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CLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH THE
(p,q)-DERIVATIVE OPERATOR FOR GENERALIZED DISTRIBUTION
SATISFYING SUBORDINATE CONDITION

M. G. SHRIGAN'*, G. MURUGUSUNDARAMOORTHY?, TEODOR BULBOACA?, §

ABSTRACT. The main object of this paper is to study classes of analytic function associ-
ated with generalized Struve functions and using (p, ¢)—Jackson derivative. Furthermore,
the bounds for generalized distribution using subordination principle involving modified
sigmoid functions wear we estimate.
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1. INTRODUCTION

Let H(ID) represent the class of all functions analytic in the unit disk D = {z € C: |z| <
1}, and also denote by A the subclass of H(D) comprising of functions of the form

f(2) :z+Zanz", z €D, (1)
n=2

which are normalized by the condition f(0) = f/(0) — 1 = 0.

o0
For f.(2) = > an,2", r = 1,2, which are two analytic functions in D, the Hadamard
n=0
(or convolution) product of f1 and fy is defined by

(fi*f2)(z) =2+ Z an,10n2 2", z € D. (2)
n=0
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For two functions h, g € H(D) we say h is subordinate to g, carved as h(z) < g(z),
if there exists a Schwarz function ¥(z) = Z bpz™ analytic in D with ¢(0) = 0 and

|Y(2)] < 1, z € D, such that h(z) = g(¢(z )) for all z € D. Further, if the function ¢ is
univalent in D, then the next equivalence holds:

h(z) < g(z) < h(0) = ¢g(0) and h(D) C g(D).

The perception of quasi-subordination for two analytic functions is due to Robertson
[28]. Thus, for the functions h, g € H(D), the function h is said to be quasi-subordinate
to g, written as h(z) <, g(z), if there exist the analytic functions p and w, with w(0) =0
such that |o(2)] < 1, |w(z)| < 1, and h(z) = o(2)g(w(z)) for all z € D.

If we fix o(z) = 1, in the above definition then h(z) = g(w(z)), that is h(z) < g(2).
Also, if w(z) = z, then h(z) = p(z)g(z), and in this case we say that h is majorized by
g, written as h(z) < g(z). Thus, the quasi-subordination is a generalization of the usual
subordination as well as of the majorization (for details, see [2, 13, 29]).

Recall that if f € A, with zf'(2)/f(z) < ¢(z) and (1 + zf"(2))/f'(z) < ¢(z), where
#(2) = (142)/(1—=z), we acquire the two standard subclasses of (1) which are starlike and
convex functions, respectively, and the classes comprising of starlike and convex functions
are denoted by &* and X, correspondingly.

Ma and Minda [21] unified various subclasses S*(¢) and K(¢) of starlike and convex
functions sustaining the subordination zf/(z)/f(2) < ¢(z) and 1+ zf"(2)/f'(2) < p(z)
respectively, where ¢(z) = 1+ Liz + Lo2z? + ..., with L; € R, L; > 0, and note that
many results connected with these classes were obtained by several authors. For example,
if o(2) = (1+ A2)/(1+ Bz), -1 < B < A < 1, the classes S*(p) and K(p) represent,
respectively, to the classes S*[A, B] and K[A, B] of Janowski starlike and convex functions
[16], and in fact, S* := S*[1, —1] and K := K[1, —1].

Let we recall some basic notations of (p, ¢)-calculus. Letting 0 < ¢ < p < 1, then the
Jackson (p, q)-derivative of the function f is defined as

f(pz) — f(g2)

, for z #0,
Dpqf(z) = (r—q)2 (3)
1/(0), for z = 0.
For functions f of the form (1), from (3) we have
Dpqaf(z —1—1—2 pgin2" 1 zeD, (4)

where the symbol [n], , denotes the so-called (p, q)-bracket or twin-basic number, that is

V2 n

(g = P-q
pP—4q
We note that [n],, = [n]qp, and for p = 1 the Jackson (p, ¢)-derivative reduces to the
Jackson q-derivative
=1,
Df(z):=q (-0
1/(0), for z = 0.
Also, the twin-basic number is a natural generalization of the g-number, that is
. 1—qg"
]El_ﬂfi[n]pﬁq = [n]q = 1 7 1.
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One can easily show that ©, ,f(z) = f'(z) asp — 1~ and ¢ — 17, and D, ,f(0) = f'(0) =
1. The operator ®, , provide is an important tool that has been used to investigate the
various subclasses of analytic functions of the form given by (3) (see [1, 5] and [25]).

