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SOME NEW FIXED POINT RESULTS FOR SINGLE VALUED

MAPPINGS IN b-METRIC SPACES

SUSHANTA KUMAR MOHANTA1, §

Abstract. In recent investigations, the study of coincidence points and common fixed
points is a new development in the domain of contractive type single valued theory. In
this paper, we introduce the concepts of some new generalized contractive type map-
pings in b-metric spaces and discuss the existence and uniqueness of their fixed points.
As some applications of this study, we obtain some coincidence point and common fixed
point results for a pair of single valued mappings in b-metric spaces. Our results gener-
alize, extend and unify several well known comparable results in the existing literature.
Finally, we give some examples to justify the validity of our results.
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1. Introduction

It is well-known that Banach contraction principle [4] is one of the most important
theorems in classical functional analysis. Its significance lies in its vast applicability in
different branches of mathematics and applied sciences. In 1922, S. Banach [4] started a
new field in mathematics, called fixed point theory. In fact, that was the starting point
to start generalize his result by changing the contraction condition or by generalizing
the underlying metric space; see [8, 13, 14, 15, 20]. In 1989, Bakhtin [3] introduced
the concept of b-metric spaces, an extension of metric spaces and generalized the famous
Banach contraction principle in metric spaces to b-metric spaces. After that, many research
works were conducted on b-metric spaces under different contractive conditions. Starting
from these considerations, the study of coincidence points and common fixed points of
mappings satisfying a certain contractive type condition attracted many researchers, see
for examples [12, 17, 18, 19]. Very recently, Hieu and Hung [10] proved some fixed point
results for single valued and multi-valued weakly Picard operators in complete metric
spaces. Inspired and motivated by the results in [10], we introduce the concepts of some
new generalized contractive type mappings in b-metric spaces and prove some fixed point
results for single valued mappings satisfying such contractive conditions. Moreover, we

1 Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North),
Kolkata-700126, West Bengal, India.
e-mail: mohantawbsu@rediffmail.com; ORCID: https://orcid.org/0000-0002-8603-5380.

§ Manuscript received: October 25, 2022; accepted: March 11, 2023.
TWMS Journal of Applied and Engineering Mathematics, Vol.14, No.3 © Işık University, Department
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give some examples to illustrate our results. As some consequences, we obtain several
coincidence point results in the framework of b-metric spaces.

2. Some Basic Concepts

In this section, we recall some basic known definitions, notations and results in b-metric
spaces which will be used in the sequel.

Definition 2.1. [7] Let X be a nonempty set and s ≥ 1 be a given real number. A function
d : X ×X → [0,∞) is said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ≤ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

It is to be noted that the class of b-metric spaces is effectively larger than that of the
ordinary metric spaces. The following example illustrates the above fact.

Example 2.1. [16] Let X = {−1, 0, 1}. Define d : X ×X → [0,∞) by d(x, y) = d(y, x)
for all x, y ∈ X, d(x, x) = 0, x ∈ X and d(−1, 0) = 3, d(−1, 1) = d(0, 1) = 1. Then (X, d)
is a b-metric space, but not a metric space since the triangle inequality is not satisfied.
Indeed, we have that

d(−1, 1) + d(1, 0) = 1 + 1 = 2 < 3 = d(−1, 0).

It is easy to verify that s = 3
2 .

Example 2.2. [5] Let p ∈ (0, 1). Then the set lp(R) := {(xn) ⊆ R :
∞∑
n=1

| xn |p< ∞}

endowed with the functional d : lp(R)× lp(R)→ R given by

d((xn), (yn)) =

( ∞∑
n=1

| xn − yn |p
) 1

p

for all (xn), (yn) ∈ lp(R) is a b-metric space with s = 2
1
p .

Definition 2.2. [6] Let (X, d) be a b-metric space, x ∈ X and (xn) be a sequence in X.
Then

(i) (xn) converges to x if and only if lim
n→∞

d(xn, x) = 0. We denote this by lim
n→∞

xn = x

or xn → x(n→∞).
(ii) (xn) is Cauchy if and only if lim

n,m→∞
d(xn, xm) = 0.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Remark 2.1. [6] In a b-metric space (X, d), the following assertions hold:

(i) A convergent sequence has a unique limit.
(ii) Each convergent sequence is Cauchy.
(iii) In general, a b-metric is not continuous.

Definition 2.3. [11] Let (X, d) be a b-metric space. A subset A ⊆ X is said to be open
if and only if for any a ∈ A, there exists ε > 0 such that the open ball B(a, ε) ⊆ A. The
family of all open subsets of X will be denoted by τ .

Theorem 2.1. [11] τ defines a topology on (X, d).
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Theorem 2.2. [2] Let (X, d) be a b-metric space and suppose that (xn) and (yn) converge
to x, y ∈ X, respectively. Then, we have

1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then lim
n→∞

d(xn, yn) = 0.

Moreover, for each z ∈ X, we have

1

s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

3. Main Results

In this section, we present some fixed point results for single valued mappings in b-metric
spaces.

Theorem 3.1. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1 and f
be a single valued mapping from X to itself. Suppose there exists α > 0 such that

1

2s
d(x, fx) ≤ d(x, y) implies d(fx, fy) ≤Msf (x, y, α) d(x, y) (1)

for all x, y ∈ X, where Msf (x, y, α) =
1
s
d(x,fy)+d(y,fx)+d(x,y)

2d(x,fx)+d(y,fy)+α . If there exists x0 ∈ X such

that for xn = fnx0 for all n ∈ N and dn = d(xn, xn+1) for all n ≥ 0, 2d0+d1
2d0+d1+α

< 1
s , then

(i) f has at least one fixed point in X;
(ii) if u, v ∈ X are two distinct fixed points, then d(u, v) ≥ αs

1+2s .

