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NUMERICAL METHOD BASED ON BOOLE POLYNOMIAL FOR

SOLUTION OF GENERAL FUNCTIONAL INTEGRO-DIFFERENTIAL

EQUATIONS WITH HYBRID DELAYS

KÜBRA ERDEM BİÇER1, HALE GÜL DAĞ1∗, §

Abstract. In this paper, the approximate solution of general functional integro dif-
ferential equaions with hybrid delays is examined using of Boole polynomials and the
collocation points. The solution is obtained as a truncated Boole series on a closed in-
terval in the set of real numbers. By using this method, the approximate solutions of
the problems are found. In addition, the error functions of the solutions are calculated
by using the residual functions. Furthermore, the fundamental properties of the Boole
polynomials and their generating functions are studied. Relationships between Boole
polynomials and numbers, Stirling numbers and Euler polynomials and numbers are
presented.

Keywords: Numerical methods, general functional integro-differential equations,Boole
polynomial, the error analysis.
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1. Introduction

Integro-differential equations are used in modelling phenomena in sciences and engi-
neering. The functional integro-differential equations have many applications in areas
such as mathematics, engineering, astronomy, biology and economics [9, 27]. In recent
years, scientists have examined various applications of these equations and improving the
numerical methods for the approximate solutions. The differential equations have been
solved by using the numerical methods based on the Bernoulli polynomials [2, 3, 4, 6, 7, 12],
the shifted Bernoulli polynomials [5], the Bessel polynomials [21] and the Morgan-Voyce
polynomials [22]. Also, for these equations, the Laguerre wavelet collocation method [35]
and the Chelyshkov collocation method [23] have been improved. In addition to, the
Haar wavelets method [1], the Hybrid Euler-Taylor matrix method [8], a Chebyshev fi-
nite difference method [11], the variational Adomian decomposition method [18], the tau
method [20], the kernel space method [29], the modified Taylor expansion method [31],
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the Sinc collocation method [46], the Bernoulli matrix-collocation method [14, 15] and the
Bernstein polynomials method [19] have been applied for solving the integro-differential
equations. The Nystrom method has been used to solve the Fredholm integral equations
of the second kind under interval data [25]. A numerical method based on Chelyshkov
polynomials has been presented to solve the linear functional integro-differential equations
[30]. For the approximate solutions of the pantograph-type Volterra integro-differential
equations, a collocation method based on Laguerre polynomials has been improved [44].
The Lucas matrix-collocation technique has been used for the solutions of the functional
integro-differential equation with variable delays [17]. The approximate solutions of the
delay linear Fredholm integro-differential equations have been gained by a matrix method
based on the shifted Legendre polynomials [45]. A matrix method based on the Dick-
son polynomials has been developed for the numerical solutions of the general integro-
differential-difference equations [28]. In this study, the numerical method is improved to
obtain the approximate solutions of the general functional integro-differential equations
with hybrid delays. The method is based on the Boole polynomials, their derivatives and
the collocation points.

For a ≤ x, t ≤ b, the general functional integro-differential equations with hybrid delays
is given in the form of

m1∑
k=0

m2∑
j=0

pkj(x)y(k)(αkjx+ βkj) = f(x) +

m3∑
r=0

m4∑
s=0

λrs

∫ νrs(x)

υrs(x)
Krs(x, t)y

(r)(µrst+ γrs)dt,

(1)

with initial-boundary conditions

m1−1∑
k=0

(aiky
(k)(a) + biky

(k)(b)) = ηi, i = 1, 2, 3, . . . ,m1 − 1. (2)

where pkj ,Krs, f(x), νrs(x), υrs(x) are known function on the a ≤ x, t ≤ b and ajk, bjk, µrs,
γrs, λrs are real constants.

The approximate solution is written form as

y(x) ∼= yN (x) =
N∑
n=0

anRn(x) (3)

where Rn(x) is Boole polynomials and an, n = 1, 2, . . . N is the unknown Boole coefficients.

