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L(2, 1)-LABELING OF TRAPEZOID GRAPHS

S. PAUL1, SK AMANATHULLA2∗, M. PAL1, A. PAL3, §

Abstract. An L(2, 1)− labeling (L21L) of a graph G = (V,E) is an assignment f from
the node-set V to the set {0, 1, 2, 3, . . .} so that adjoining nodes get numbers at least
two apart, and nodes at distance two get different numbers. The L21L number λ2,1(G)
is the difference between the greatest and least label used in the labeling process. In
this paper, we have proved that, for a trapezoid graph (TG) G, the upper bound of
λ2,1(G) ≤ 5∆ − 4, where ∆ is the maximum degree of the graph G. This paper also
provides L21L of a simple triangle graph, a subclass of TG. We have shown that for a
simple triangle graph, the upper bound of λ2,1(G) is 4∆.
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1. Introduction

L21L problem was introduced by Griggs and Yeh [21], initially proposed by Roberts
[29], as a variation of a frequency assignment problem. The definition of L21L of a graph
is given below.

Definition 1.1. For any graph G = (V,E), L21L of is an assignment f : V → {0, 1, 2, . . . , λ}
such that |f(u) − f(v)| ≥ 2 if d(u, v) = 1 and |f(u) − f(v)| ≥ 1 if d(u, v) = 2, λ being a
suitable integer.

The span of L21L f of G is the difference between the greatest and the least used labels.
λ2,1(G) is the minimum span over all possible labeling functions.

Griggs and Yeh [21] first showed that λ2,1(G) ≤ ∆2 + 2∆ for any graph G. It was
improved by Chang and Kuo [17] to λ2,1(G) ≤ ∆2 + ∆. Král’ et al. [24] showed that
λ2,1(G) ≤ ∆2 + ∆− 1. Later, Gonçalves [20] improved it to λ2,1(G) ≤ ∆2 + ∆− 2. Griggs
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and Yeh [21] conjectured that for any graph G, λ2,1(G) ≤ ∆2. Havet et al. [23] have
proved this result asymptotically. This conjecture is true for several graph classes, such as
paths, cycles, wheels [21], trees [17, 22], cographs [17], chordal graphs [30], permutation
graphs [15, 27], bipartite permutation graphs [1, 27], interval graphs [17, 25, 28], etc. To
know more about this problem, see some comprehensive surveys [16, 31] of this field.

Recently, we have investigated the problem on various types of intersection graphs,
such as circular-arc graphs [4, 5, 8, 10, 13, 14, 26], interval graphs [7, 27], permutation
graphs [6, 9, 28], etc. We feel that the problem may be NP-complete for the above class of
graphs. Thus, we have found some upper bounds of L21L of these classes of graphs. TGs is
another class of intersection graphs and it is the generalization of interval and permutation
graphs. No bound is known for L21L ofTGs and simple triangle graphs. Also, there are
no algorithms designed for L21L of these graphs. Motivated by these, we have studied
the L21L problem of TGs. Obviously, the problem is more complex than interval and
permutation graphs. Recently, some authors are trying work on fuzzy colouring [2, 3]. In
future we will tyr to fuzzyfi L(2, 1)-labeling of some classes of graphs.

The remaining part of the paper is organized as follows. Section 2 contains some
preliminary results and some notations. Section 3 contains the L21L algorithm of TG and
the proof of the upper bound. Section 4 discusses the L21L algorithm of simple triangle
graphs. Finally, in the last section, conclusions are made.

2. Preliminaries and notations

The graphs studied in this article are simple. The distance between the nodes u and v,
denoted by d(u, v) is the shortest distance between u and v. The neighbourhood of a node
u is NG(u) = {v|uv ∈ E}. The set NG(u) is also known as 1-nbd. node set of u or N1(u).
Similarly, 2-nbd. nodes of u is defined as N2(u) = {v|d(u, v) = 2}. d(vi) represents the
degree of the node vi. The maximum degree among all the nodes of the graphs is called
the degree of a graph G, denoted by ∆ or ∆(G).

Definition 2.1. A TG consists of two horizontal lines L1 (upper line) and L2 (lower line)
and a set of trapezoids T = {T1, T2, . . . , Tn} with corner points lying on these two lines.
A graph G = (V,E) is a TG, when a trapezoid diagram exists with trapezoid set T , such
that each node vi ∈ V corresponds to a trapezoid Ti ∈ T and an edge (vi, vj) ∈ E if and
only if Ti ∩ Tj 6= ∅.