Let S denote the sum of the convergent series of the form

oo
=3,
n=0

where a,, > 0, for all n € Ny := NU {0}. Recently, Porwal [27] introduced the generalized
discrete probability distribution, whose probability mass function is given by
p(n) = %7 ne NO:

where p(n) is a probability mass function because p(n) > 0 and > p, = 1. Moreover, if
n€eNg
we let

o0
= E apw”,
n=0

then the above series is convergent for |w| < 1 and w = 1. Further, the sum of the power
series whose coefficients are probabilities of the generalized distribution is given by

o
K(z):z—l—zan_lz", zeD, (5)

o0
where S = )" a.
n=0
Recently, Srivastava et al. [31] discussed the function H, associated with the generalized

Struve function as follows:

(1+no —o)(—c/4)" !
=z+ M zeD, 0<o<1, ceC, 6
Z G ©
where (x),, denotes the Pochhammer symbol given by (z), = I'(x + n)/T'(z) = z(z +
1)...(x4+n—-1), (z)o =1, and (1), = nl.

Using (5) and (6), we define the function

no —o)(—c/4)" ta,_
F(z) = (K = Hy)( _z+§:1+ W2n1(€l5 L2z €D, (7)

From (4) and (7) it easily follows that

B 1+ no —o)[nlpq(—c/4)" tan_1 ,_
Ora HZ B s

In [15] Fadipe-Joseph et al. studied some geometrical properties of the modified sigmoid
function (see Figure 1)

() = —2 —1+Z(_1)m( (_Wzn) (8)

a 2 24 240 40320

, 2 €D.
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FIGURE 1. The image of w(D)

Special functions and quantum calculus have important applications in almost every
field of engineering and science (see, for details, [3, 6, 7, 8, 9, 10, 11, 14, 20, 26, 30, 31,
32, 34, 35]). Nowadays, specially applications of Struve functions occur in water-wave
and surface-wave problems, unsteady aerodynamics, resistive MHD instability theory and
optical diffraction. Further sigmoid function has recently taken the attention of many
researchers these days because of its wide application in neural network, artificial intelli-
gence, nonlinear approximation theory, statistics, and so on. By using the aforementioned
concepts and recent studies on analytic functions, in this work the concept of subordinate
principle involving modified sigmoid functions with (p, ¢)-derivative operator is used to
define new classes of analytic functions as given below:

Definition 1.1. Let 0 < ¢ <p <1, v € C*:=C\ {0}, —g < B < g, and suppose that
9(z) =1+ Biz+ Boz2+ ..., with By € R, By >0, and o(2) = 0o + 012+ 022> + ..., with
lo(2)| <1 for all z € D, are two analytic functions in the unit disc D.
(i) We say that the function f € A is in the class zngg:i(ﬁ) if
20p ¢ F (2)
F(2)
(ii) The function f € A belongs to the class Q,ZA)QC'ng(ﬁ) if
2Dp,q (Dp,eF(2))
Dp,aF (2)

}y((l—i—itanﬁ) —itanﬁ—1> <o U(z) — 1.

Fly((quitanB) itanﬁl) <o U(2) — 1.