2. Boole Polynomials

The special numbers of Boole polynomial form the basis of the developed method in
this study. The Euler Polynomials En(x) are defined by the following generating function:

2etx

1 + et
=
∞∑
n=0

En(x)

n!
tn

Here, we note that En = En(0) denotes the Euler numbers. The Stirling numbers of
the first kind S1(n, k) and second kind S2(n, k) are indicated by the following generating
functions, respectively:

(log(1 + t))k

k!
=
∞∑
n=0

S1(n, k)

n!
tn,

(et − 1)k

k!
=
∞∑
n=0

S2(n, k)

n!
tn
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The general form of Boole polynomials Rn(x) are following

Rn(x) =

∞∑
n=0

(−1)m

2m

(
x

n−m

)
. (4)

The generating function of Boole polynomials Rn(x) is:
∞∑
n=0

Rn(x)

n!
tn =

2(1 + t)x

2 + t
. (5)

For x = 0, generating function of the Boole numbers is
∞∑
n=0

Rn(0)

n!
tn =

2

2 + t
. (6)

By using (6), we have
∞∑
n=0

Rn(0)

n!
tn =

∞∑
n=0

(−1

2
t)n.

Comparing the coefficients of tn on both sides of the above equation, the following well-
known formula is obtained:

Rn(0)

n!
= (−1

2
)n.

Substituting t = et − 1 into the equation (5), we have
∞∑
n=0

Rn(x)

n!
(et − 1)n =

2etx

1 + et
.

By using equation (5) and equation (6), one also has the following well known formula
involving the Stirling numbers of the first kind S1(m,n) and the Euler numbers and
polynomials, and the Boole numbers and polynomials [9, 24, 26, 27, 33, 34, 36, 37, 38, 39,
40, 41, 42, 43]:

m∑
n=0

En(x)S1(m,n) = Rn(x)

and
m∑
n=0

EnS1(m,n) = Rn(0).

3. Main Matrix Relations for the Boole Polynomials

In this section, the matrix relation of the Boole polynomial R(x), the approximate
solution of the equation (3), the kernel function Krs(x) and the initial-boundary conditions
the equation (2) are obtained.

We firstly introduce the following matrix relation of the Boole polynomial:

R(x) = X(x)HT (7)

where
R(x) =

[
1 x− 1

2 . . . RN (x)
]
,X(x) =

[
1 x x2 . . . xN

]
and

H =


1 0 0 . . .
−1

2 1 0 . . .
1
2 −2 1 . . .
...

...
...

. . .

 .
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Then, the matrix form of the solution (3) is written as

y(x) ∼= yN (x) = R(x)A (8)

The kth derivative of the equation (8) is given as follows:

y(k)(x) ∼= y
(k)
N (x) = R(k)(x)A, k = 0, 1 . . . ,m1 (9)

Combining the matrix form of the equation (7) with the matrix form the equation (9), we
obtain

y(k)(x) ∼= y
(k)
N (x) = X(k)(x)HTA = X(x)EkHTA (10)

where

E =


0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . N
0 0 0 . . . 0


(N+1)×(N+1)

,A =


a0

a1

a2
...
aN


1×(N+1)

[10, 13]. Using the equation (1), (αkjx + βkj) is written instead of x for the matrix form

of term y(k)(αkjx+ βkj). The matrix form is obtained as

y(k)(αkjx+ βkj) ∼= y
(k)
N (αkjx+ βkj) = X(αkjx+ βkj)E

kHTA, k = 0, 1 . . . ,m1. (11)

Here, the matrix relation between X(αkjx+ βkj) and X(x) is expressed as

X(αkjx+ βkj) = X(x)B(αkj , βkj) (12)

where

B(αkj, βkj) =


(

0
0

)
α0
kjβ

0
kj

(
1
0

)
α0
kjβ

1
kj . . .

(
N
0

)
α0
kjβ

N
kj

0
(

1
1

)
α1
kjβ

0
kj . . .

(
N
1

)
α1
kjβ

N−1
kj

...
...

. . .
...

0 0 . . .
(
N
N

)
αNkjβ

0
kj


(N+1)×(N+1)

.

