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GENERALIZED SOLUTIONS FOR FRACTIONAL SCHRÖDINGER

EQUATION
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Abstract. This paper focuses on the fractional Schrödinger problem with the use of a
new fractional derivative. Using Banach’s fixed point theorem and Laplace transforms,
we give and prove the integral solution of the problem. In Colombeau’s algebra, The
existence and uniqueness of the solution are demonstrated using the Gronwall lemma.
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1. Introduction

The study on Convolution-type derivatives has evolved a focus area of research for the
reason that some dynamical models could be better precisely described with fractional
derivatives compared to those that have integer-order derivatives.

In recent years many researchers have focused on the study of phenomena whose mod-
eling is given by nonlinear differential equations with a singularity, to do this, it is nec-
essary to define the multiplication of two distributions in a manner that is consistent
with the standard multiplication, the thing that led us automatically to do the study in
Colombeau’s algebra. This algebra which is commutative, associative, differential in which
we can imbed the space of distributions so that the product of the infinitely differentiable
functions and the regular derivative are respected [10].
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In the last twenty years or more, mathematicians have become increasingly interested
in Schrödinger equations, particularly because of their applicability to optics. In fact,
certain Schrödinger equations result from reduced forms or limits of Zakharov’s system.
In particular, the Hartree-Fock theory and quantum field theory both involve Schrödinger
equations. Schrödinger equations, which combine the characteristics of parabolic and hy-
perbolic equations, seem to be a tricky subject from a mathematical perspective. In fact,
it possesses essentially reversible behavior, conservation laws, and certain dispersive char-
acteristics similar to those of the Kelin-Gordon equation, but it propagates at an unlimited
speed. The time-reversibility, on the other hand, inhibits the generation of an analytic
semigroup by Schrödinger equations, despite the fact that they share a smoothing effect
with parabolic issues. for more details, one can see the papers [1, 5]. On the other hand,
the first definition of the fractional derivative was introduced at the end of the nineteenth
century by Liouville and Riemann, but the concept of non-integer derivative and integral,
as a generalization of the traditional integer order differential and integral calculus was
mentioned already in 1695 by Leibniz and L’Hospital. Recently, fractional differential
equations have been proved to be valuable tools in the modeling of many phenomena in
various fields of engineering, physics and economics. It draws a great application in nonlin-
ear oscillations of earthquakes, many physical phenomena such as seepage flow in porous
media and in fluid dynamic traffic models. Actually, fractional differential equations are
considered as an alternative model to integer differential equations.

In this paper we characterize a new method for solving the fractional Schrödinger prob-
lem with initial data and potential are singular (singular distribution) as we can see in the
following {

1
iD

c
ψx(y, t)−∆x(y, t) + v(y)x(y, t) = 0, t ∈ [0, T ]

x(y, 0) = a0(y)
(1)

Where a0 is singular generalized functions and Dc
ψ is ψ−Caputo derivative of order α,

α ∈]n− 1;n] n ∈ N.

The study is structured as follows: in section 2 we mention some concepts of Colombeau’s
algebra, in section 3 we will give and demonstrate the existence of ψ−Caputo derivative
in Colombeau algebra G, in section 4 we gave and demonstrate the integral solution of
the issue, in section 5, we demonstrated the existence and uniqueness of the solution in
colombeau algebra.

2. Preliminaries

In this section we will introduce basic notations and definitions from Colombeau theory
(see also [7, 9]).

Definition 1. A0 (Rn) is a set of functions ϕ in C∞
0 (Rn) such that

∫
Rn ϕ(t)dt = 1. For

q ∈ N,Aq (Rn) =
{
ϕ ∈ A0 :

∫
Rn t

iϕ(t)dt = 0, 0 < |i| ≤ q
}
, where ti = ti11 · · · tinn .