Moreover, if Msf (x, y, α) < 1 for all x, y ∈ X, then f has a unique fixed point in X.

Proof. Suppose there exists x0 ∈ X such that for xn = fnx0 for all n ∈ N and dn =
d(xn, xn+1) for all n ≥ 0, 2d0+d1

2d0+d1+α
< 1

s . We note that

1

2s
d(xn, fxn) =

1

2s
d(xn, xn+1) ≤ d(xn, xn+1) for all n ≥ 0.

By using condition (1), we have

dn+1 = d(fxn, fxn+1)

≤ Msf (xn, xn+1, α) d(xn, xn+1)

=

[
1
sd(xn, fxn+1) + d(xn+1, fxn) + d(xn, xn+1)

2d(xn, fxn) + d(xn+1, fxn+1) + α

]
d(xn, xn+1)

=

[
1
sd(xn, xn+2) + d(xn, xn+1)

2d(xn, xn+1) + d(xn+1, xn+2) + α

]
d(xn, xn+1)

≤
[

2d(xn, xn+1) + d(xn+1, xn+2)

2d(xn, xn+1) + d(xn+1, xn+2) + α

]
d(xn, xn+1)

=

[
2dn + dn+1

2dn + dn+1 + α

]
dn for all n ≥ 0.

Let us put αn = 2dn+dn+1

2dn+dn+1+α
for all n ≥ 0. Then, 0 ≤ αn < 1 with sα0 < 1 and

dn+1 ≤ αndn for all n ≥ 0. Now it is easy to compute that

dn ≤ dn−1 and dn ≤ αn−1αn−2 · · ·α0d0 for all n ≥ 1.
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As the function g(t) = t
t+α is increasing on [0,∞), it follows that αn ≤ αn−1 for all n ≥ 1.

Therefore, 0 ≤ dn ≤ αn0d0. Taking limit as n→∞, we get lim
n→∞

dn = 0.

Since sα0 < 1, for m, n ∈ N with m > n, we have

d(xn, xm) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + · · ·
+sm−n−1d(xm−2, xm−1) + sm−n−1d(xm−1, xm)

≤ sdn + s2dn+1 + · · ·+ sm−n−1dm−2 + sm−ndm−1

≤ [sαn0 + s2αn+1
0 + · · ·+ sm−n−1αm−20 + sm−nαm−10 ] d0

= sαn0 [1 + sα0 + s2α2
0 + · · ·+ sm−n−2αm−n−20 + sm−n−1αm−n−10 ] d0

≤ sαn0 [1 + sα0 + (sα0)
2 + · · · ] d0

=
sαn0

1− sα0
d0

→ 0 as n→∞.

Thus,

lim
n,m→∞

d(xn, xm) = 0.

This gives that (xn) is a Cauchy sequence in X. As (X, d) is complete, there exists u ∈ X
such that lim

n→∞
xn = u.

We now show that for any n ≥ 0,

either
1

2s
d(xn, fxn) ≤ d(xn, u), or,

1

2s
d(fxn, fxn+1) ≤ d(fxn, u). (2)

If possible, suppose that for some n ≥ 0, we have

d(xn, u) <
1

2s
d(xn, fxn) and d(fxn, u) <

1

2s
d(fxn, fxn+1).

Then,

dn = d(xn, fxn) ≤ s[d(xn, u) + d(fxn, u)]

<
1

2
d(xn, fxn) +

1

2
d(fxn, fxn+1)

=
1

2
dn +

1

2
dn+1

≤ dn.

Thus we arrived at a contradiction. Thus, it follows from condition (2) that for every
n ≥ 0,

either d(xn+1, fu) ≤Msf (xn, u, α) d(xn, u),

or, d(xn+2, fu) ≤Msf (xn+1, u, α) d(xn+1, u).

This is equivalent with the fact that for every n ≥ 0,

either d(xn+1, fu) ≤

[
1
sd(xn, fu) + d(u, fxn) + d(xn, u)

2d(xn, fxn) + d(u, fu) + α

]
d(xn, u), (3)

or, d(xn+2, fu) ≤

[
1
sd(xn+1, fu) + d(u, fxn+1) + d(xn+1, u)

2d(xn+1, fxn+1) + d(u, fu) + α

]
d(xn+1, u) (4)
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holds true. Then at least one of the above inequalities holds for infinitely many natural
numbers. Suppose (3) holds for infinitely many natural numbers and (nk) is the corre-
sponding increasing sequence of natural numbers. Thus, (xnk

) is a subsequence of (xn)
and

d(xnk+1, fu) ≤

[
1
sd(xnk

, fu) + d(u, xnk+1) + d(xnk
, u)

2d(xnk
, xnk+1) + d(u, fu) + α

]
d(xnk

, u)

≤
[
d(xnk

, u) + d(u, fu) + d(u, xnk+1) + d(xnk
, u)

2dnk
+ d(u, fu) + α

]
d(xnk

, u).

Passing to the limit as k →∞, we get lim
k→∞

xnk+1 = fu and so fu = u. This proves that

u is a fixed point of f . If (4) holds for infinitely many natural numbers, by an argument
similar to that used above we can show that u is a fixed point of f .

Suppose that v( 6= u) is another fixed point of f in X. Then, 0 = 1
2sd(u, fu) ≤ d(u, v)

which implies that

d(u, v) = d(fu, fv) ≤Msf (u, v, α) d(u, v)

=

[
1
sd(u, fv) + d(v, fu) + d(u, v)

2d(u, fu) + d(v, fv) + α

]
d(u, v)

=

[
1
sd(u, v) + d(v, u) + d(u, v)

2d(u, u) + d(v, v) + α

]
d(u, v)

=

[
(1 + 2s)d(u, v)

sα

]
d(u, v).