The relation (12) is written in to the equation (11) and the following relation is obtained.

y(k)(αkjx+ βkj) ∼= y
(k)
N (αkjx+ βkj) = X(x)B(αkj , βkj)E

kHTA, k = 0, 1 . . . ,m1 (13)

Similarly, using equation (1), we obtain

y(r)(µkjt+ γkj) ∼= y
(r)
N (µkjt+ γkj) = X(t)B(µkj , γkj)E

rHTA, k = 0, 1 . . . ,m3. (14)

The kernel function Krs(x, t) is expanded by the Taylor polynomial and the Boole poly-
nomial, respectively,

tKrs(x, t) =

N∑
r=0

N∑
s=0

tkrsmnx
mtn and RKrs(x, t) =

N∑
r=0

N∑
s=0

RkrsmnRm(x)Rn(t) (15)

where
tkrsmn =

1

m!n!

∂m+nkrs(0, 0)

∂xm∂tn
m,n = 0, 1, 2, . . . , N.

The matrix relations in the series of the equation (15) is given as follows:

Krs(x, t) = X(x)tKrsX
T(t),K = [tkrsmn], m, n = 0, 1, 2, . . . , N. (16)

Thus, by using to the equation (15)

RKrs = (HT)−1 tKrsH
−1 ⇒ tKrs = HT RKrsH. (17)
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is obtained.
Consequently, combining equation (10) and the equation (2), we get

m−1∑
k=0

(aikX(a) + bikX(b))EkHTA = ηi, i = 0, 1, 2, . . . ,m− 1. (18)

4. Collocation method

In this section, the matrix equations are obtained using the collocation points and
the matrix relations presented in Section 3. Firstly, the matrix relations in the equation
(13), (14) and (16) are substituted into the equation (1). Therefore, the following matrix
equation is obtained:{

m1∑
k=0

m2∑
j=0

pkj(x)X(x)B(αkj , βkj)E
kHT

−
m3∑
r=0

m4∑
s=0

λrsX(x)tKrsQrsB(µkj , γkj)E
rHT

}
A = f(x)

(19)

where

Qrs(x) =

∫ νrs(x)

υrs(x)
XT(t)X(t) dt = [qrsmn(x)], r = 0, 1, . . . ,m3; s = 0, 1, . . . ,m4

qrsmn(x) =
(νrs(x)m+n+1 − υrs(x)m+n+1)

m+ n+ 1
, m, n = 0, 1, . . . , N.

Lets define the collocation points as follows:

xi = a+
b− a
N

i, i = 0, 1, . . . , N (20)

These points are substituted in the equation (19), the following system of the matrix
equation is obtained{

m1∑
k=0

m2∑
j=0

pkj(xi)X(xi)B(αkj , βkj)E
kHT

−
m3∑
r=0

m4∑
s=0

λrsX(xi)
tKrsQrsB(µkj , γkj)E

rHT

}
A = f(xi).

(21)

Hence, fundamental matrix equation can be written as{
m1∑
k=0

m2∑
j=0

PkjXB(αkj , βkj)E
kHT −

m3∑
r=0

m4∑
s=0

λrsX Krs Qrs B(µkj , γkj) Er HT

}
A = F

(22)

where

Pkj =


Pkj(x0) 0 . . . 0

0 Pkj(x1) . . . 0
...

...
. . .

...
0 0 . . . Pkj(xN )


(N+1)×(N+1)

,F =


f(x0)
f(x1)

...
f(xN )


1×(N+1)

,
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HT =


HT

HT

...
HT


(N+1)×(N+1)2

,Qrs =


Qrs(x0) 0 . . . 0

0 Qrs(x1) . . . 0
...

...
. . .

...
0 0 . . . Qrs(xN )


(N+1)2×(N+1)2

,

Er =


Er 0 . . . 0
0 Er . . . 0
...

...
. . .

...
0 0 . . . Er


(N+1)×(N+1)r

,Krs =


Krs 0 . . . 0

0 Krs . . . 0
...

...
. . .

...
0 0 . . . Krs


(N+1)2×(N+1)2

and

B(µkj , γkj) =


B(µkj , γkj) 0 . . . 0

0 B(µkj , γkj) . . . 0
...

...
. . .