Note that, if we consider the functions

yB1oow: 2
- 2%, 2z €D,
(1+idtan B) ([2]p,q — 1)

fe(z) =2z +

and
YBioowi 2
- 2%, z €D,
1+itan 3)[2]pq([2]pq — 1)
then it is easy to check that f, € wgng?Y(ﬁ) and f, € ﬁgCgZ?y(ﬁ), that is wgsgg(ﬂ) £
and @Qngf’y(ﬁ) # 0.
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Remark 1.1. (i) Forp =1, o =1 and ¥ := w, a function f € A belongs to the class
YSE (@) = 1,857 (V) if

1+’1y ((1+itanﬁ)%—i tanﬁ—l) < w(z),
and f € A is in the class &Cgﬁ(w) = %ng(ﬂ) if
1+“1Y ((1+itanﬁ)W—i tan 5 — 1> < w(z),

where 0 < ¢ < 1, v € C*, —g <p< g, and w is defined by (8).
(ii) For v =1, o =1 and ¥ := w, a function f € A belongs to the class @DSg’q(w) =
e SE1(9) if
2904 F (2)
F(z)
and f € A is in the class ﬁcg(w) = &QCgﬁ(ﬁ) if

) 2904 (DgF(2))
DqF(2)

(144 tanp) —itanf < w(z),

(144 tanp —itanf < w(z),

where 0 < ¢ <p <1, —g <p< g, and w as defined by (8).
(iii) For 3 =0, 0 =1 and ¥ := @, a function f € A belongs to the class Sy (w) :=

VoS5 (9) if
1 [(2Dp4F(2)
14— | =222 1> < w(z),
(55 *
and f € A is in the class yCL(w) := 1/3905’3(19) if
1 (29,4 (Dp4F(2))
14— Lo Bk e —1) <w(2),
Y ( Dp.F(2) =)
where 0 < g < p <1,y € C* and w as defined by (8).

Motivated by several earlier investigation in connections between various subclasses of
analytic functions by using special functions [12, 17, 19, 33], and inspired by the recent
work of Altinkaya and Olatunji [4] and Oladipo [22, 23, 24], now we obtain the bounds
for the first three coeflicients of the above defined subclasses of functions.

Lemma 1.1. [18] Let w(z) = w1z + w2+ ..., z € D, be an analytic function in D, with
lw(z)| <1 in D. Then, for any complex number t we have

|wa + twi| < max{1;|t|}, t € C.
The inequality is sharp for the functions w(z) = z or w(z) = 2.

2. COEFFICIENTS BOUNDS

We begin this section by finding the estimates on the first three coefficients bounds for
the functions that belongs to the classes wQngy(w) and @QCgiz(w).
Unless otherwise mentioned, we assume throughout the paper that
(i) w(z) = wiz +wez? + ..., with |w(z)| < 1, z € D,
(i) o(2) = 00 + 012 + 022% + ..., with |p(2)| < 1, 2 € D,
(iii) ¥(2) =1+ Biz + Baz? + ..., with B; € R, B; > 0.
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Theorem 2.1. Let 0 < ¢ <p <1, veCF —g <pB< g Set

_2(140)/ c 41+ 20) c\2
AT <_4)’ "= 15k(k+1)< 4) :

A1 40)r s e\? B 8(1+ 30) c\3
T T g (_Z) ’ “4_105k(k2+3k+2)( 4) ’

4

Ry =

o o c o)/ ¢
M (1) = ()

4
If f e ’l/]gsng]y(ﬁ) is given by (1), then

@ Bigo|y|
ST (Rlpg =) m’

az < Byooly| max{l; B1oovks i By o1 }’
ST CH([Blpg — 1) k2 C(2pg— 1)K Bl
a4} Bioo|y|

S ~ ¢ ([Blpg — 1) k2

B¢ ([2lpg — 1)* K1 + Biooy [(12lpg — 1) K3 — 11 ([Blpg — 1) 2]
Bi¢ ([2lp,q — 1) K3

3

X max {1;

an

‘ 3190‘7’

S1= \C\ — 1)Ky

e[ B2 (2lpg — 1?5 +3190W3 n, By o ( Bz)
" maX{l’ ¢ Bi¢ ([2]pq — 1) "31 § Big * bt By&
2By
<1+31§> 05(1+92) ‘}

where ¢ = 1+i tan 3, n = B 05’k ¢ = Bioov [([2lp,g — 1) + ([Blp,g — )] s

(2 - 17k C(Rlog — 1) (Blpg — 1) Faka

Proof. If f € wgSg’qv(ﬁ) then there exists analytic functions in D that are ¢ and w, with
lo(2)| <1, w(0) =0 and |w| < 1, such that