This gives that d(u, v) ≥ sα
1+2s .

Finally, we suppose that Msf (x, y, α) < 1 for all x, y ∈ X. Let w ∈ X be another fixed

point of f . Then, 0 = 1
2sd(u, fu) ≤ d(u,w) which implies that

d(u,w) = d(fu, fw) ≤Msf (u,w, α) d(u,w).

This ensures that d(u,w) = 0 and hence u = w. This proves that f has a unique fixed
point in X. �

Taking s = 1 in Theorem 3.1, we can obtain Theorem 2.1 of Hieu and Hung [10] as
follows.

Theorem 3.2. Let (X, d) be a complete metric space and f be a single valued mapping
from X to itself. Suppose there exists α > 0 such that

1

2
d(x, fx) ≤ d(x, y) implies d(fx, fy) ≤Mf (x, y, α) d(x, y)

for all x, y ∈ X, where Mf (x, y, α) = d(x,fy)+d(y,fx)+d(x,y)
2d(x,fx)+d(y,fy)+α . Then

(i) f has at least one fixed point in X;
(ii) if u, v ∈ X are two distinct fixed points, then d(u, v) ≥ α

3 .

Moreover, if Mf (x, y, α) < 1 for all x, y ∈ X, then f has a unique fixed point in X.

Theorem 3.3. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1 and f
be a single valued mapping from X to itself. Suppose there exists α > 0 such that

1

2s
d(x, fx) ≤ d(x, y) implies d(fx, fy) ≤ 1

2s
Msf (x, y, α) [

1

s
d(x, fy) + d(y, fx)] (5)
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for all x, y ∈ X. If there exists x0 ∈ X such that for xn = fnx0 for all n ∈ N and
dn = d(xn, xn+1) for all n ≥ 0, 2d0+d1

2d0+d1+α
< 2s

1+s , then

(i) f has at least one fixed point in X;

(ii) if u, v ∈ X are two distinct fixed points, then d(u, v) ≥ 2s3α
(1+s)(1+2s) .

Moreover, if Msf (x, y, α) < 2s2

1+s for all x, y ∈ X, then f has a unique fixed point in X.

Proof. Suppose there exists x0 ∈ X such that for xn = fnx0 for all n ∈ N and dn =
d(xn, xn+1) for all n ≥ 0, we have 2d0+d1

2d0+d1+α
< 2s

1+s . We note that

1

2s
d(xn, fxn) =

1

2s
d(xn, xn+1) ≤ d(xn, xn+1) for all n ≥ 0.

By using condition (5), we have

dn+1 = d(fxn, fxn+1)

≤ 1

2s
Msf (xn, xn+1, α) [

1

s
d(xn, fxn+1) + d(xn+1, fxn)]

≤ 1

2s

[
1
sd(xn, fxn+1) + d(xn+1, fxn) + d(xn, xn+1)

2d(xn, fxn) + d(xn+1, fxn+1) + α

]
(dn + dn+1)

=
1

2s

[
1
sd(xn, xn+2) + d(xn, xn+1)

2d(xn, xn+1) + d(xn+1, xn+2) + α

]
(dn + dn+1)

≤ 1

2s

[
2d(xn, xn+1) + d(xn+1, xn+2)

2d(xn, xn+1) + d(xn+1, xn+2) + α

]
(dn + dn+1)

=
1

2s

[
2dn + dn+1

2dn + dn+1 + α

]
(dn + dn+1) for all n ≥ 0. (6)

Let us put cn = 1
2

2dn+dn+1

2dn+dn+1+α
for all n ≥ 0. Then, 0 ≤ cn < 1

2 ≤
s
2 which im-

plies that 0 ≤ cn
s−cn < 1. Moreover, 2d0+d1

2d0+d1+α
< 2s

1+s ⇒ c0 <
s

1+s ⇒
c0
s−c0 < 1

s . Take

αn = cn
s−cn for all n ≥ 0. Then, 0 ≤ αn < 1 with α0 <

1
s .

We obtain from condition (6) that

dn+1 ≤
cn
s

(dn + dn+1).

This gives that

dn+1 ≤
cn

s− cn
dn = αn dn for all n ≥ 0.

By the techniques that adapted in Theorem 3.1, we can show that lim
n→∞

dn = 0 and (xn)

is a Cauchy sequence inX. As (X, d) is complete, there exists u ∈ X such that lim
n→∞

xn = u.

We now show that for any n ≥ 0,

either
1

2s
d(xn, fxn) ≤ d(xn, u), or,

1

2s
d(fxn, fxn+1) ≤ d(fxn, u). (7)

If possible, suppose that for some n ≥ 0, we have

d(xn, u) <
1

2s
d(xn, fxn) and d(fxn, u) <

1

2s
d(fxn, fxn+1).
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Then,

dn = d(xn, fxn) ≤ s[d(xn, u) + d(fxn, u)]

<
1

2
d(xn, fxn) +

1

2
d(fxn, fxn+1)

=
1

2
dn +

1

2
dn+1

≤ dn,

which is a contradiction. Thus, it follows from condition (7) that for every n ≥ 0,

either d(xn+1, fu) ≤ 1

2s

[
Dn + d(xn, u)

2d(xn, fxn) + d(u, fu) + α

]
Dn, (8)

or, d(xn+2, fu) ≤ 1

2s

[
Dn+1 + d(xn+1, u)

2d(xn+1, fxn+1) + d(u, fu) + α

]
Dn+1 (9)

holds true, where Dn = 1
sd(xn, fu)+d(u, fxn). Then at least one of the above inequalities

holds for infinitely many natural numbers. Suppose (8) holds for infinitely many natural
numbers and (nk) is the corresponding increasing sequence of natural numbers. Thus,
(xnk

) is a subsequence of (xn) and

d(xnk+1, fu) ≤ 1

2s

[
Dnk

+ d(xnk
, u)

2d(xnk
, xnk+1) + d(u, fu) + α

]
Dnk

.