In [9] sets

Aq (Rn) = {Φ (x1, .., xn) = Φ (x1) ..Φ (xn) : ϕ (xi) ∈ Aq(R)} ,

are used because of applications to initial value problems. We shall follow the Colombeau
original definition.
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Obviously, if ϕ ∈ Aq, q ∈ N0, then for every ε > 0, ϕε(x) =
1
εnϕ

(
x
ε

)
, x ∈ Rn, belongs to

Aq. If ϕ ∈ A0, then its support number d(ϕ) is defined by

d(ϕ) = sup{|x| : ϕ(x) ̸= 0}.

E(Ω) represents the set of

R : A0 × Ω → C, (Φ, x) 7→ R(Φ, x),

which are in C∞(Ω) for every fixed ϕ. In the other words elements of E are functions
R : A0 → C∞. Note that for any f ∈ C∞, the mapping

(ϕ, x) 7→ f(x), (ϕ, x) ∈ A0 × Ω,

defines an element in E(Ω) which does not depend on ϕ. Conversely, if an element F in
E(Ω) does not depend on Φ ∈ A0, we have:

F (Φ, x) = F (Ψ, x), x ∈ Ω, for every Φ,Ψ ∈ A0,

then it defines a function f ∈ C∞(Ω),

f(x) = F (Φ, x), x ∈ Ω, for every ϕ ∈ A0.

In this sense, we identify C∞(Ω) with the corresponding subspace of E(Ω).

Definition 2. A component R ∈ E(Ω) is moderate if ∀L ⊂⊂ Ω, α ∈ N, ∃N ∈ N such that
for every Φ ∈ AN , ∃η > 0 and C > 0 such that:

∥∂αR (Φϵ, x) ∥ ≤ Cϵ−N x ∈ L, 0 < ϵ < η.

The ensemble of all mild components is expressed as EM (Ω).

Definition 3. An element R ∈ E0(C) is moderate if ∃N ∈ N0 such that for every ϕ ∈ AN ,
∃η > 0, C > 0 such that:

∥R (ϕε) ∥ < Cε−N , 0 < ε < η.

The ensemble of mild components is expressed by E0M (C) (resp. E0M (R) ).

Definition 4. A component R ∈ EM (Ω) is named null if for every L ⊂⊂ Ω and every
α ∈ Nn0 , ∃N ∈ N0 and {aq} ∈ Γ such that for every q ≥ N and every ϕ ∈ Aq, ∃η > 0 and
C > 0 such that:

∥∂αR (ϕε, x)∥ ≤ Cεaq−N x ∈ L, 0 < ε < η.

The ensemble of null components is expressed by N (Ω).

Definition 5. The spaces of generalized functions G(Ω) expressed by

G(Ω) = EM (Ω)/N (Ω)

The following description describes what the term ”association” means in colombeau
algebra.

Definition 6. [7] Let f, g ∈ G(R).
We said that f,g are associated if ∀ h(φϵ, x) and m(φϵ, x) and arbitrary ξ ∈ D(R) there is
a n ∈ N such that ∀φ(x) ∈ An(R), we have:

lim
ϵ→0+

∫
R
∥h(φϵ, x)−m(φϵ, x)∥ξ(x)dx = 0

and we denoted by f ≈ g.
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3. ψ−Fractional Derivative in colombeau algebra G

Let (fϵ(t))ϵ be a representative of a Colombeau generalized function f(t) ∈ G(R+) and
let ψ ∈ Cn(R+) be an increasing function with ψ′(t) ̸= 0 for all t ∈ R+.

The ψ-Caputo fractional derivative of (fϵ(t))ϵ, is defined by

Dc
ψfϵ(t) =

{
1

Γ(n−α)
∫ t
0 (ψ(t)− ψ(s))n−α−1f

[n]
ϵ (s)ψ′(s)ds, α ∈]n− 1, n[,

f
(n)
ϵ (t) = f

[n]
ϵ (t) = ( 1

ψ′(t)
d
dt)

nfϵ(t), α = n,
(2)

n ∈ N, ϵ ∈ (0, 1)

Lemma 1. Let (fϵ(t))ϵ be a representative of f(t) ∈ G(R+). Then, for every α > 0,
supt∈[0,T ] | Dc

ψfϵ(t) | has a moderate bound.