...
0 0 . . . B(µkj , γkj)


(N+1)2×(N+1)2

The equation (22) is modification of the equation (1). This matrix equation is the matrix
equation with a system of (N+1) linear algebraic equations and unknown Boole coefficients
a0, a1, . . . , aN . Thus, the equation (22) is written as follows:

WA = F (23)

where

W =

m1∑
k=0

m2∑
j=0

PkjXB(αkj , βkj)E
kHT −

m3∑
r=0

m4∑
s=0

λrsX Krs Qrs B(µkj , γkj) Er HT (24)

The matrix form of conditions of the equation (18) can also be represented as follows:

UiA = [ηi] or [Ui; ηi]; i = 0, 1, 2, . . . ,m1 − 1 (25)

where

Ui =

m1−1∑
k=0

(aikX(a) + bikX(b))EkHT =
[
ui0 ui1 . . . uiN

]
, i = 0, 1, . . . ,m1 − 1

Finally, the m rows of the augmented matrix form the equation (23) are deleted. The
m rows of the conditions the equation (25) are written instead of the deleted m rows. As
a result, the following new augmented matrix relation is obtained as

[W̃; F̃] =



w00 w01 . . . w0N ; f (x0)
w10 w11 . . . w1N ; f (x1)

...
...

. . .
... ;

...
w(N−m1)0 w(N−m1)1 . . . w(N−m1)N ; f(xN−m1)

u00 u01 . . . u0N ; η0

u10 u11 . . . u1N ; η1
...

...
. . .

... ;
...

u(m1−1)0 u(m1−1)1 . . . u(m1−1)N ; ηm1−1


. (26)

If rankW̃ = rank[W̃; F̃] = N + 1, the unknown Boole polynomials are obtained with

A = (W̃)
−1

F̃.Then, the Boole coefficients obtained are placed in the solution (3). As a
result, the solutions of the equation (1) are reached.
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5. Residual correction and Error estimation

In this section, the error function of the approximate solution has been given for the
presented method. Also, the residual correction of the Boole polynomials solution has
been developed. The residual function of the presented method is defined as

RN (x) = L[yN (x)]− f(x) (27)

where yN (x) is the Boole polynomials solution defined by the equation (3) of the problem,
is the approximate solution of the problem. The error function eN (x) is defined as

eN (x) = y(x)− yN (x) (28)

with the exact solution y(x). According to the equation (1), the equation (2), the equation
(27) and the equation (28), the error differential equation is obtained as

m1∑
k=0

m2∑
j=0

pkj(x)e
(k)
N (αkjx+ βkj)

−
m3∑
r=0

m4∑
s=0

λrs

∫ νrs(x)

υrs(x)
Krs(x, t)e

(k)
N (µrst+ γrs)dt = f(x) + RN (x)

(29)

with the homogeneous initial-boundary conditions

m1−1∑
k=0

(aike
(k)
N (a) + bike

(k)
N (b)) = 0, i = 1, 2, 3, . . . ,m1 − 1. (30)

By using the sum of yN (x) and eN,M (x), we obtain the corrected the Boole polynomials
solution yN,M (x) = yN (x) + eN,M (x). In addition, using the Boole error function eN (x)
and the estimated error function eN,M (x), the corrected Boole error function eN,M (x) is
given as following

EN,M (x) = eN (x)− eN,M (x) = yN (x)− yN,M (x).

6. Numerical examples

Example 1. For 0 ≤ x, t ≤ 1, the equation is given as

y′′(x)− (x− 2)y′(x) + y(2x− 1

2
) = −2x2 +

13

2
x+

5

2
+

∫ x+1

x−1
(x− 1)y′(t)dt (31)

with initial-boundary conditions y(0) = 2 and y′(0) = −1
2 . The equation (31) is written

as

y′′(x)− (x− 2)y′(x) + y(2x− 1

2
) = −2x2 +

13

2
x+

5

2

−
∫ x−1

0
(x− 1)y′(t)dt+

∫ x+1

0
(x− 1)y′(t)dt

(32)

where P00 = 1, P10 = −(x−2), P20 = 1, α00 = 2, β00 = −1
2 , λ10 = −1, λ11 = 1, ν10(x) =