We now compute that

d(u, fu) ≤ sd(u, xnk+1) + sd(xnk+1, fu)

≤ sd(u, xnk+1) +
1

2

[
Dnk

+ d(xnk
, u)

2dnk
+ d(u, fu) + α

]
Dnk

.

As Dnk
≤ d(xnk

, u) + d(u, fu) + d(u, xnk+1), taking limit as k →∞, we get

d(u, fu) ≤ 1

2

[
d(u, fu

d(u, fu) + α

]
d(u, fu). (10)

If possible, suppose that d(u, fu) 6= 0. Then, it follows from (10) that d(u,fu
d(u,fu)+α ≥ 2 > 1,

a contradiction. This ensures that d(u, fu) = 0 and so fu = u. This proves that u is a
fixed point of f . If (9) holds for infinitely many natural numbers, by an argument similar
to that used above we can show that u is a fixed point of f .

Suppose that v( 6= u) is another fixed point of f in X. Then, 0 = 1
2sd(u, fu) ≤ d(u, v)

which implies that

d(u, v) = d(fu, fv) ≤ 1

2s
Msf (u, v, α) [

1

s
d(u, fv) + d(v, fu)]

=
1

2s

[
1
sd(u, fv) + d(v, fu) + d(u, v)

2d(u, fu) + d(v, fv) + α

](
1

s
+ 1

)
d(u, v)

=
(1 + s)

2s2

[
1
sd(u, v) + d(v, u) + d(u, v)

2d(u, u) + d(v, v) + α

]
d(u, v)

=
(1 + s)

2s2

[
(1 + 2s)d(u, v)

sα

]
d(u, v).
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This gives that d(u, v) ≥ 2s3α
(1+s)(1+2s) .

Finally, we suppose that Msf (x, y, α) < 2s2

1+s for all x, y ∈ X. Let w ∈ X be another

fixed point of f . Then, 0 = 1
2sd(u, fu) ≤ d(u,w) which implies that

d(u,w) = d(fu, fw) ≤ 1

2s
Msf (u,w, α) [

1

s
d(u, fw) + d(w, fu)]

=
(1 + s)

2s2
Msf (u,w, α)d(u,w).

This ensures that d(u,w) = 0 and hence u = w. This proves that f has a unique fixed
point in X. �

Corollary 3.1. Let (X, d) be a complete metric space and f be a single valued mapping
from X to itself. Suppose there exists α > 0 such that

1

2
d(x, fx) ≤ d(x, y) implies d(fx, fy) ≤ 1

2
Mf (x, y, α) [d(x, fy) + d(y, fx)]

for all x, y ∈ X. Then

(i) f has at least one fixed point in X;
(ii) if u, v ∈ X are two distinct fixed points, then d(u, v) ≥ α

3 .

Moreover, if Mf (x, y, α) < 1 for all x, y ∈ X, then f has a unique fixed point in X.

Proof. The proof follows from Theorem 3.3 by taking s = 1. �

Theorem 3.4. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1 and f
be a single valued mapping from X to itself. Suppose there exists α > 0 such that

1

2s
d(x, fx) ≤ d(x, y) implies d(fx, fy) ≤ 1

2s
Msf (x, y, α) [d(x, fx) + d(y, fy)] (11)

for all x, y ∈ X. If there exists x0 ∈ X such that for xn = fnx0 for all n ∈ N and
dn = d(xn, xn+1) for all n ≥ 0, 2d0+d1

2d0+d1+α
< 2s

1+s , then f has a unique fixed point in X.

Proof. The proof of the first part, that is, the existence of a fixed point u ∈ X of f is
similar to Theorem 3.3. For uniqueness, let w ∈ X be another fixed point of f . Then,
0 = 1

2sd(u, fu) ≤ d(u,w) which implies that

d(u,w) = d(fu, fw) ≤ 1

2s
Msf (u,w, α) [d(u, fu) + d(w, fw)] = 0.

This gives that d(u,w) = 0 and hence u = w. This proves that f has a unique fixed point
in X. �

Corollary 3.2. Let (X, d) be a complete metric space and f be a single valued mapping
from X to itself. Suppose there exists α > 0 such that

1

2
d(x, fx) ≤ d(x, y) implies d(fx, fy) ≤ 1

2
Mf (x, y, α) [d(x, fx) + d(y, fy)]

for all x, y ∈ X. Then f has a unique fixed point in X.

Proof. The proof follows from Theorem 3.4 by taking s = 1. �

We note that if the condition Msf (x, y, α) < 1 for all x, y ∈ X does not hold, then the
uniqueness of the fixed point is not guaranteed in Theorem 3.1. The following example
illustrates the above fact.
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Example 3.1. Let X = {a, b, c} and d : X ×X → [0,∞) be defined by

d(a, a) = d(b, b) = d(c, c) = 0, d(a, b) = d(b, a) = 4,

d(a, c) = d(c, a) =
3

2
, d(b, c) = d(c, b) =

1

2
.

Then (X, d) is a complete b-metric space with s = 2 but it is not a metric space since
d(a, b) = 4 > d(a, c) + d(c, b).