Proof. Fix ϵ ∈ (0, 1).
Let α ∈]n− 1, n],

Then,

supt∈[0,T ] | Dc
ψfϵ(t) |≤

1
Γ(n−α) supt∈[0,T ]

∫ t
0 | (ψ(t)− ψ(s))n−α−1f

[n]
ϵ (s)ψ′(s) | ds

=
1

Γ(n− α)
sup
s∈[0,T ]

| f [n]ϵ (s) | sup
t∈[0,T ]

| (ψ(t)− ψ(0))n−α

n− α
|

≤ 1

Γ(n− α)

Tn−α

n− α
sup
s∈[0,T ]

| f [n]ϵ (s) | .

Since f(t) ∈ G([0,+∞)), as a result sups∈[0,T ] | f
[n]
ϵ (s) | has a moderate bound.

Thus, ∃M ∈ N, such that

sup
t∈[0,T ]

| Dc
ψfϵ(t) |= O

(
ε−M

)
, ε→ 0

Then, supt∈[0,T ] | Dc
ψfϵ(t) | has a moderate bound, ∀α > 0.

□

Lemma 2. Let (f1ϵ(t))ϵ, (f2ϵ(t))ϵ be two distinct representatives of f(t) ∈ G(R+). Then,
for every α > 0, supt∈[0,T ] | Dc

ψf1ϵ(t)−Dc
ψf2ϵ(t) | is negligible.

Proof. Fix ϵ ∈ (0, 1).
Let α ∈]n− 1, n],
Then,

sup
t∈[0,T ]

| Dc
ψf1ϵ(t)−Dc

ψf2ϵ(t) |≤
1

Γ(n− α)

Tn−α

n− α
sup
s∈[0,T ]

| f [n]1ϵ (s)− f
[n]
2ϵ (s) | .

Since (f1ϵ(t))ϵ and (f2ϵ(t))ϵ represent the same Colombeau generalized function f(t), so

sups∈[0,T ] | f
[n]
1ϵ (s)− f

[n]
2ϵ (s) | is negligible, then for all p∈ N

sup
t∈[0,T ]

| Dc
ψf1ϵ(t)−Dc

ψf2ϵ(t) |= O
(
ε−p

)
, ε→ 0

Therefore, supt∈[0,T ] | Dc
ψf1ϵ(t)−Dc

ψf2ϵ(t) | is negligible. □

We may now initiate the ψ-Caputo fractional derivative of a Colombeau generalized
function on R+ after establishing the first two lemmas.
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Definition 7. Let f(t) ∈ G(R+) be a Colombeau function on R+.

The ψ−Caputo fractional derivative of f(t), utilizing the notation Dc
ψf(t) =

[(
Dc
ψfϵ(t)

)
ϵ

]
,

α > 0, is the element of G(R+) satisfying (2).

Remark 1. For α ∈]n− 1, n].
The first derivative of (d/dt)Dc

ψfϵ(t) is (d/dt)Dc
ψfϵ(t) =

(1/Γ(1− α))
[∫ t

0

(
ψ′(s)

(ψ(t)−ψ(s))α+1−n f
[n+1]
ε (s)

)
ds+ ψ′(0)

(ψ(t)−ψ(0))α+1−n f
[m]
ϵ (0)

]
and it is not de-

fined in zero, unless f
[m]
ϵ (0) = 0.

Theorem 1. Let f(t) ∈ G be a Colombeau function. The ψ−Caputo fractional derivative

Dα
ψf(t) is a Colombeau generalized function, if f

[n]
ε (0) = f

[n+1]
ϵ (0) = f

[n+2]
ϵ (0) = · · · = 0.