! ' zCDp,q]:(z)_Z, anf — =o(z w(z)) —
arinn 2l s o1) o0 0w -y )
We note that
2Dy g F (2 2|pq — 1) K1a 3lpg — 1) koa 2pq — 1) k3a?
7y P Do (G Do (@ D) 2y
4lpq — 1) Kaa 2pq — 1 3lpq — 1)] Ksa1a 2lpg — 1) kel
i (a1t (2o (o= Dlestrs , (oo Dred) 5,
and
o(z) (W(w(z)) — 1) = Bigow1z + [Bigrwi + eo(Biws + Bowi)]2? (11)

+ [Blggwl + 01 (Blwg + ng%) + QO(Bl’w3 + 2Bjwiwsy + ng?)] 23 + ...



SHRIGAN ET AL. CLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH ... 1317

From (9), (10) and (11) we obtain

a; _ Biooyw

5 = gDt 12)
az B1ooy B1oovk3 By

ar _ Doy _ D1ooyks 13
5 = (Bl - Do [w2+ <<<[21p,q1> * Bl> wi+ g } 13)

and using Lemma 1.1 we deduce

’ Blgo!’y\ max{l,‘ Bioovks Bs +91
ST ’C’ 3pg — 1) k2 7(([2]13161_1)"5% Bl

According to (12) and (13) it follows that

1

az a1 B By ooy

S ST (([Bly— D2

oo B2 (2o =V + Booy [(2lpg — D s — 1 (Blog V] 5, @1 ]

w1y + —wq
B1¢ ([2]p.q — 1)2 ”% 2o

and moreover, from (9), (10) and (11) we get

as By ooy
E ” {w3 e BiC (Rlpg — DA ¢ Big

S C([4]pg — 1) Ka

w wilw o1w: o2w s
©0 Blg ! Bi& 1 00§ e 2

(BQC([Q]M 1>k} + Biooyss n | Bs ) 3

where 5 9 9
B
(=1+4+itanp, n= 0007 "6

. a Biooy [([2] - 1)+ ([3]pq - 1)] K5
2 ([2pg— 1)K '

C([2lpg = 1) (Blpg = 1) k1k2

nd € = O

If we take p =1 in Theorem 2.1 we obtain the following result:

Corollary 2.1. Let 0 < g < 1, v € C*, —g <p< g If f e ngsgﬂ(ﬁ) is given by (1),
then

a| . Bieopy|
SIS @, - v
SIEA@E - {1’ }
= 1@l - D) ra
Xmax{l' B2C([2]q—1) 2+ Booy (12l — 1) k3 — p([3]g — 1) K]
’ BiC (2], - V2 K3

B B
10073 2+72+Q
C(2g=1)ri B eo

S
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and

‘ LOM

S1= \C\ 1) Ky

|| B¢ (12 — 1)* 5 + Biooyks _n., Bs ( B2>
xmax{Lﬁ Bic (12 ]q—l)/ﬁ ¢ B1§+ +31£
2By 1
+<1+Blg>+0£(01+02) ‘}

where ¢ =144 tan 8, n = B§ 0§76 - Bioov[([2] — 1) + ([3]; — D] &

(@ — 17 T T (Rl - D) (Bl — 1) s

For p =1 and v = 1 Theorem 2.1 yields to the next result:

Corollary 2.2. Let 0 < g < 1, —g <pB< g If f e wgSg(ﬁ) is given by (1), then

ol B

SIS @, -’

az Bioo | Biooks By o
s SICI([S]q—1)/~<sz‘%“’{{1’ (-0 B e }
az af Bioo

5 1| S (Bl - Ve

xmax{l; Ba¢ (12 — 1)* 51 + Bieo [([2], —21)/13—/1([3](1_1)52] }’
BIC([ ]q_l) "@%
and

2 A

S B |C| )H4

3 e B o

X max{l;

B¢ ([2]g — 1)* K} + Bl ooks 1 Bz 01 (1 By )