We define f : X → X by fa = b, fb = b, fc = c. For α = 1
4 , we have

Msf (b, c, α) =
1
2d(b, fc) + d(c, fb) + d(b, c)

2d(b, fb) + d(c, fc) + α
= 5,

Msf (c, a, α) =
1
2d(c, fa) + d(a, fc) + d(c, a)

2d(c, fc) + d(a, fa) + α
=

13

17
,

Msf (c, b, α) =
1
2d(c, fb) + d(b, fc) + d(c, b)

2d(c, fc) + d(b, fb) + α
= 5,

Msf (a, c, α) =
1
2d(a, fc) + d(c, fa) + d(a, c)

2d(a, fa) + d(c, fc) + α
=

1

3
.

We consider the following three cases:

Case-I: 0 = 1
2sd(b, fb) ≤ d(b, y) for any y ∈ X and

0 = d(fb, fb) = Msf (b, b, α) d(b, b),

0 = d(fb, fa) < Msf (b, a, α) d(b, a),

1

2
= d(fb, fc) < Msf (b, c, α) d(b, c) =

5

2
.

Thus, 1
2sd(b, fb) ≤ d(b, y) implies that d(fb, fy) ≤Msf (b, y, α) d(b, y) for all y ∈ X.

Case-II: 0 = 1
2sd(c, fc) ≤ d(c, y) for any y ∈ X and

1

2
= d(fc, fa) < Msf (c, a, α) d(c, a) =

39

34
,

1

2
= d(fc, fb) < Msf (c, b, α) d(c, b) =

5

2
,

0 = d(fc, fc) = Msf (c, c, α) d(c, c).

Thus, 1
2sd(c, fc) ≤ d(c, y) implies that d(fc, fy) ≤Msf (c, y, α) d(c, y) for all y ∈ X.

Case-III: 1 = 1
2sd(a, fa) < d(a, y) for y = b, c and

0 = d(fa, fb) < Msf (a, b, α) d(a, b),

1

2
= d(fa, fc) = Msf (a, c, α) d(a, c) =

1

2
.

Thus, 1
2sd(a, fa) < d(a, y) implies that d(fa, fy) ≤ Msf (a, y, α) d(a, y) for y = b, c.

Consequently it follows that condition (1) of Theorem 3.1 holds true for α = 1
4 .

Moreover, there exists x0 = b such that for xn = fnx0 = b for all n ∈ N and dn =
d(xn, xn+1) = 0 for all n ≥ 0, 2d0+d1

2d0+d1+α
= 0 < 1

s . Thus, f satisfies all the hypotheses of

Theorem 3.1 except Msf (x, y, α) < 1 for all x, y ∈ X. Then the existence of a fixed point
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of f follows from Theorem 3.1. It should be noticed that f has two distinct fixed points
b, c and d(b, c) = 1

2 >
1
10 = αs

1+2s .

It is valuable to note that if the condition Msf (x, y, α) < 1 for all x, y ∈ X holds, then
the uniqueness of the fixed point is guaranteed in Theorem 3.1. The following example
supports the above fact.

Example 3.2. Let X = {a, b, c} and d : X ×X → [0,∞) be defined by

d(a, a) = d(b, b) = d(c, c) = 0, d(a, b) = d(b, a) =
1

2
,

d(a, c) = d(c, a) = 2, d(b, c) = d(c, b) =
1

2
.

Then (X, d) is a complete b-metric space with s = 2 but it is not a metric space since
d(a, c) = 2 > d(a, b) + d(b, c).

We define f : X → X by fx = c for all x ∈ X. For α = 3, we compute that

Msf (a, a, α) =
1
2d(a, c) + d(a, c) + d(a, a)

2d(a, c) + d(a, c) + α
=

1

3
,

Msf (b, b, α) =
1
2d(b, c) + d(b, c) + d(b, b)

2d(b, c) + d(b, c) + α
=

1

6
,

Msf (c, c, α) =
1
2d(c, c) + d(c, c) + d(c, c)

2d(c, c) + d(c, c) + α
= 0,

Msf (a, b, α) =
1
2d(a, c) + d(b, c) + d(a, b)

2d(a, c) + d(b, c) + α
=

4

15
,

Msf (b, a, α) =
1
2d(b, c) + d(a, c) + d(b, a)

2d(b, c) + d(a, c) + α
=

11

24
,

Msf (b, c, α) =
1
2d(b, c) + d(c, c) + d(b, c)

2d(b, c) + d(c, c) + α
=

3

16
,

Msf (c, b, α) =
1
2d(c, c) + d(b, c) + d(c, b)

2d(c, c) + d(b, c) + α
=

2

7
,

Msf (c, a, α) =
1
2d(c, c) + d(a, c) + d(c, a)

2d(c, c) + d(a, c) + α
=

4

5
,

Msf (a, c, α) =
1
2d(a, c) + d(c, c) + d(a, c)

2d(a, c) + d(c, c) + α
=

3

7
.

This shows that Msf (x, y, α) < 1 for all x, y ∈ X. Finally, d(fx, fy) = 0 for all
x, y ∈ X assures that

d(fx, fy) ≤Msf (x, y, α) d(x, y)

for all x, y ∈ X. Also, there exists x0 = c such that for xn = fnx0 = c for all n ∈ N and
dn = d(xn, xn+1) = 0 for all n ≥ 0, 2d0+d1

2d0+d1+α
= 0 < 1

s . Thus, f satisfies all the hypotheses
of Theorem 3.1 for α = 3. It should be noticed that f has a unique fixed point c ∈ X.

The following example illustrates our Theorem 3.3.
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Example 3.3. Let X = {a, b, c} and d : X ×X → [0,∞) be defined by

d(a, a) = d(b, b) = d(c, c) = 0, d(a, b) = d(b, a) = 3,

d(a, c) = d(c, a) =
3

2
, d(b, c) = d(c, b) =

1

12
.