Proof. Let α ∈]n− 1, n].
In Lemma 1, we proved that supt∈[0,T ] | Dα

ψfϵ(t) | has a moderate limit for indefinite

Colombeau generalized function. To get a moderate limit for the initial derivative (d/d

t)Dα
ψfϵ(t) we utilize the expression acquired in Remark 1 and for f

[n]
ϵ (0) = 0, we obtain

(d/dt)Dα
ψfϵ(t) = (1/Γ(1− α))

∫ t

0

(
ψ′(S)

(ψ(t)− ψ(s))α+1−n f
[n+1]
ε (s)

)
ds

.
Now, in the same way as in Lemma 1 we acquires a moderate limit for supt∈[0,T ] |
(d/dt)Dα

ψfϵ(t) |.
Using the conditions, higher-order derivatives can be estimated similarly. f

[n]
ϵ (0) =

f
[n+1]
ϵ (0) = f

[n+2]
ϵ (0) = · · · = 0.

Finally, if f
[n]
ϵ (0) = 0, therefore, it follows that for each α > 0, all derivatives of Dα

ψfϵ(t)
have moderate representations. □

Definition 8. Let (fϵ(t))ϵ be a representative of f(t) ∈ G(R+).
The regularized ψ−Caputo fractional derivative of (fϵ(t))ϵ, is given by

D̃c
ψfϵ(t) =


(
Dc
ψfϵ(t) ∗ φε

)
(t), α ∈]n− 1, n]

f
(n)
ϵ (t) = f

[n]
ϵ (t) = ( 1

ψ′(t)
d
dt)

nfϵ(t), α = n,
(3)

n ∈ N, ϵ ∈ (0, 1).

where Dc
ψfϵ(t) is provided by (2).

The convolution in (3) is
(
Dc
ψfϵ(t) ∗ φϵ

)
(t) =

∫∞
0 Dc

ψfϵ(t)φϵ(t− s)ds.

4. The integral solution of schrödinger equation

Definition 9. [13] Define the Mittag-Leffler function by:

Eα,β(x) =

+∞∑
k=0

xk

Γ(kα+ β)
.

Definition 10. [22] Describe the Laplace transform of a function g by

L(g(x))(s) =
∫ +∞

0
e−sxg(x)dx.
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Proposition 1. [22] Let f and g two functions, we have

L ((f ∗ g)(x)) (s) = L (f(x)) (s)L (g(x)) (s).

Definition 11. [13]

(1) The Gamma function is given by

Γ(x) =

∫ +∞

0
tx−1e−tdt,∀x > 0

(2) The B function is described by

∀x, y > 0, B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt.

Proposition 2. [13]

(1) ∀x, y ∈ R∗
+ × R∗

+, B(x, y) =
Γ(x)Γ(y)
Γ(x+y) .

(2) For all x > 0, Γ(x+ 1) = xΓ(x).

Definition 12. [20] The Wright type function is represented by

ϕα(x) =

∞∑
n=0

(−x)n

n!Γ(−αn+ 1− α)

=
∞∑
n=0

(−x)nΓ(α(n+ 1)) sin(π(n+ 1)α)

n!

for α ∈ (0, 1) and x ∈ C.

Proposition 3. [20] The Wright function ϕα is a complete function with the following
characteristics:

(i)
∫∞
0 ϕα(θ)θ

rdθ = Γ(1+r)
Γ(1+αr) for r > −1;

(ii) ϕα(θ) ≥ 0 for θ ≥ 0 and
∫∞
0 ϕα(θ)dθ = 1

(iii)
∫∞
0 ϕα(θ)e

−zθdθ = Eα(−z), z ∈ C;
(iv) α

∫∞
0 θϕα(θ)e

−zθdθ = Eα,α(−z), z ∈ C.

Definition 13. [20] We proceed with the observed one-sided steady probability density in

ρα(θ) =
1

π

∞∑
k=1

(−1)k−1θ−αk−1Γ(αk + 1)

k!
sin(kπα), θ ∈ (0,∞)

And we have, ∫ ∞

0
e−λθρα(θ)dθ = e−λ

α
, where α ∈ (0, 1). (4)

Lemma 3. Let f : C(J,X) → C(J,X) be continuous.