B1¢ ([2]q — 1) w3 § B¢ B
2B; 1
+ (1+315> +—§(@1+@2) (}

_ Biogre Bioo [([2lg — 1) + ([8]g — )] k5
(2 — 17w} C([2g = 1) ([Blg = 1) Kara

Considering the special case p =1 and ¢ — 1~ in Theorem 2.1 we obtain:

where ( =1+ tanf, n and £ =

Corollary 2.3. Let v € C* and —% <p< g If f € v,58+(0) is given by (1), then

Biooyks @_i_gl

}’

(kY B oo

b

‘@ < Biao| ‘@ < Biooh| X{1;
¢l 2|¢[k2
B
< 100/ max{l,
2|C|k2

By(k? + Biooy [Kks — 2uka)
31<I€1

a9 CL%

5 Ha2
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and

as Bioolv| Bolk? + Blooyks 1 Bs ( B, )

—| < max{ 1; _7_,_7_’_7 14 22

‘ S 3[¢lka { § BiCk? & By Bi&

2Bs 1
+l1+=—)+— +
( B1§> 00§ (014 02) (}
B2 p2~2 3B
whereC: 1—|—itan,8, 17:%’ andé': M
¢ att 2CK1K2

If we take vy =1, p =1 and ¢ — 17 in Theorem 2.1 we obtain the next result:

Corollary 2.4. Let v € C* and —E <p< g If f € ,S5(0) is given by (1), then

‘ B1Qo ) 3190 {1. Biooks | B2 L a }
’C\/‘él Q\C\@ |CKE By ’

az a% Bioo a1 ByCki + Biog (ks — 2lm2]

s HMe2| = 2|¢|k2 ’ Bi(K3 ’

and

3190
e ax{l’ "5

B € Bie o

Bo(k? + Biooks 1 Bs o1 (1 By >

2Bs 1
14 222 il
+< +B1§>+ §(Q1+92) ‘}7
BZQ2/€6 33190/15
here ( =1+itan, n=—202 and £ = ———.
where +itang, n 23 and & Ch1ra

If we take p =1 and ¢ := w, then Theorem 2.1 reduces to the next special case:

Corollary 2.5. Let 0 < g < p < 1, v € C*, —g <pB< g and @ be defined by (8). If
fe 1/152’3(73) is given by (1), then

hl az v { _ VK3 }
5 < = @ — D’ GE PR I
az Cﬁ < ol <3112 [([2lp,g = 1) k3 — 1 ([3]p,g — 1) K2
S R { ’ C(12lpg — 1?43 ’
and
WI . V3 1 1
5 <@ >m4max{1’5[<<[2]p,q—1>n% §<n+m>+1ﬂ}’
B . B V2 kg ~(2lpg = 1) + (Blp,g — D] 55
where ¢ = A A e - 2 ™ T (@l D) (Bl — D
Remark 2.1. If we consider the function
folz) =2+ o

2(1 + itan B) ([2)pq — 1)
then it is easy to check that f. € ngfy(w), that is wsgfy(w) # ().
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Replacing p =1, p =1 and ¥ := w in Theorem 2.1 we get:

Corollary 2.6. Let 0 < ¢ < 1, v € C*, —g < B < g,
fe ¢ng(w) is given by (1), then

i
5 <m@m oo 13 Tms max{l;

and w be defined by (8). If

b

TR3

C([2lq—1) KT

ar cﬁ ¢max 1,v[([2]q—1)n3—u([3]q—1)mz]
5 18| S Bl - D | C([2lg = 1)° K7 |
and
—’max ; S L —— ! !
51 < e, —ow {1’ [mz]q—l) s(’”u)“”}'
e P (@)= )+ (8~ Dl
where ¢ = 2000 1= o, -7 T @~ D (Bl - D

Taking p=1,~v=1, o =1 and ¥ := w Theorem 2.1 yields to the next result:

Corollary 2.7. Let 0 < g < 1, —g <p< g, and w be defined by (8). If f € ¢Sg(w) 18
given by (1), then