A trapezoid Ti between these two lines has four corner points ai, bi, ci, and di which
represent the upper left, upper right, lower left and lower right corner points respectively.
Without loose any generality, we assume that no two trapezoids share a common endpoint.
The terms node and trapezoid are used interchangeably whenever the context is unam-
biguous. In this paper, it is assumed that a trapezoid diagram is given and the trapezoids
are labeled in increasing order of their upper left corner points, that is, Ti < Tj or vi < vj
if and only if ai < aj . Figure 1 shows an trapezoid representation and its corresponding
TG.

The class of TGs is a very important subclass of the intersection graph. It was intro-
duced by Dagan et al. [19].

2.1. Notation. Some notations are presented in this part which we use later to develope
the article.
For each trapezoid Tj , j = 1, 2, . . . , n, we define aj , bj , cj and dj as follows.
aj = {min ai : Ti ∩ Tj 6= φ and ai < aj}. If no such trapezoid Ti exist then aj = 0.
bj = {max bi : Ti ∩ Tj 6= φ and bi > bj}. If no such trapezoid Ti exist then bj = 0.
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Figure 1. A trapezoid representation and the corresponding TG G

cj = {min ci : Ti ∩ Tj 6= φ and ci < cj}. If no such trapezoid Ti exist then cj = 0.
dj = {max di : Ti ∩ Tj 6= φ and di > dj}. If no such trapezoid Ti exist then dj = 0.

From the above notations, it is clear that aj and cj lies on L1. Similarly, bj and dj lies
on L2. By using the above notation, we prove the following lemmas.

Lemma 2.1. Let Tj be a trapezoid corresponding to the node vj. If aj is the a’s corner
point of the trapezoid Ti1 and cj is the c’s corner point of the trapezoid Ti2, then d(vi1 , vi2) =
1.

Proof. From the definition of aj and cj , it is clear that vi1 and vi2 are adjacent to vj .
aj is the upper left corner of the trapezoid Ti1 . That is aj = ai1 and it is the minimum

among all upper left corners of the trapezoids which are adjacent to Tj . So, obviously
ai1 < ai2 .

Again cj is the c’s corner point of the trapezoid Ti2 . Thus cj = ci2 and it is the
minimum among all lower left corners of the trapezoids which are adjacent to Tj . So,
obviously ci2 < ci1 .

From the above two relations we have the line segments joining the points ai1 , ci1 and
ai2 , ci2 cut each other. That is, the trapezoid Ti1 and Ti2 have non-empty intersection.
Therefore d(vi1 , vi2) = 1. Hence the result. �

Lemma 2.2. Let Tj be the trapezoid corresponding to the node vj. If bj is the b’s cor-
ner point of the trapezoid Ti1 and dj is the d’s corner point of the trapezoid Ti2, then
d(vi1 , vi2) = 1.

Proof. The proof is similar to Lemma 2.1. �

3. L(2,1)-labeling of trapezoid graphs

In this portion, an algorithm to L(2,1)-label a TG has been presented. Based on this
algorithm we found an upper bound of L21L for TG. Here, we prove that the upper bound
of L21L for TG is 5∆− 4.

Consider the node set V = {v1, v2, . . . , vn}, where v1 < v2 < . . . < vn and 1, 2, . . . , n
are the indices of corresponding nodes. We denote fi, the label of the node vi, for all
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i = 1, 2, . . . , n. We define two sets Ai and Bi below.
Ai = {vj : d(vj , vi) = 1 and j < i} and
Bi = {vj : d(vj , vi) = 2 and j < i} ,

Lemma 3.1. For a node vi ∈ V , |Bi| ≤ 2∆− 4.

Proof. Let Ti be the trapezoid corresponding to the node vi. Now we calculate the cardi-
nality of the set Bi.

Let vi1 and vi2 be two adjacent nodes of vi such that ai1 = ai and ci2 = ci. That is, ai

is the a’s corner point of the trapezoid Ti1 corresponding to the node vi1 . Similarly, ci is
the c’s corner point of the trapezoid Ti2 corresponding to the node vi2 . So, all the 2-nbd..
nodes of vi with index less than i (i.e. the members of the set Bi) must be adjacent to
either vi1 or vi2 or both.