The issue (1) is equal to the mild equation

x(t) = x0 +
1

Γ(α)

∫ t

0

1

(ψ(t)− ψ(s))1−α
ψ′(s)Ax(s)ds, t ∈ J, (5)

With:
x : D(A) −→ D(A) offered that the integral in 5 exists, and A = ∆− v.

We will need the following lemma.
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Lemma 4. For all α ∈]n− 1, n] n ∈ N and s > 0, and let ϕ ∈ Cn(R+) be an increasing
function with ϕ′(t) ̸= 0 for all t ∈ R+. We have,

1) sα−1 (sα −A)−1 = L
( ∫∞

0 ρα(θ)T
(
(ϕ(t)−ϕ(0))α

θα

)
dθ

)
(s),

2) (sα −A)−1X(s) = L
( (∫ τ

0

∫∞
0 αρα(θ)

(ϕ(τ)−ϕ(s))α−1

θα T
(
(ϕ(τ)−ϕ(s))α

θα

)
x(s)ϕ′(s)dθds)

)
(s).

With,
X(s) =

∫∞
0 e−λ(ϕ(s)−ϕ(0))x(s)ϕ′(s)ds

Proof. 1) For s > 0,

sα−1 (sα −A)−1 = sα−1
∫∞
0 e−s

α
T (τ)dτ = α

∫∞
0 (st̂)α−1e−(st̂)αT

(
t̂α
)
dt

Where {T}t≥0 is C0 − semigroup defined by

Ax = limt−→0+
T (t)x−x

x and (λαI −A)−1x =
∫∞
0 exp(−λαt)T (t)xdt

Putting t̂ = ϕ(t)− ϕ(0), we have

= α
∫∞
0 sα−1(ϕ(t)− ϕ(0))α−1e−(s(ϕ(t)−ϕ(0))α × T ((ϕ(t)− ϕ(0))α)ψ′(t)dt

=
∫∞
0 −1

s
d
dt

(
e−(s(ϕ(t)−ϕ(0)))α)T ((ϕ(t)− ϕ(0))α) dt.

Using (4), we get

=
∫∞
0

∫∞
0 θρα(θ)e

−s(ϕ(t)−ϕ(0))θT ((ϕ(t)− ϕ(0))α)ψ′(t)dθdt

=
∫∞
0 e−s(ϕ(t)−ϕ(0))

(∫∞
0 ρα(θ)T

(
(ϕ(t)−ϕ(0))α

θα

)
dθ

)
ψ′(t)dt

= L
( ∫∞

0 ρα(θ)T
(
(ϕ(t)−ϕ(0))α

θα

)
dθ

)
(s)

2) For s > 0,

(sα −A)−1X(s) =

∫ ∞

0
e−s

ατT (τ)X(s)dτ

= α

∫ ∞

0
τ̂α−1e−(sτ))αT (τ̂α)X(s)dτ

Where {T}t≥0 is C0 − semigroup defined by

Ax = lim
t−→0+

T (t)x− x

x
and

(λαI −A)−1x =

∫ ∞

0
exp(−λαt)T (t)xdt

Putting t̂ = ϕ(t)− ϕ(0), we have

=

∫ ∞

0
α(ϕ(τ)− ϕ(0))α−1e−(s(ϕ(τ)−ϕ(0)))α

× T ((ϕ(τ)− ϕ(0))α)ϕ′(τ)X(s)dτ

=

∫ ∞

0

∫ ∞

0
α(ϕ(τ)− ϕ(0))α−1e−(s(ϕ(τ)−ϕ(0)))α

T ((ϕ(τ)− ϕ(0))α)× e−(λ(ϕ(r)−ϕ(0)))x(r)ψ′(r)ϕ′(τ)drdτ,
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Using (4), we get

=
∫∞
0

∫∞
0

∫∞
0 α(ϕ(τ)− ϕ(0))α−1ρα(θ)e

−s(ϕ(τ)−ϕ(0))θ′T ((ϕ(τ)− ϕ(0))α)