(x−1), ν11(x) = (x+1), υ10(x) = υ11(x) = 0, K10(x, t) = K11(x, t) = (x−1). For N = 3
in interval [0,1], the collocation points are obtained as{

x0 = 0, x1 =
1

3
, x2 = 1, x3 =

2

3
, x4 = 1

}
.
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The fundamental matrix equation of the equation (32) is written as{
P20XE2HT + P10XEHT + P00XB(2,−1

2
)HT

− λ10X K10 Q10 E HT − λ11X K11 Q11 E HT

}
A = F

(33)

where

P00 = P20 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


4×4

,P10 =


2 0 0 0
0 5

3 0 0
0 0 4

3 0
0 0 0 1


4×4

,HT =


1 −1

2
1
2 −3

4
0 1 −2 5
0 0 1 −9

2
0 0 0 1


4×4

,

B(2,−1

2
) = Diag

[
B(2,−1

2) B(2,−1
2) B(2,−1

2) B(2,−1
2)
]
16×16

,

Q10 = Diag
[
Q10(0) Q10(13) Q10(23) Q10(1)

]
16×16

,

Q11 = Diag
[
Q11(0) Q11(13) Q11(23) Q11(1)

]
16×16

,

X = Diag
[
X(0) X(13) X(23) X(1)

]
4×16

,HT = Diag
[
HT HT HT HT

]
16×4

,

K10 = Diag
[
K10 K10 K10 K10

]
16×16

,K11 = Diag
[
K11 K11 K11 K11

]
16×16

,

E = Diag
[
E E E E

]
16×16

From solution of the equation (32)

[W;F] =


1 3 −17

4
17
2 ; 5

2
1 8

3 −65
36

35
27 ; 40

9
1 7

3
7
36 −151

54 ; 107
18

1 2 7
4 −4 ; 7


According to the problem (31), the matrix form of conditions (25)is written as

[U0;λ0] =
[
1 −1

2
1
2 −3

4 ; 2
]

and[U1;λ1] =
[
0 1 −2 5 ;−1

2

]
In the augmented matrix, the 3rd and 4th rows are deleted and the matrix form of condi-
tions are written. As a result, the following matrix is gained.

[W̃; F̃] =


1 3 −17

4
17
2 ; 5

2
1 8

3 −65
36

35
27 ; 40

9
1 −1

2
1
2 −3

4 ; 2
0 1 −2 5 ; −1

2


This matrix is solved and the unknown Boole coefficients (or the Boole numbers) are found
as

A =
[

9
4

3
2 1 0

]T
.

For N = 3, the Boole coefficients obtained are written in the solution (3). The Boole
polynomials solution of the equation (31) is obtained as follows

y(x) = x2 − 1

2
x+ 2.

This is the exact solution of the given problem (31).
Example 2. The following problem

y′(x) = y(x− 1) +

∫ x

x−1
y(t)dt (34)
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is given with the initial-boundary conditions y(0) = 1 [32, 44]. The exact solution of this
equation is y(x) = ex. The exact solution y(x), the Boole solutions yN (x) and the corrected
Boole solutions yN,M (x) of the problem (34) are calculated for the values N,M = 4, 5 and
N,M = 8, 9. These results are shown in Figure 1 for N,M = 8, 9. Also, the absolute error
function |eN |, the estimated error function |eN,M | and the corrected Boole error function
|EN,M | of the problem (34) are obtained for the values N,M = 4, 5 and N,M = 8, 9.
Additionally, the authors in reference [44] are solved the problem (34) using the Laguerre
collocation method (LCM). The absolute error functions, the estimated error functions
and the corrected error functions of the problem (34) are compared with the presented
method and the Laguerre collocation method (LCM), in Table 1 and 2.

Table 1. The comparison of the absolute error functions, the estimated
error functions and the corrected error functions of the presented method
and the LCM for problem (34).