Then (X, d) is a complete b-metric space with s = 36
19 but it is not a metric space since

d(a, b) = 3 > d(a, c) + d(c, b).

We define f : X → X by fa = b, fb = b, fc = c. For α = 1
12 , we have

Msf (a, c, α) =
19
36d(a, fc) + d(c, fa) + d(a, c)

2d(a, fa) + d(c, fc) + α
=

57

146
,

Msf (c, a, α) =
19
36d(c, fa) + d(a, fc) + d(c, a)

2d(c, fc) + d(a, fa) + α
=

1315

1332
,

Msf (b, c, α) =
19
36d(b, fc) + d(c, fb) + d(b, c)

2d(b, fb) + d(c, fc) + α
=

91

36
,

Msf (c, b, α) =
19
36d(c, fb) + d(b, fc) + d(c, b)

2d(c, fc) + d(b, fb) + α
=

91

36
.

We consider the following three cases:

Case-I: 19
24 = 1

2sd(a, fa) < d(a, y) for y = b, c and

0 = d(fa, fb) <
1

2s
Msf (a, b, α) [

1

s
d(a, fb) + d(b, fa)],

1

12
= d(fa, fc) <

1

2s
Msf (a, c, α) [

1

s
d(a, fc) + d(c, fa)] =

2527

28032
.

Thus, 1
2sd(a, fa) < d(a, y) implies that d(fa, fy) < 1

2sMsf (a, y, α) [1sd(a, fy) + d(y, fa)]
for y = b, c.

Case-II: 0 = 1
2sd(b, fb) ≤ d(b, y) for any y ∈ X and

0 = d(fb, fa) <
1

2s
Msf (b, a, α) [

1

s
d(b, fa) + d(a, fb)],

0 = d(fb, fb) =
1

2s
Msf (b, b, α) [

1

s
d(b, fb) + d(b, fb)],

1

12
= d(fb, fc) <

1

2s
Msf (b, c, α) [

1

s
d(b, fc) + d(c, fb)] =

95095

1119744
.

Thus, 1
2sd(b, fb) ≤ d(b, y) implies that d(fb, fy) ≤ 1

2sMsf (b, y, α) [1sd(b, fy) + d(y, fb)] for
any y ∈ X.

Case-III: 0 = 1
2sd(c, fc) ≤ d(c, y) for any y ∈ X and

1

12
= d(fc, fa) <

1

2s
Msf (c, a, α) [

1

s
d(c, fa) + d(a, fc)] =

16664995

41430528
,

1

12
= d(fc, fb) <

1

2s
Msf (c, b, α) [

1

s
d(c, fb) + d(b, fc)] =

95095

1119744
.

0 = d(fc, fc) =
1

2s
Msf (c, c, α) [

1

s
d(c, fc) + d(c, fc)].

Thus, 1
2sd(c, fc) ≤ d(c, y) implies that d(fc, fy) ≤ 1

2sMsf (c, y, α) [1sd(c, fy) + d(y, fc)]
for any y ∈ X. Consequently it follows that condition (5) of Theorem 3.3 holds true for
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α = 1
12 .

Moreover, there exists x0 = c such that for xn = fnx0 = c for all n ∈ N and dn =
d(xn, xn+1) = 0 for all n ≥ 0, 2d0+d1

2d0+d1+α
= 0 < 2s

1+s . Thus, f satisfies all the hypotheses of

Theorem 3.3 except Msf (x, y, α) < 2s2

1+s for all x, y ∈ X. In fact, Msf (b, c, α) = 91
36 >

2s2

1+s .
Then the existence of a fixed point of f follows from Theorem 3.3. It should be noticed

that b, c are fixed points of f in X and d(b, c) = 1
12 >

7776
95095 = 2s3α

(1+s)(1+2s) .

Remark 3.1. It is worth mentioning that if we consider Example 3.2, then f satisfies all

the hypotheses of Theorem 3.3 including Msf (x, y, α) < 2s2

1+s for all x, y ∈ X. As a result,
there exists a unique fixed point of f in X.

The following example illustrates our Theorem 3.4.

Example 3.4. Let X = {a, b, c} and d : X ×X → [0,∞) be defined by

d(a, a) = d(b, b) = d(c, c) = 0, d(a, b) = d(b, a) = 3,

d(a, c) = d(c, a) =
1

2
, d(b, c) = d(c, b) =

3

2
.

Then (X, d) is a complete b-metric space with s = 3
2 but it is not a metric space since

d(a, b) = 3 > d(a, c) + d(c, b).

We define f : X → X by fa = a, fb = c, fc = a. For α = 1
140 , we have

Msf (b, c, α) =
2
3d(b, fc) + d(c, fb) + d(b, c)

2d(b, fb) + d(c, fc) + α
=

490

491
,

Msf (a, b, α) =
2
3d(a, fb) + d(b, fa) + d(a, b)

2d(a, fa) + d(b, fb) + α
=

2660

633
,

Msf (b, a, α) =
2
3d(b, fa) + d(a, fb) + d(b, a)

2d(b, fb) + d(a, fa) + α
=

770

421
,

Msf (c, b, α) =
2
3d(c, fb) + d(b, fc) + d(c, b)

2d(c, fc) + d(b, fb) + α
=

70

39
.

We consider the following three cases:

Case-I: 0 = 1
2sd(a, fa) ≤ d(a, y) for any y ∈ X and

0 = d(fa, fa) =
1

2s
Msf (a, a, α) [d(a, fa) + d(a, fa)],

1

2
= d(fa, fb) <

1

2s
Msf (a, b, α) [d(a, fa) + d(b, fb)] =

1330

633
,

0 = d(fa, fc) <
1

2s
Msf (a, c, α) [d(a, fa) + d(c, fc)].