× e−s(ϕ(r)−ϕ(0))x(r)ϕ′(r)ϕ′(τ)dθdrdτ

=
∫∞
0

∫∞
0

∫∞
0 αe−s(ϕ(τ)+ϕ(r)−2ϕ(0)) (ϕ(τ)−ϕ(0))α−1

θα ρα(θ)

× T
(
(ϕ(τ)−ϕ(0))α

θα

)
x(r)ϕ′(r)ϕ′(τ)dθdrdτ

=
∫∞
0

∫∞
t

∫∞
0 αe−s(ϕ(τ)−ϕ(0))ρα(θ)

(ϕ(t)−ϕ(0))α−1

θα T
(
(ϕ(t)−ϕ(0))α

θα

)
x
(
ϕ−1(ϕ(τ)− ϕ(t) + ϕ(0))

)
ϕ′(τ)ϕ′(t)dθdτdt

=
∫∞
0

∫ τ
0

∫∞
0 αe−s(ϕ(τ)−ϕ(0))ρα(θ)

(ϕ(t)−ϕ(0))α−1

θα T
(
(ϕ(t)−ϕ(0))α

θα

)
x
(
ϕ−1(ϕ(τ)− ϕ(t) + ϕ(0))

)
ϕ′(τ)

ϕ′(t)dθdtdτ

=
∫∞
0 e−s(ϕ(τ)−ϕ(0))

(∫ τ
0

∫∞
0 αρα(θ)

(ϕ(τ)−ϕ(r))α−1

θα T
(
(ϕ(τ)−ϕ(r))α

θα

)
x(r)ϕ′(r)dθdr)× ϕ′(τ)dτ.

= L
( (∫ τ

0

∫∞
0 αρα(θ)

(ϕ(τ)−ϕ(r))α−1

θα T
(
(ϕ(τ)−ϕ(r))α

θα

)
x(r)ϕ′(r)dθdr)

)
(s)

□

Proposition 4. If

x(t) = x0 +
1

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)Ax(s)ds,

holds, then we have

x(t) = E(t)x0 + α
∫ t
0 E(t)(ψ(t)− ψ(s))α−1x(s)ψ′(s)ds.

With,
E(t) =

∫∞
0 ϕa(θ)T ((ψ(t)− ψ(0))αθ) dθ

Proof. Since x(t) = x0 +
1

Γ(α)

∫ t
0

1
(ψ(t)−ψ(s))1−αψ

′(s)Ax(s)ds, using the Laplace transform,

we obtain

L
(
x(t)

)
(s) = L

(
x0 +

1

Γ(α)

∫ t

0

1

(ψ(t)− ψ(τ))1−α
ψ′(τ)Ax(τ)dτ

)
(s)

= L(x0)(s) + L
( 1

Γ(α)

∫ t

0

1

(ψ(t)− ψ(τ))1−α
ψ′(τ)Ax(τ)dτ

)
(s)

=
x0
s

+ L
( 1

Γ(α)

∫ t

0

1

(ψ(t)− ψ(τ))1−α
ψ′(τ)Ax(τ)dτ

)
(s)

=
x0
s

+
1

sα
AL (x(t)) (s)

=
x0
s

+
1

sα
A

∫ ∞

0
e−λ(ψ(s)−ψ(0))x(s)ψ′(s)ds
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We can deduce
L
(
x(t)

)
(s) = sα−1 (sα −A)−1 x0 + (sα −A)−1X(s).

