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DISCRETE LINEAR QUADRATIC OPTIMIZATION PROBLEM WITH

CONSTRAINTS IN THE FORM OF EQUALITIES ON CONTROL

ACTION

F.A. ALIEV1,2∗, N.S. HAJIYEVA1, §

Abstract. In the paper the discrete linear quadratic optimization problem, where, over
a certain part of the time interval, some coordinates of the control actions are known
constants. These equalities in the form of a penalty function with a certain weight
are added to the quadratic functional and the corresponding discrete Euler-Lagrange
equation is constructed, the solution of which is constructed using a discrete fundamental
matrix. Then, an explicit expression of control actions over the entire time interval is
given. The results are illustrated using the example of the vertical motion of a flying
vehicle.
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1. Introduction

Typically, the linear quadratic optimization problems of the standard [2, 4, 5, 6, 11,
13, 18] form are solved by different methods, for example, sweep methods [3, 4, 14, 15],
methods of reducing solutions to linear algebraic equations with dimensions greater than
the size of the original system [16], the Moszynski method [17], etc. However, when the
linear quadratic optimization problems with equality constraints on some control coordi-
nates for part of the time interval are considered, the situation changes; solutions to the
optimization problem are reduced to solving a system of linear algebraic equations for
the missing boundary conditions. Next, the control and trajectories are found from the
corresponding Euler-Lagrange equations.

In this paper, a discrete optimization problem with a quadratic functional is formulated,
where there are restrictions in the form of equalities on some coordinates of control actions.
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Using the Euler-Lagrange method, this constraint is added to the functional in the form of
a penalty with a certain weight. Further, an extended quadratic functional is constructed
[3, 4, 11, 12] and the Euler-Lagrange equation for the discrete case is described [19, 20, 21].
To find trajectories and controls, concrete formulas are given. The results are illustrated
using the example of the vertical movement of a flying vehicle [1].

2. Problem Statement of Continuous Case

As is known, the similar linear quadratic optimization problem in the continuous case,
i.e. the motion of an object on an interval [0, T +∆] is described by the system of linear
differential equations

ẋ(t) = Fx(t) +Gu(t) + V (1)

with initial condition

Hx(0) = q, (2)

where x
′
(t) =

[
z1(t) z2(t) z3(t) z4(t)

]
− phase coordinates of n-dimensional ob-

ject, zi(t) are ki− dimensional vectors,

(i = 1, 4), (
∑4

i=1 ki = n), F, G and H
are constant matrices with dimensions n × n, n × m, m × n, respectively. The sign

′
means the transpose operation. V is an external disturbance with dimension n × 1,

u
′
(t) =

[
u1(t) u2(t)

]
- m-dimensional vector of control actions, u1(t), u2(t) are (m-

p) and p-dimensional vectors, correspondingly. Let G =
[
G1 G2

]
,where G1, G2 are

n× (m− p) and n× p matrices, correspondingly.
Assume that there is a condition at the time instant T

x(T + 0) = Fδx(T − 0) +G1u1(T − 0), (3)

where Fδ is a known matrix with corresponding dimension.
It is required to find such control action u(t) and the corresponding trajectory x (t)

with boundary conditions (2), (3) such that the equation (1) is satisfied and the following
functional received the minimum value

J = 1
2(x(T − 0)− xd)

′N(x(T − 0)− xd) + (u(T − 0)− C)′δ(u(T − 0)− C)+

+1
2

∫ T
0 (x′(t)Qx(t) + 2x′(t)Ku(t) + u′(t)Ru(t))dt+ 1

2

∫ T+∆
T (u(t)− C)′γ(u(t)− C)dt,

(4)
where N ≥ 0, δ = δ′ > 0, R = R′ > 0, Q = Q′ ≥ 0, γ = γ′ > 0, K and xd, C are

known matrices and vectors with corresponding dimensions. Note that C =

[
C1

0

]
, C1

is a known constant parameter.
An algorithm for solving problem (1)-(4) has been given [22]. However, when the function
is piecewise constant, it is required to consider the discrete analogue of problem (1)-(4).

3. Discrete case

If we discretize the problem (1)-(4), we’ll receive the following discrete problem analo-
gously (1)-(4)

xi+1 = Φxi + Γui + ω, 0 ≤ i ≤ N − 1, N + 1 ≤ i ≤ N +∆− 1, (5)
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Hx0 = q, (6)

xN+1 = FδxN +G1uN , (7)

J = 1
2(xN − xd)

′N(xN − xd) + (uN − C)′δ(uN − C)+
1
2h

∑N−1
i=0 (x′iQxi + 2x′iKui + u′iRui) +

1
2h

∑N+∆−1
i=M+1 (ui − C)′γ(ui − C),

(8)

where
Φ = E + hF, Γ = hG, ω = hV, h is a discretization step, E is an identity matrix with
corresponding dimension.