Thus, 1
2sd(a, fa) ≤ d(a, y) implies that d(fa, fy) ≤ 1

2sMsf (a, y, α) [d(a, fa) + d(y, fy)] for
all y ∈ X.

Case-II: 1
2 = 1

2sd(b, fb) < d(b, y) for y = a, c and

1

2
= d(fb, fa) <

1

2s
Msf (b, a, α) [d(b, fb) + d(a, fa)] =

385

421
,

1

2
= d(fb, fc) <

1

2s
Msf (b, c, α) [d(b, fb) + d(c, fc)] =

980

1473
.
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Thus, 1
2sd(b, fb) < d(b, y) implies that d(fb, fy) < 1

2sMsf (b, y, α) [d(b, fb) + d(y, fy)] for
y = a, c.

Case-III: 1
6 = 1

2sd(c, fc) < d(c, y) for y = a, b and

0 = d(fc, fa) <
1

2s
Msf (c, a, α) [d(c, fc) + d(a, fa)],

1

2
= d(fc, fb) <

1

2s
Msf (c, b, α) [d(c, fc) + d(b, fb)] =

140

117
.

Thus, 1
2sd(c, fc) < d(c, y) implies that d(fc, fy) < 1

2sMsf (c, y, α) [d(c, fc)+d(y, fy)] for

y = a, b. Consequently it follows that condition (11) of Theorem 3.4 holds true for α = 1
140 .

Moreover, there exists x0 = a such that for xn = fnx0 = a for all n ∈ N and dn =
d(xn, xn+1) = 0 for all n ≥ 0, 2d0+d1

2d0+d1+α
= 0 < 2s

1+s . Thus, f satisfies all the hypotheses of
Theorem 3.4. Then the existence of a unique fixed point of f follows from Theorem 3.4.
It should be noticed that a is the unique fixed point of f in X.

4. Some Coincidence Point Results

Definition 4.1. [1] Let f and g be self mappings of a set X. If y = fx = gx for some x
in X, then x is called a coincidence point of f and g and y is called a point of coincidence
of f and g.

Definition 4.2. [12] The mappings f, g : X → X are weakly compatible, if for every
x ∈ X, the following holds:

g(fx) = f(gx) whenever fx = gx.

Proposition 4.1. [1] Let f and g be weakly compatible self maps of a nonempty set X.
If f and g have a unique point of coincidence y = fx = gx, then y is the unique common
fixed point of f and g.

We state the following lemma which is a key result in this section.

Lemma 4.1. [9] Let X be a nonempty set and f : X → X a function. Then there exists
a subset U ⊆ X such that f(U) = f(X) and f : U → X is one-to-one.

As an application of Theorem 3.1, we obtain the following result.

Theorem 4.1. Let (X, d) be a b-metric space with the coefficient s ≥ 1. Let f, g be single
valued mappings from X to itself, f(X) ⊆ g(X) and g(X) a complete subspace of X.
Suppose there exists α > 0 such that

1

2s
d(gx, fx) ≤ d(gx, gy) implies d(fx, fy) ≤Msgf (x, y, α) d(gx, gy) (12)

for all x, y ∈ X, where Msgf (x, y, α) =
1
s
d(gx,fy)+d(gy,fx)+d(gx,gy)

2d(gx,fx)+d(gy,fy)+α . If there exists x0 ∈ X
such that for gxn = fxn−1 for all n ∈ N and dn = d(gxn, gxn+1) for all n ≥ 0, 2d0+d1

2d0+d1+α
<

1
s , then f and g have a point of coincidence in g(X). In addition, if Msgf (x, y, α) < 1 for
all x, y ∈ X, then f and g have a unique point of coincidence in g(X). Moreover, if f
and g are weakly compatible, then f and g have a unique common fixed point in g(X).

Proof. By Lemma 4.1, there exists U ⊆ X such that g(U) = g(X) and g : U → X is
one-to-one. Define h : g(U) → g(U) by h(gx) = fx. This is possible as f(X) ⊆ g(X).
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Then h is well defined, as g is one-to-one on U .

For all gx, gy ∈ g(U), we obtain from condition (12) that there exists α > 0 such that

1

2s
d(gx, h(gx)) ≤ d(gx, gy) implies d(h(gx), h(gy)) ≤Msh(gx, gy, α) d(gx, gy),

where Msh(gx, gy, α) =
1
s
d(gx,h(gy))+d(gy,h(gx))+d(gx,gy)

2d(gx,h(gx))+d(gy,h(gy))+α . This proves that h : g(U) → g(U)

satisfies condition (1) of Theorem 3.1. Moreover, taking yn = gxn for all n ≥ 0, we
have yn = gxn = fxn−1 = h(gxn−1) = hyn−1 for all n ≥ 1. By hypothesis, there exists
y0 ∈ g(U) such that for yn = hyn−1 for all n ∈ N and dn = d(yn, yn+1) for all n ≥ 0,
2d0+d1

2d0+d1+α
< 1

s . Since g(U) = g(X) is complete, by Theorem 3.1, there exists gu0 ∈ g(X)

such that h(gu0) = gu0 = u, say. That is, fu0 = gu0 = u. Hence, f and g have a point of
coincidence u in g(X).

If Msgf (x, y, α) < 1 for all x, y ∈ X, then Msh(gx, gy, α) < 1 for all gx, gy ∈ g(U) and
hence by Theorem 3.1, there exists a unique gu0 ∈ g(X) such that fu0 = h(gu0) = gu0 =
u. This proves that f and g have a unique point of coincidence in g(X).

If f and g are weakly compatible, then by Proposition 4.1 it follows that f and g have
a unique common fixed point in g(X). �

The following theorem is a consequence of Theorem 3.3 and Lemma 4.1.