Now, use the lemma 4, then

L
(
x(t)

)
(s) = L

( ∫∞
0 ρα(θ)T

(
(ψ(t)−ψ(0))α

θα

)
dθ

)
(s)x0 +

L
( (∫ τ

0

∫∞
0 αρα(θ)

(ψ(τ)−ψ(s))α−1

θα T
(
(ψ(τ)−ψ(s))α

θα

)
x(s)ψ′(s)dθds)

)
(s)

We can now invert the Laplace transform to obtain the result

∀x ∈ X, characterize operators Sαψ(t, s) and T
α
ψ (t, s) by

Sαψ(t, s)x =

∫ ∞

0
ϕα(θ)T ((ψ(t)− ψ(s))αθ)xdθ

And

Tαψ (t, s)x = α

∫ ∞

0
θϕa(θ)T ((ψ(t)− ψ(s))αθ)xdθ

for 0 ≤ s ≤ t ≤ T . □

Lemma 5. Sαψ and Tαψ provide the following characteristics :

(i) The operators Sαψ(t, s) and Tαψ (t, s) are strongly continuous for all t ≥ s ≥ 0, that
is, for every x ∈ X and 0 ≤ s ≤ t1 < t2 ≤ T we have

| Sαψ (t2, s)x− Sαψ (t1, s)x∥ → 0 and | Tαψ (t2, s)x− Tαψ (t1, s)x∥ → 0

as t1 → t2.

(ii) For any fixed t ≥ s ≥ 0, Sαψ(t, s) and T
α
ψ (t, s) are bounded linear operators with

| Sαψ(t, s)(x)∥ ≤M∥x∥ and
∥∥∥Tα

ψ̇
(t, s)(x)

∥∥∥ ≤ αM

Γ(1 + α)
∥x∥ =

M

Γ(α)
∥x∥

for all x ∈ X.

Proof. Similar demonstration existe in [24] □

5. Existence and Uniqueness of the Solution in colombeau algebra G

In this section consider the following fractional Schrödinger problem:{
Dc
ψx(y, t) = Ax(y, t), t ∈ [0, T ]

x(y, 0) = a0(y)

with a0(y) ∈ D′ (Rn) and A = ∆− v.

Now we will transform the problem in the Colombeau algebra.{
Dc
ψxε(y, t) = Aεxε(y, t) y ∈ Rn, t ≥ 0

xε(y, 0) = a0,ε(y)
(6)

with a0,ε(y) is the regularizetion of a0(y), and A = [(Aε)] = [(∆−vϵ)] is the infinitesimal
generator of {Tϵ(t)} C0 − semigroup.

Theorem 2. If the generalized operators Sαψ and Tαψ verify the Lemma (5). Then the

problem (6) has a unique solution in G (Rn × R+).
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Proof. Existence
The integral solution of the problem (6) is Given through the previous section:

xε(t) =

∫ ∞

0
ϕε,a(θ)T ((ψε(t)− ψε(0))

αθ)xε,0dθ

+ α

∫ t

0

∫ ∞

0
ϕε,a(θ)(ψε(t)− ψε(s))

α−1T ((ψε(t)− ψε(0))
αθ)

xϵ(s)ψ
′
ε(s)dθds.

= Sαψ(t, s)xε,0 +

∫ t

0
(ψε(t)− ψε(s))

α−1Tψα (t, s)xϵ(s)ψ
′
εds

Which implies that:

∥xε(t, .)∥ ≤
∥∥∥Sαψ,ε(t, 0)xε,0∥∥∥+

∫ t
0

∥∥∥(ψε(t)− ψε(s))
α−1Tαψ,ε(t, s)xϵ(s)ψ

′
ε(s)

∥∥∥ ds
≤M ∥xε,0∥+

∫ t
0 (ψε(t)− ψε(s))

α−1
∥∥∥Tαψ,ε(t, s)xϵ(s)∥∥∥ψ′

ε(s)ds

Then

∥xε(t, .)∥ ≤M ∥xε,0∥+
M

Γ(α)

∫ t

0
(ψε(t)− ψε(s))

α−1 ∥xε(s, .)∥ψ′
ε(s)ds

By the Granwall’s inequality

∥xε(t, .)∥L∞(Rn) ≤M ∥aε,0∥ × exp

(
M

Γ(α+ 1)
(ψε(t)− ψε(0))

α

)
.