Presented Method Laguerre Collocation Method [44]
xi |eN | |eN,M | |EN,M | |eN | |eN,M | |EN,M |

N = 4 N,M = 4, 5 N,M = 4, 5 N = 4 N,M = 4, 5 N,M = 4, 5
0 0 0 0 2.4425e-015 1.2212e-014 9.7700e-015

0.2 5.6620e-04 7.2149e-04 1.5529e-04 4.1670e-004 5.5366e-004 1.3696e-004
0.4 1.3027e-03 1.5284e-03 2.2572e-04 1.4750e-003 1.8183e-003 3.4334e-004
0.6 1.7643e-03 1.9855e-03 2.2121e-04 2.4747e-003 2.8991e-003 4.2442e-004
0.8 1.9854e-03 2.1937e-03 2.0835e-04 2.9179e-003 3.2314e-003 3.1354e-004
1.0 3.0124e-03 3.1842e-03 1.7186e-04 3.0410e-003 3.0791e-003 3.8131e-005

Table 2. The comparison of the absolute error functions, the estimated
error functions and the corrected error functions of the presented method
and the LCM for problem (34).

Presented Method Laguerre Collocation Method [44]
xi |eN | |eN,M | |EN,M | |eN | |eN,M | |EN,M |

N = 8 N,M = 8, 9 N,M = 8, 9 N = 8 N,M = 8, 9 N,M = 8, 9
0 0 0 0 3.1308e-014 1.3840e-012 1.3527e-012

0.2 1.0885e-06 9.7953e-07 1.0902e-07 1.5829e-006 2.4889e-006 9.0600e-007
0.4 1.2423e-06 8.9501e-07 3.4727e-07 2.1689e-006 3.3111e-006 1.1422e-006
0.6 8.4992e-07 2.9388e-07 5.5604e-07 2.0004e-006 2.8536e-006 8.5320e-007
0.8 4.9047e-07 1.9043e-07 6.8090e-07 1.7385e-006 2.1082e-006 3.6970e-007
1.0 4.6580e-07 2.9577e-07 7.6157e-07 1.8455e-006 1.7977e-006 4.7802e-008

Example 3. For 0 ≤ x, t ≤ 1, the first order integro-differential equations is given as

y′(x) = y(x)−2y′(x−1

2
)+(x−x2)y(

1

2
x−1)+

∫ x

0
xe−ty(t)dt+

∫ x
2

0
(x2 − 2t− 2)y′(t)dt+f(x),

(35)
with initial-boundary conditions y(0) = y′(0) = 1 [14, 44]. Here, the exact solution of this

equation is y(x) = ex and g(x) = −(x−x2)e
x
2
−1+2ex−

1
2−x2e

x
2 +xe

x
2 . For N,M = 7, 8, the

exact solution y(x), the Boole solutions yN (x) and the corrected Boole solutions yN,M (x)
of the problem (35) are calculated and compared in Figure 2. The error functions |eN |,
the estimated error functions |eN,M | and the corrected Boole error functions |EN,M | of the
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problem (35) are obtained for the values N,M = 7, 8. The Bernouli collocation method
(BCM) are used by authors in [14] to solve problem (35) for N,M = 7, 8. In Table 3, the
error functions |eN |, the estimated error functions |eN,M | and the corrected error functions
|EN,M | of the problem (35) are compared with the presented method and the Bernoulli
collocation method (BCM).

Table 3. The comparison of the absolute error functions, the estimated
error functions and the corrected error functions of the presented method
and the BCM for problem (35).

Presented Method Bernoulli Collocation Method [14]
xi |eN | |eN,M | |EN,M | |eN | |eN,M | |EN,M |

N = 7 N,M = 7, 8 N,M = 7, 8 N = 7 N,M = 7, 8 N,M = 7, 8
0 0 0 0 0 0 0

0.2 7.4141e-07 7.5814e-07 1.6721e-08 7.4141e-07 7.5814e-07 1.6721e-08
0.4 1.3555e-06 1.2028e-06 1.5276e-07 1.3555e-06 1.2028e-06 1.5276e-07
0.6 4.1432e-07 5.4210e-08 3.6011e-07 4.1432e-06 5.4210e-08 3.6011e-07
0.8 1.9036e-06 2.1524e-06 2.4881e-07 1.9036e-06 2.1524e-06 2.4881e-07
1.0 3.3473e-06 3.0698e-06 2.7749e-07 3.3473e-06 3.0698e-06 2.7749e-07