Again from Lemma 2.1, vi1 and vi2 are adjacent. So vi1 is adjacent to at most ∆ − 2
nodes except the nodes vi and vi2 . Similarly, vi2 is also adjacent to at most ∆− 2 nodes
except the nodes vi and vi1 . Thus the cardinality of the set Bi is at most 2(∆ − 2) i.e.
2∆− 4. �

Now we design a greedy algorithm to label all the nodes of a TG.

Algorithm TGL21
Input: Set of ordered nodes of TG.
//assume that the trapezoid are ordered according to the upper left corner points. That
is, ai < aj for vi < vj and hence v1 < v2 < . . . < vn.//
Output: fi, the L(2, 1)-label of vi, i = 1, 2, . . . , n.
for each i = 1 to n do

Let j be the smallest non-negative integer such that
j /∈ {fk − 1, fk, fk + 1|vk ∈ Ai} ∪ {fl|vl ∈ Bi}
fi = j;

end for;
end TGL21

Lemma 3.2. Algorithm TGL21 correctly L(2, 1)-label a TG.

Proof. From Algorithm TGL21, it is clear that the labels of each node vi depend only on
the labels of the nodes of Ai and Bi. Let vk ∈ Ai and vl ∈ Bi. From Algorithm TGL21, it
follows that fi forbid the integers fk−1, fk, fk+1 and fl. Therefore, obviously, |fk−fi| ≥ 2
and |fl − fi| ≥ 1, where fk and fl are the labels of the nodes vk and vl respectively. That
is, the label of every node follows the L21L condition. Therefore, the nodes are correctly
labeled. �

Theorem 3.1. The running time for the algorithm TGL21 is O(m+ n∆).

Proof. here, fi, the label of vi depends only on the labels of the sets Ai and Bi. Now
Ai can be found by calculating the adjacency of the node vi. So, O(

∑
d(vi)), i.e. O(m)

time are required to compute all Ai’s. Again, let Ti1 and Ti2 be two trapezoids such that
ai1 = ai and ci2 = ci. Thus, from Lemma 3.1, all the members of the set Bi are adjacent to
either vi1 or vi2 or both. So, all the Bi’s can be computed in O(

∑
d(vi1) +

∑
d(vi2)) time,

which is at most O(2
∑

∆), i.e. O(n∆). Hence, the overall time complexity of algorithm
TGL21 is O(m+ n∆). �

In the next theorem, the upper bound of L21L is stated.

Theorem 3.2. For a TG G, λ2,1(G) ≤ 5∆− 4.
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Proof. Suppose, we are in the midst of the algorithm and going to label the ith node, i.e.
vi. Clearly, the label of the node vi depends only on the set Ai and Bi as we label the
nodes of the graph by L21L. Thus the total number of forbidden colors for the node vi is
at most 3|Ai|+ |Bi| as each 1-nbd.. node of vi forbid at most 3-integers and each 2-nbd..
node forbids at most 1-integer. Again Ai is the set of 1-nbd. nodes of vi with index less
than i. So, obviously |Ai| ≤ ∆, for all i. Again, from Lemma 3.1, |Bi| ≤ 2∆− 4. Thus,

fi ≤ 3|Ai|+ |Bi|
or, fi ≤ 3∆ + 2∆− 4
or, fi ≤ 5∆− 4

Hence λ2,1(G) ≤ 5∆− 4. �

4. L21L of simple triangle graphs

A simple triangle graph is a very important subclass of TG where the objects are
triangles with one endpoint of the triangle on L1 and the other two points (i.e. interval)
of the triangle on L2. This graph is also known as a point-interval graph or PI graph.
This class was introduced by Corneil et al. [18].

Now we design an interval representation of a simple triangle graph and deduce some
important properties using this interval representation.

4.1. Interval representation of a simple triangle graph. Let A = {A1, A2, . . . , An}
be the set of triangles between two horizontal lines L1 and L2. In a simple triangle graph,
each triangle Ai contain three points (ai, bi, ci), where the interval [ai, bi] (say Ii) lies on
the line L2 and the point ci lies on the line L1. We assume that the nodes of a simple
triangle graph are ordered by increasing the left endpoint of the intervals, i.e. vi < vj if
and only if ai < aj .