HE =@ - Dm ‘s RIE mmax{l; ([21;;)»@% }
az Ma% ! m{1 <[2]q—1>n3—u<[3]q—1>@}
S TS T ([Blg — 1) ke ’ C([2lg — 1) w3 ’
and
K 1 1
5 < am mm‘”‘{“ L(mqu 5(”*12)*1”}

Ko e (2, = 1)+ (3 - Dl s
(B~ 17k (@Rl =D Bl - Dk’

Forp=1,0=1and ¥ := w and ¢ — 1~ Theorem 2.1 reduces to the next special case:

where ( =2(1+1itanf), n =

Corollary 2.8. Let v € C*, —g < B < g, and w be defined by (8). If f € ¥Sp~(w) is
given by (1), then

LT RN I
IC\M 2ICIM
; _
w % S | x{l; v k3 2,uf<a2 }
5 2/l Chi
and
as kel { [7"@3 1< ) H}
Bl < max | L;|§|—5 — ¢ 1
S|~ 3[¢|ka ¢ S
2
. ke 37ks
where ¢ = 2(1 +i tan ), n = 55, and €= 520

If wetakey=1,p=1,0=1,9:=w and ¢ — 1~ in Theorem 2.1 we obtain the next
result:
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Corollary 2.9. Let —g < fB< g, and w be defined by (8). If f € ¥Sg(w) is given by
(1), then

% %1 g {231}
max
!C!/ﬂ 2\(\52 (rt
2
as a1 1 { K3 — 2uka }
— — max< 1; [————| ¢,
S 2|C’ K2 (K
and
)l
max ¢ 1; —5 + +1 .
5 3!% { [w% ¢ <’7 12
: 3K5
where ( =2(1+1i tan ), n CQ 3, and & = Crira’
Theorem 2.2. Let0<g<p<1, yeC, —g <p< g Set
_2(140) c 41+ 20) e\ 2
ALY ( 4)’ ”2_15k;(k+1)< 4) ’
A1+ 0)? f N2 B 8(1+ 30) c\3
T T k2 (_Z) ’ ™= 105k(k2 + 3k + 2) (_Z) ’
_8(1+0)(1+20) 1 c¢\3 _8(1+0) s 3
T TR (k + 1) (‘4) R Y (‘4) '

If f e ngCpq( ) is given by (1), then

@ Bigolv|
ST ¢I2]pg([2]p,g — k1’
as Biooly| {1. Bioovks By }
o B e T B A
a a4} Bioo|y|
S N |C|[3]p,q([3]p, — 1)k2
% max 4 1: BZC[2];2;,q([2]p,q 1)’k + B QOV{ pa[2lpg — Vg — p[3]pq([8pq — 1)”2}
’ BlC[ ]p,q([ ]g,q 1)2/{/% ’
and
Biooly| || B26([2lp.g — VAT + Biooyss  n | Bs
5= e pa([Apg — 1)ra max{l’ 17 BBl - D82 ¢ B

B 2 1
QO <1+Blg>+<1+§>+905(91+92) ‘}

Bodss o Biooy (g — 1)+ (B — Dlss
ST (g — 1) (Blpg — D rawz

Proof. Proceeding as in the proof of Theorem 2.1 excepting that instead of using (9) we
will use the subordination
ZDp,q (Dp,eF(2))

1 .
; <(1 + i tan 3) D0 F ()

our result follows easily. O

where ( =141 tan 3, n nd & =

—itanf — 1> =<, ¥(z) — 1,
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If we take p = 1 in Theorem 2.2 we obtain the following result:

Corollary 2.10. Let 0 < g < 1, v € C*, —g < B < g If f e wQC’gw(ﬁ) is given by (1),
then

o Bioo|y|
~ [<I2]g([2]q — k1’
as Bioolv| max d 1. | BLreovss B o1
: ¢ [Blq([8lg — 1)k {1’ (2l,—- DK B }’
az ‘ﬁ < Bioolyl
s S =B Jq([3lg — D)r2
e d 1 Ba([2]2([2]4 — 1)%K7 + Bieoy {12152l — 1)z — uf3]4([3]g — 1)r2}
’ Bi¢[2 ]q([Q] 1)2 i ’
and
‘ BwoWI maxd 1. |¢ By([2lg — 1)ki + Biooyks _m | Bs
ST |C| ([4]g — ks ’ Bi¢([2]; — 1)kT § B¢
01 By 2 1
+Qo<1+315> +<1+§>+QO£(Q1+02) ‘}
where ¢ — 14 i tan B} ok and £ — Broov [(12lg = 1) + (8] — D] &
rere ¢S B = g, nEe T T (2l D (Bl - 1 s

For p =1 and v =1 in Theorem 2.2 yields to the next result:

Corollary 2.11. Let 0 < g < 1, —g <p< g If f e wQCg(QS‘) is given by (1), then

ay Bioo
— [CI2l4(12]g = 1)
az Bioo max d 1 | BPreots By o1
: CIBlg([8]g — k2 {1’ ¢([2]q — 1~? By } ,
az ai < Bioo
§ 82| = Bl (Bl - Do

By¢[2]7([2lg — 1)%% + Bioo {[2]5([2]g — 1)rs — pl3]q([3]g — 1)ka}
BlC{ ]q([ ]q - 1)2’€%

2

X max { 1;
and

‘ < BIQO max< 1;
S | = T, (@, — Ura

¢ Bo(([2] — VKT + Biooks 1 . B3

Bi(([2]q — 1)st § Big
+<1+B> + <1+2> +i( + 02)
% Big ¢ 00€ 011 02 )
where ¢ = 1+itan3, n = Biogrs and § = Bioo[(Plo = 1) + (1Bla = D] %5

¢ ([2g — )Y ¢ ([2lg = 1) (Blg = 1) 1ra

Considering the special case p =1 and ¢ — 1~ in Theorem 2.2 we obtain:



SHRIGAN ET AL. CLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH

Corollary 2.12. Let v € C*, —g <p< g If f € ,Cp(0) is given by (1), then

ar| _ Biool| az| _ Biool7| | Biooyks | B2 | 01
—| < =< max | 1| ——5—+ ="+ —| ¢,
S 2[¢|k1 S 6/¢|r2 ¢k By oo
a2 a% < Bl [y 4By(ri 4 Bf ooy (4k3 — 6pukz)
S 52 ~ 6|C|k2 ’ 3631CI€1 ’
and
B ByoCk? + B? B B
‘ ol o 1 le 2CkT + 12907%13 —Q—I——S—k— <1+2>
12|C|/‘€4 Bi(k7 § B¢ B&
2 1
+ 1+>+ o+ o) || ¢
< 3 00& ( )
B} 037*ke 3B1007ks
where +itang, n C%? , and & ST

If we take vy =1, p =1 and ¢ — 17 in Theorem 2.2 we obtain the next result:

Corollary 2.13. Let v € C*, —g <pB< g If f € ,Cg(9) is given by (1), then

B B B B
‘ 100 ‘ 100 ax{l, 100K3 L2 + }
2|C|/‘f1 6|C|/‘€2 (kT By
as ai < Bioo a1 4ByCrK3 + Bioo (4k3 — 6/%62)
S 12| = 6(¢Iks ’ 3651 k2 ’
and
B Bo(K? + B? B B
‘ 100 ad 13 | | B2ERLT 21Q°”3—77+3+Q1(1+2>
12’(’1“64 Bi(k1 § Bi§ oo B¢
+ (1 + 2) + — (01 + 02)
- — 01T 02 )
£ 3
, Bi ojke 3B100k5
where ( =1+1itanf, n = I and{zm.
1