Theorem 4.2. Let (X, d) be a b-metric space with the coefficient s ≥ 1. Let f, g be single
valued mappings from X to itself, f(X) ⊆ g(X) and g(X) a complete subspace of X.
Suppose there exists α > 0 such that

1

2s
d(gx, fx) ≤ d(gx, gy) implies d(fx, fy) ≤ 1

2s
Msgf (x, y, α)[

1

s
d(gx, fy) + d(gy, fx)]

for all x, y ∈ X. If there exists x0 ∈ X such that for gxn = fxn−1 for all n ∈ N and
dn = d(gxn, gxn+1) for all n ≥ 0, 2d0+d1

2d0+d1+α
< 2s

1+s , then f and g have a point of coincidence

in g(X). In addition, if Msgf (x, y, α) < 2s2

1+s for all x, y ∈ X, then f and g have a unique

point of coincidence in g(X). Moreover, if f and g are weakly compatible, then f and g
have a unique common fixed point in g(X).

The following theorem is a consequence of Theorem 3.4 and Lemma 4.1.

Theorem 4.3. Let (X, d) be a b-metric space with the coefficient s ≥ 1. Let f, g be single
valued mappings from X to itself, f(X) ⊆ g(X) and g(X) a complete subspace of X.
Suppose there exists α > 0 such that

1

2s
d(gx, fx) ≤ d(gx, gy) implies d(fx, fy) ≤ 1

2s
Msgf (x, y, α) [d(gx, fx) + d(gy, fy)]

for all x, y ∈ X. If there exists x0 ∈ X such that for gxn = fxn−1 for all n ∈ N and
dn = d(gxn, gxn+1) for all n ≥ 0, 2d0+d1

2d0+d1+α
< 2s

1+s , then f and g have a unique point of

coincidence in g(X). Moreover, if f and g are weakly compatible, then f and g have a
unique common fixed point in g(X).

Remark 4.1. Taking s = 1 in Theorems 4.1, 4.2 and 4.3, we can obtain the corresponding
coincidence point results in metric spaces.
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5. Conclusions

In this work, we first obtained some new fixed point results and then applied these
results to establish some coincidence point and common fixed point results for a pair of
self mappings in b-metric spaces. Our results generalized several well known results in
the existing literature. Moreover, we have justified our results with the aid of competent
examples.
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intégrales, Fund. Math., 3, pp. 133-181.

[5] Berinde, V., (1993), Generalized contractions in quasimetric spaces,In: Seminar on Fixed Point Theory,
pp. 3-9.

[6] Boriceanu, M., (2009), Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J.
Mod. Math., 4, pp. 285-301.

[7] Czerwik, S., (1993), Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1, pp.
5-11.

[8] Golhare, P. and Aage, C., (2019), Dislocated quasi rectangular b-metric spaces and related fixed point
theorems, Elect. J. Math. Anal. Appl., 7, pp. 309-331.

[9] Haghi, R. H., Rezapour, Sh. and Shahzad, N., (2011), Some fixed point generalizations are not real
generalizations, Nonlinear Analysis: Theory, Methods and Appl., 74, pp. 1799-1803.

[10] Hieu, D. T. and Hung, B. T., (2022), Some fixed point theorems for weakly Picard operators in
complete metric spaces and applications, Commun. Korean Math. Soc., 37, pp. 75-89.

[11] Hussain, N., Saadati, R. and Agrawal, R. P., (2014), On the topology and wt-distance on metric type
spaces, Fixed Point Theory Appl., 2014:88.

[12] Jungck, G., (1996), Common fixed points for noncontinuous nonself maps on non-metric spaces, Far
East J. Math. Sci., 4, pp. 199-215.

[13] Kamran, T., Samreen, M. and UL Ain, Q., (2017), A generalization of b-metric space and some fixed
point theorems, Mathematics, 5, pp. 1-7.

[14] Mlaiki, N., Hajji, M., Abdeljawad, T. and Aydi, H., (2021), Generalized Meir-Keeler contraction
mappings in controlled metric type spaces, Palestine J. Mathematics, 10(2), pp. 465-474.

[15] Mlaiki, N., Aydi, H., Souayah, N. and Abdeljawad, T., (2020), An improvement of recent results in
controlled metric type spaces, Filomat, 34(6), pp. 1853-1862.

[16] Mohanta, S. K., (2016), Common fixed points in b-metric spaces endowed with a graph, Matematicki
Vesnik, 68, pp. 140-154.

[17] Mohanta, S. K., (2018), Fixed Points in C∗-Algebra Valued b-Metric Spaces endowed with a Graph,
Math. Slovaca, 68, pp. 639-654.

[18] Mohanta, S. K. and Patra, S., (2017), Coincidence points and common fixed points for hybrid pair of
mappings in b-metric spaces endowed with a graph, J. Linear. Topological. Algebra., 6, pp. 301-321.

[19] Tiammee, J. and Suantal, S., (2014), Coincidence point theorems for graph-preserving multi-valued
mappings, Fixed Point Theory Appl., 2014:70.

[20] Zidan, A. M. and Mostefaoui, Z., (2021), Double controlled quasi metric-like spaces and some topo-
logical properties of this space, AIMS Mathematics, 6(10), pp. 11584-11594.



1310 TWMS J. APP. AND ENG. MATH. V.14, N.3, 2024

Sushanta Kumar Mohanta received his Ph.D. degree in Mathematics from The
University of Burdwan, West Bengal, India. He is a Professor of the Department of
Mathematics, West Bengal State University, Kolkata. His research interest includes
Fixed Point Theory, Operator Theory, Functional Analysis