Since ψε ∈ G (R+), a0,ϵ ∈ G (Rn) there exist K ∈ N such that

sup
t∈[0,T ]

∥xε(t, .)∥L∞(Rn) = O
(
ε−K

)
, ε→ 0

So

x ∈ G(R+ × Rn)

Uniqueness

Let’s say there are two solutions x1,ϵ(t, .), x2,ϵ(t, .) to the problem (6), consequently :
Dc
ψx1,ϵ(y, t) +Aϵx1,ϵ(y, t)−Dc

ψx2,ϵ(y, t)−Aϵx2,ϵ(y, t) = 0

y ∈ Rn, t ≥ 0
x1,ϵ(y, 0)− x2,ϵ(y, 0) = N0,ϵ(y)

Then: 
Dc
ψ (x1,ϵ(y, t)− x2,ϵ(y, t)) +Aϵ (x1,ϵ(y, t)− x2,ϵ(y, t)) = 0

y ∈ Rn, t ≥ 0
x1,ϵ(y, 0)− x2,ϵ(y, 0) = N0,ϵ(y)

(7)

With (N0,ε)ε ∈ N (R+).
The integral solution of the equation (7) is:
xε(t) =

∫∞
0 ϕε,a(θ)T ((ψε(t)− ψε(0))

αθ)N0,ϵ(y)dθ

+α
∫ t
0

∫∞
0 ϕε,a(θ)(ψε(t)− ψε(s))

α−1T ((ψε(t)− ψε(0))
αθ)

× (x1,ε(s)− x2,ε(s))ψ
′
ε(s)dθds.

= Sαψ(t, s)N0,ϵ(y) +
∫ t
0 (ψε(t)− ψε(s))

α−1Tαψ (t, s)× (x1,ε(s)− x2,ε(s))ψ
′
εds.
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Then

∥x1,ε(t, .)− x2,ε(t, .)∥L∞(Rn) ≤
∥∥∥Sαψ,ε(t, 0)N0,ε(.)

∥∥∥
+
∫ t
0

∥∥∥(ψε(t)− ψε(s))
α−1Tαψ,ε(t, s) (x1,ε(s)− x2,ε(s))ψ

′
ε(s)

∥∥∥ ds
≤M ∥N0,ε(.)∥+

∫ t
0 (ψε(t)− ψε(s))

α−1
∥∥∥Tαψ,ε(t, s) (x1,ε(s)− x2,ε(s))

∥∥∥
×ψ′

ε(s)ds

≤M ∥N0,ε(.)∥+ M
Γ(α)

∫ t
0 (ψε(t)− ψε(s))

α−1 ∥(x1,ε(s)− x2,ε(s))∥ × ψ′
ε(s)ds

So
∥x1,ε(t, .)− x2,ε(t, .)∥L∞(Rn) ≤M ∥N0,ε(.)∥+ M

Γ(α)

∫ t
0 (ψε(t)− ψε(s))

α−1

×∥(x1,ϵ(s, .)− x2,ϵ(s, .))∥ψ′
ε(s)ds

Using the Granwall’s inequalit

∥x1,ε(t, .)− x2,ε(t, .)∥L∞(Rn) ≤M ∥N0,ε(.)∥ × exp
(

M
Γ(α+1)(ψε(T )− ψε(0))

α
)

Since
ψε ∈ G(R+), (N0,ε)ε ∈ N (R+), then for every q ∈ N such that:

sup
t∈[0,T ]

∥x1,ϵ(t, .)− x2,ϵ(t, .)∥L∞ = O (εq) ε→ 0

So,
x1,ϵ ≈ x2,ϵ

□

6. Conclusions

In this work, first we give and demonstrated the existence of ψ−fractional caputo deriv-
ative in colombeau algebra and secondly we have solved the frational Schrödinger equation
and then proved the existence and uniqueness of this solution in colombeau algebra.

Acknowledgement. The authors are thankful to the referee and Pr. Lamyae Dardak
for her/his valuable suggestions towards the improvement of the paper.
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