For o =1 and ¥ := w Theorem 2.2 yields to the next special case

1323
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Corollary 2.14. Let 0 < g <p <1, vy € C*, —g < B < g, and w be defined by (8). If
fe &Cg:i(w) is given by (1), then

ay ol

S1= 2‘C|[2]p7q([2]p,q - 1)”17

a2 o max 4 1: TR3

S 17 2(¢1[Blp.q([Blp.g — 1)k2 {1’ ’26([2]p,q — 1w } ’

a a4} v

S MSQ = Q‘C‘[3]p,q<[3]p,q — D)2

« max d 1: ’Y([Q];Q),q(mp,q — Dkg — p[3]pq([3lp,q — 1)k2)
’ 2¢[212 ,([2lp,g — 1)%K7 ’
and
az vl e 4 1 VR o, 23
S = 2|C|[4]p7q([4]p,q - 1)”4 {1, ’6 [g([z]nq - 1)”% " § * 125] ’} 7
B . o ’73“6 _ (([2}1741 —1)+ ([3]1),11 —1)) 72'“05

where C = L L S = S @y — 7R ™ T (2 — D(Blng — Drara

Remark 2.2. If we consider the function

¢ yw1

zZ) =z 22 zZ
1E) = 2 tan B 2@y 1) " €

then it is easy to check that f. € YCFI (@), that is YCOFI (w) # 0.
For p=1, p=1 and ¥ := w Theorem 2.2 yields to the next special case:

Corollary 2.15. Let 0 < ¢ < 1, v € C*, —g < B < g, and w be defined by (8). If
fe &C’gﬁ(w) is given by (1), then

ay ki a ki e S 1 VK3
5 T e S| S TaEE =T {1’ 2 (2l — )83 } ’
a  af|_ ] ] |22 = Vs — 31,81 = Do)
S 152 = 2Bl (Bl — Dra ’ 2ARR2(R2l, — 1)% ’
and
as ol max d 1: VK3 2n 23
S| = 3@, — Dra {1’ : {«mq “he e 125] ‘}

s e (@ =)+ (8 = )7
3Gl — DY 12(2l, ~ DBl — Drkz

Putting p=1,v=1, o =1 and ¥ := w in Theorem 2.2 we get:

where ( =144 tanf, n =
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Corollary 2.16. Let 0 < g < 1, —g < B < g, and w be defined by (8). If f € I,ZA)CE(W)
is given by (1), then

al 1 . K3

5 §2M[]( ‘s = 2[¢[3] qmq—nnﬁm“{L2amh—1m%}’

w _at 1 ] 0202~ D5 — 3l — )

5 M| = BB, - e ’ 2 22([2], — 1)%3 ’
and

a3 1 max < 1; __fs 2—17 ﬁ

5| = A, - D {L5L@h—n@+f*H%H}

g r (&= + (Bl = ) s
where ¢ = LTS = e, - 2y S T A2, D(Bly — Dsans’

Considering the special case p = 1, p = 1, ¥ := w and ¢ — 17 in Theorem 2.2 we
obtain:

Corollary 2.17. Let v € C*, —g <p< g, and w be defined by (8). If f € 1[10577(73) is
given by (1), then

’ kel ’ kel max{l' VK3 }
4’C\/‘61 12’0%2 2¢k3 )
2
as aj el 2vKk3 — 3uKa)
IC AN ) VS 1. |2 o)
s 82| = 12C|ks max{ T A ’

and

el YK3 277 23
51 < g { F[ £+mJ}’
’}’356

3v%ks
8¢3k3 ¢

where ( =1+1itanf, n = SCrim
1K2

nd & =

If wetake y =1,p=1,0=1,9 := w and ¢ — 17 in Theorem 2.2 we get the next
special case:

Corollary 2.18. Let v € C*, —g < B < g, and w be defined by (8). If f € @CB(W) is
given by (1), then

K3
max< 1;|—=1 ¢,
‘ 4’C\/<31 ‘S B 12|C”€2 { 2(K7 }
2
a9 aj 1 2Kk3 — 3uk2)
s 82| = 12Clks max{ T ack? ’

and

max < 1;
8l <o {

where ( =141 tan 8, n and £ = ———

C3 8¢33
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CONCLUDING REMARKS

In our present investigation we have made use of the (p, g)—Jackson derivative to intro-
duce and investigate the new classes 1/195%’73(@) and &QCgiz(w) of analytic functions in
the open unit disk D. Using the subordination principle we have obtained the bounds of
the three first coefficients for the functions belonging to these classes.
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