Now we consider lower line (L2) and upper line (L1) as u and v axis in R2. For each
Ai, i = 1, 2, . . . , n, we draw a line segment joining the point (ai, 0) and (bi, 0) at ci. That
is, the line segment Ii = [ai, bi] lies on the straight line y = ci. Figure 2 shows an interval
representation of a simple triangle graph.

a1 a2 b1 a3 b2 b3 a4 b4

c1 c4 c2 c3 L2

L1

J
J
J
JJ

A1 A2
A3 A4

a1 a2 b1 a3 b2 b3 a4 b4

6

- u

v

c1

c4

c2

c3

I1

I2

I3

I4

(a) Simple triangle graph

(b) Interval representation

Figure 2. Interval representation of a simple triangle graph
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From the above interval representation of a simple triangle graph, we conclude the
following results.

Lemma 4.1. If two intervals Ii = [ai, bi] and Ij = [aj , bj ] have a non-empty intersection
then d(vi, vj) = 1.

Proof. Let Ii = [ai, bi] and Ij = [aj , bj ] be two intervals in the interval representation of
a simple triangle graph. Now, if two intervals have a non-empty intersection then the
triangles Ti and Tj corresponding to the intervals Ii and Ij must intersect each other.
Hence d(vi, vj) = 1. �

Lemma 4.2. Let Ii = [ai, bi] and Ij = [aj , bj ] be two intervals corresponding to vi and vj,
such that Ii < Ij (i.e. ai < aj) and ci > cj, then d(vi, vj) = 1.

Proof. If Ii and Ij have a non-empty intersection then obviously d(vi, vj) = 1.
Suppose Ii ∩ Ij = φ and ci > cj . That is ai < aj and ci > cj . So the line segments

[ai, cj ] and [aj , cj ] must intersect each other. Thus Ti ∩ Tj 6= φ. Hence the result. �

From the above two lemmas, it is clear that the interval representation of a simple
triangle graph is not equivalent to an interval graph because the adjacency of an interval
graph can be tasted by using only Lemma 4.1, but for simple triangle graph, both the
above two lemmas are true. So, we conclude that, for every interval graph, there exists a
simple triangle graph but the converse is not true. Actually, an interval graph is a subclass
of TG as well as a simple triangle graph.

Let vi, vj and vl be three nodes such that vi < vj < vl (i.e. ai < aj < al) then we call
the node vj as intermediate node of vi and vl.

Lemma 4.3. If d(vi, vj) = 1 then the number of nodes between vi and vj including vi and
vj is at most 2∆.

Proof. Two cases aries.
Case 1. When ai < aj and ci < cj (see Figure 3)

-

6

u

v

ai aj

ci

cj

Figure 3. When ai < aj and ci < cj

Since degree of the graph is ∆, vi is adjacent to at most ∆ nodes. So, in this case the
number of intermediate nodes between vi and vj is at most ∆− 1.
Case 2. When ai < aj and ci > cj (see Figure 4)

From Lemma 4.2, it is clearly d(vi, vj) = 1. Now, the degree of the graph is ∆. So,
between ai and bi, there exist at most ∆ − 1 lower left endpoints as vj is adjacent to vi
but aj /∈ [ai, bi]. Again vj is adjacent to at most ∆− 1 nodes except the node vi such that
the left endpoints of these adjacent nodes are less than aj . Thus, between ai and aj there
exist at most (∆− 1) + (∆− 1) i.e. 2∆− 2 left endpoints.

Therefore, from the above two cases, we conclude that the number of nodes between vi
and vj including vi and vj is at most (2∆− 2) + 2, i.e. 2∆. �
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Figure 4. When ai < aj and ci > cj

Lemma 4.4. Let vi, vj and vl be three nodes such that vi < vj < vl and d(vi, vl) = 2
through the node vj, then the number of nodes between vi and vl including vi and vl is at
most 4∆− 1.

Proof. Let vi, vj and vl be three nodes such that vi < vj < vl and d(vi, vl) = 2 through
the node vj . That is d(vi, vj) = 1, d(vj , vl) = 1 and d(vi, vl) = 2. Again, from Lemma 4.3,
the intermediate nodes between vi and vj is at most 2∆ − 2. Similarly, the intermediate
nodes between vj and vl is at most 2∆ − 2. So the number of nodes between vi and vl
including vi, vj and vl is at most (2∆− 2) + (2∆− 2) + 3 i.e. 4∆− 1. �

4.2. An algorithm. In this section, we design the L21L algorithm for a simple triangle
graph. The strategy of our algorithm is as follows. First, we calculate the degree of a
simple triangle graph. Now, we consider a label set L, a set of non-negative integers
defined below.

