T1 T2 T3 T4 Supply
P1 〈−4, 1〉 〈−4, 2〉 〈−3, 1〉 〈−3, 2〉 〈8, 0〉
P2 〈−5, 1〉 〈−8, 1〉 〈−8.5, 1.5〉 〈−10, 1〉 〈19, 0〉
P3 〈−6, 2〉 〈−2, 1〉 〈−4.5, 1.5〉 〈−1.5, 1〉 〈17, 0〉

Demand 〈11, 0〉 〈3, 0〉 〈14, 0〉 〈16, 0〉 〈44, 0〉

By assigning suitable weights w1 = p, w2 = (1 − p), correspondingly to the charge and
time interval parameters and combining them, SOITP becomes

Table 5. Single objective interval transportation problem

T1 T2 T3 T4 Supply
P1 〈1.5− 5.5p, 1〉 〈2− 6p, 2〉 〈7− 10p, 2〉 〈6− 9p, 2〉 〈8, 0〉
P2 〈1.5− 6.5p, 1〉 〈8.5− 16.5p, 1.5〉 〈4− 12.5p, 2〉 〈4− 14p, 1〉 〈19, 0〉
P3 〈8− 14p, 2〉 〈9− 11p, 2〉 〈4− 8.5p, 1.5〉 〈6− 7.5p, 1〉 〈17, 0〉

Demand 〈11, 0〉 〈3, 0〉 〈14, 0〉 〈16, 0〉 〈44, 0〉

By applying the proposed algorithm, the IBFS is obtained as

Table 6. IBFS

T1 T2 T3 T4 Supply
P1 〈1.5− 5.5p, 1〉 〈2− 6p, 2〉 〈7− 10p, 2〉 〈6− 9p, 2〉 〈8, 0〉

〈3, 0〉 〈5, 0〉
P2 〈1.5− 6.5p, 1〉 〈8.5− 16.5p, 1.5〉 〈4− 12.5p, 2〉 〈4− 14p, 1〉 〈19, 0〉

〈11, 0〉 〈3, 0〉
P3 〈8− 14p, 2〉 〈9− 11p, 2〉 〈4− 8.5p, 1.5〉 〈6− 7.5p, 1〉 〈17, 0〉

〈14, 0〉 〈3, 0〉
Demand 〈11, 0〉 〈3, 0〉 〈14, 0〉 〈16, 0〉 〈44, 0〉

The modified versions of Vogel’s Approximation method is applied for any transporta-
tion problem involving uncertain parameters. Because this method is very systematic
and it takes lesser time in solving transportation problem and also less computation are
involved in this method. Since the number of positive allocations is (m+n-1) =6, interval
version of the MODI method is applied to check the optimality of the current solution
and is found to be optimal. Now by theorem (4.1), this optimal solution will be a pareto
optimal solution to the given multi objective interval transport problem.
Hence the compromised solution to the given MOITP is

x12 = 〈3, 0〉 = 3, x14 = 〈5, 0〉 = 5, x21 = 〈11, 0〉 = 11,

x24 = 〈8, 0〉 = 8, x33 = 〈14, 0〉 = 14, x34 = 〈3, 0〉 = 3.
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The corresponding minimum time

z̃1 = 〈3, 0〉〈2, 1〉+ 〈5, 0〉〈6, 2〉+ 〈11, 0〉〈1.5, 0.5〉+ 〈8, 0〉〈4, 1〉
+ 〈14, 0〉〈4, 1〉+ 〈3, 0〉〈6, 1〉

= 〈158.5, 2〉
= [156.5, 160.5].

The corresponding minimum cost

z̃2 = 〈3, 0〉〈−4, 2〉+ 〈5, 0〉〈−3, 2〉+ 〈11, 0〉〈−5, 1〉+ 〈8, 0〉〈−10, 1〉
+ 〈14, 0〉〈−4.5, 1.5〉+ 〈3, 0〉〈−1.5, 0.5〉

= 〈−229.5, 2〉
Hence the corresponding maximum profit

= −minimum cost

= −〈−229.5, 2〉 = 〈229.5, 2〉
= [227.5, 231.5]

Figure 3. Optimal distribution route

The explanation achieved by the suggested technique yields significantly compact pareto
optimum values for both objective functions, as shown in the table above.

Table 7. Comparison of solutions

S.No Solution by the Solution by Muzaffar Makhmudov
projected technique with Chang Seong Ko [13]

1 Z1 = [156.5, 160.5] Z1 = [151, 190]
2 Z2 = [227.5, 231.5] Z2 = [200, 254]
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Figure 4. Comparision of opimum solution

Figure 5. Comparision of opimum solution

It is seen from the table that the solution obtained by the proposed method gives
vagueness reduced pareto optimal values for both the objective functions.

6. Conclusion

In this paper, we suggested interval variants of the ASM method approach to address
multi-objective interval transportation problems without translating them to traditional
multi-objective transportation problem. From a practical point of view, the ASM method
process approach is very simple and easy to understand and to apply. The approach pre-
sented and discussed above gives us an initial basic feasible solution, which is closer to the
optimal solution of multi-objective interval transportation problem. It also provides vague-
ness reduced Pareto optimal values for both the objective functions in where the source
and destination parameters are chosen as interval numbers. The algorithm determines
the Initial Basic Feasible(IBFS) Solution of Multi-objective interval transportation prob-
lem to minimizing time and maximizing profit. Which is very close to optimality. Ming
ma’s arithmetic operations in our proposed method solution obtained with less vagueness
(less width). Hence our solution is better.To illustrate the proposed method, a numerical
example is solved and the obtained result is compared with the results of other existing
approaches. The proposed method is very easy to understand and it can be applied on
real life transportation problems by the decision makers.
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