Example 4. In this example, the Volterra delay integro-differential equation

y′(x) = −(6 + sin(x))y(x) + y(x− π

4
)−

∫ x

x−π
4

sin(t)y(t)dt, x ≥ 0 (36)

is considered with initial-boundary conditions y(0) = e [16, 32]. Here, the exact solution of

this equation is y(x) = ecos(x). For N,M = 13, 14, the exact solution y(x), the Boole solu-
tions yN (x) and the corrected Boole solutions yN,M (x) of the problem (36) are calculated.
These results are compared in the Figure 3. Also,the Taylor collocation method (TCM)
are used by the authors in reference [16] to solve the problem (36). The absolute error
functions |eN | and the estimated error functions |EN,M | of the problem (36) have been
calculated by the presented method for N,M = 4, 5, N,M = 9, 10 and N,M = 13, 14.
The values of the absolute error functions and the estimated error functions are compared
with the Taylor collocation method (TCM) in Table 4 and Table 5, respectively.

Table 4. The comparison of the absolute error functions of the presented
method and the TCM for problem (36).

Presented Method Taylor Collocation Method [16]
xi |e4| |e9| |e13| |e4| |e9| |e13|
0 0 0 7.1054e-15 0 0 0

0.2 5.2753e-04 4.0774e-07 9.1747e-06 0.52753e-3 0.40761e-6 0.89207e-5
0.4 6.2596e-04 3.4248e-05 3.6366e-06 0.62596e-3 0.34247e-4 0.39875e-5
0.6 4.9358e-04 3.1869e-05 8.3322e-06 0.49358e-3 0.31869e-4 0.10439e-5
0.8 1.9473e-04 1.1447e-05 3.6703e-06 0.19473e-3 0.11447e-4 0.10260e-5
1.0 1.2256e-02 1.1688e-06 2.1717e-07 0.12256e-1 0.11688e-5 0.50482e-6
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Table 5. The comparison of the estimated error functions of the presented
method and the TCM for problem (36).

Presented Method Taylor Collocation Method [16]
xi |e4,5| |e9,10| |e13,14| |e4,5| |e9,10| |e13,14|
0 1.0842e-19 1.3010e-18 1.6653e-16 0 0 0

0.2 6.3375e-04 8.9251e-06 6.7174e-07 0.19423e-6 0.25852e-10 0.30750e-15
0.4 1.6206e-03 1.3963e-06 1.7431e-07 0.11481e-6 0.32028e-10 0.38264e-14
0.6 7.5441e-04 6.0725e-06 5.2337e-07 0.32789e-7 0.16568e-9 0.16943e-13
0.8 2.9467e-04 2.8320e-06 2.3742e-07 0.53322e-6 0.73745e-9 0.92470e-13
1.0 1.0692e-02 7.9573e-07 1.6906e-08 0.23872e-5 0.22349e-8 0.36194e-12

Figure 1. The comparison of the exact solutions, the Boole solutions and
the corrected Boole solutions of the problem (34) for the valuesN,M = 8, 9.

Figure 2. The comparison of the exact solutions, the Boole solutions and
the corrected Boole solutions of the problem (35) for the valuesN,M = 7, 8.

7. Conclusions

The Boole matrix method has been developed to find Boole solution of the general
functional integro-differential equations with hybrid delay. This method has been used to
obtain the approximate solutions and the error estimations based on residual function of
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Figure 3. The comparison of the exact solutions, the Boole solutions and
the corrected Boole solutions of the problem (36) for the values N,M =
13, 14.

the problems. The results show that the presented method is both usable and reliable.
The presented method has been written in MATLAB program code. In this way, the
results have been easily obtained. The presented method was used to obtain the Boole
solutions and the error functions of the problem (34) for the values N,M = 4, 5 and
N,M = 8, 9. Additionally, the results of the error functions have been compared with the
Laguerre collocation method. For the values N,M = 7, 8, the presented method was used
to calculate the error functions and the Boole solutions for problem (35). These results
were compared with the Bernoulli collocation method. The Boole solutions and error
functions of problem (36) was solved for values N,M = 4, 5, N,M = 9, 10 and N,M =
13, 14, using the presented method. The results of the error functions were compared with
those obtained using the Taylor collocation method. In future studies, the Boole matrix
method can be improved for the approximate solutions the system of integro differential
equations, nonlinear integro differential equations, integro-differential–difference equations
or different models of these equations.
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