L = {0, 2, 4, . . . , 4∆, 1, 3, 5, . . . , 4∆− 1}.
Let V = {v1, v2, . . . , vn}, where v1 < v2 < . . . < vn (i.e. a1 < a2 < . . . < an) be
the set of ordered nodes. Now we label the ordered nodes by the labels from the label
set L consecutively and when all the labels of L are used by the nodes then we reuse
the labels maintaining the same order for the remaining nodes starting from 0. That is
f1 = 0, f2 = 2, f3 = 4, . . .. The process will continue until all the nodes get labeled.

A formal algorithm is given below.

Algorithm STGL21
Input: Set of ordered nodes V = {v1, v2, . . . , vn} of a simple triangle graph.
Output: fi, the L(2, 1)-label of vi, i = 1, 2, . . . , n.
Step 1. Calculate the degree of the graph, i.e. ∆.
Step 2. Consider the label set L = {0, 2, 4, . . . , 4∆, 1, 3, 5, . . . , 4∆− 1}.
Step 3. Label the ordered nodes by the labels 0, 2, 4, . . . , 4∆, 1, 3, 5, . . . , 4∆ − 1 consec-
utively and for the remaining nodes repeat these labels in same order. The process will
continue until all the nodes are labeled.
end STGL21

Theorem 4.1. Time complexity of algorithm STGL21 is O(m+ n).

Proof. Step 1 of algorithm STGL21 takes O(m) time. That is, the label set L can be con-
structed in O(m) time. In step 3, O(n) time is required to label all the nodes. Therefore,
the overall time complexity of algorithm STGL21 is O(m+ n). �

The correctness and upper bound of λ2,1(G) of a simple triangle graph are provided.

Theorem 4.2. Let G be a simple triangle graph, then λ2,1(G) ≤ 4∆.
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Proof. In Algorithm STGL21, a simple triangle graph is labeled by using the label from
the label set L. Now we show that our algorithm follows L21L condition and the label
set L is sufficient to label a simple triangle graph. Thus, our main aim is to shown that if
|fi − fj | = 1 then d(vi, vj) > 1 and if fi = fj then d(vi, vj) > 2.
Case 1. Let vi and vj be two nodes such that fi = 2k and fj = 2k − 1, where k ∈
{1, 2, . . . , 2∆}.

From the label set L, it is clear that between 2k and 2k − 1, there are 2∆− 1 integers
in the set L. So, including 2k and 2k − 1, there are 2∆ + 1(≥ 2∆) integers. Again in
Lemma 4.3, it is shown that, if d(vi, vj) = 1 then the number of nodes between vi and vj
including viand vj is at most 2∆. So, in this case, d(vi, vj) > 1. That is, fi and fj satisfy
L21L condition.
Case 2. Let vi and vj be two nodes such that fi = fj .
From the label set L, it is clear that the same label repeats after 4∆ number of integers.
That is, if fi = fj then the number of nodes between vi and vj is at most 4∆ which is
greater than 4∆ − 1. Thus, from Lemma 4.4, we conclude that d(vi, vj) > 2. Thus the
proposed algorithm follows the L21L condition and the label set L is enough to label a
simple triangle graph. Now, maxL = 4∆. So λ2,1(G) ≤ 4∆. Hence the result. �

5. Conclusion

The L21L problem has been widely studied over the last three decades. There are only
a few classes of graphs for which they have efficient algorithms. For the other classes
of graphs, a good upper bound is clearly welcome. Here we estimate the upper bounds
of these classes of graphs. Also, polynomial time algorithms are designed to label such
graphs. Unfortunately, our algorithms do not give a guarantee that the value of λ2,1 is the
least. Also, it is well known that the complexity of L21L of interval [28] and permutation
graphs [27] are still open and TG is the generalization of interval and permutation graph.
So, for TGs, the complexity is still open. Thus, we conclude the paper by presenting some
open problems.
Problem 1. Reduce these upper bounds for the proposed graphs.
Problem 2. Design optimal algorithms for L21L, or prove that the problem is NP-
complete for these graphs.
Compliance with ethical standards.
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