4. Euler-Lagrange equation for the problem (5)-(8) and construction
solution on the interval 0 ≤ i ≤ N +∆.

Using the results of [7, 8, 9, 10], we get the discrete Euler-Lagrange equations on the
intervals 0 ≤ i ≤ N − 1, N + 1 ≤ i ≤ N +∆− 1 for the problem (5)-(8) in the following
form, correspondingly [

xi+1

λi+1

]
= Φ1

[
xi
λi

]
+Φ2, 0 ≤ i ≤ N − 1, (9)[

xi+1

λi+1

]
= Φ3

[
xi
λi

]
+Φ4, N + 1 ≤ i ≤ N +∆− 1 (10)

with boundary conditions

λN+1 = (F ′
δ)

−1hλN − (F ′
δ)

−1N ′(xN − xd), (11)

uN = C − δ−1G′
1λN+1, (12)

λN+∆ = 0, (13)

H ′ν + λ0 = 0, (14)

where

Φ1 =

[
Φ− ΓR−1K ′ − (Φ′ −KR−1Γ′)−1ΓR−1Γ′(−Q′ +KR−1K ′) −(Φ′ −KR−1Γ′)−1ΓR−1Γ′

(Φ− ΓR−1K ′)(−Q′ +KR−1K ′) (Φ′ −KR−1Γ′)−1

]
,

Φ2 =

[
E −(Φ′ −KR−1Γ′)−1ΓR−1Γ′

0 (Φ′ −KR−1Γ′)−1

] [
ω
0

]
,

Φ3 =

[
Φ −Γγ−1Γ′(Φ−1)′

0 (Φ−1)′

]
,

Φ4 =

[
E Γγ−1Γ′

0 E

]−1 [
ΓC + ω

0

]
,

λ0 = hQx0 + hKu0 + hΦ′λ1, (15)

We assume that det(Φ) ̸= 0, det(Φ′ −KR−1Γ′) ̸= 0.
The control ui on the intervals 1 ≤ i ≤ N − 1, N + 1 ≤ i ≤ N +∆ − 1 is defined as,

correspondingly
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ui = −R−1K ′xi −R−1Γ′λi+1, (16)

ui = C − γ−1Γ′λi+1. (17)

Substituting the expression of (11) into (12), writing the obtained expression of uN into
(7), then we have

xN+1 = FδxN +G1C −G1δ
−1G′

1λN+1. (18)

Combining (17) with (11), we get[
xN+1

λN+1

]
= Φ5

[
xN
λN

]
+Φ6, (19)

where

Φ5 =

[
Fδ +G1δ

−1G′(F ′
δ)

−1N ′ −G1δ
−1G′(F ′

δ)
−1h

−(F ′
δ)

−1N ′ (F ′
δ)

−1h

]
,

Φ6 =

[
G1C −G1δ

−1G′(F ′
δ)

−1N ′xd
(F ′

δ)
−1N ′xd

]
.

We assume that det(F ′
δ) ̸= 0.

Combining (6), (13), (14) we have

 H 0 0 0 0
0 E 0 0 H ′

0 0 0 E 0




x0
λ0

xN+∆

λN+∆

ν

 =

[
q
0

]
. (20)

Let us introduce the fundamental solutions of the systems (9) and (10) as follows[
xi
λi

]
= Φi

1

[
x0
λ0

]
+

0∑
j=i−1

Φj
1Φ2, 1 ≤ i ≤ N, (21)

[
xi
λi

]
= Φi−N−1

3

[
xN+1

λN+1

]
+

N+1∑
j=i−1

Φi−1−j
3 Φ4, N + 2 ≤ i ≤ N +∆. (22)

Thus, by means of (19), (21), (22) we get[
xN+∆

λN+∆

]
= Φ∆−1

3 Φ5Φ
N
1

[
x0
λ0

]
+Φ∆−1

3 Φ5
∑0

j=N−1Φ
j
1Φ2 +Φ∆−1

3 Φ6+

+
∑N+1

j=N+∆−1Φ
N+∆−1−j
3 Φ4.

(23)

Further, from (20), (21) we get the following system of linear algebraic equations as follows −Φ∆−1
3 Φ5Φ

N
1 E 0

H1 H2 H3

H4 H5 H6




x0
λ0

xN+∆

λN+∆

ν

 =

=

 Φ∆−1
3 Φ5

∑0
j=N−1Φ

j
1Φ2 +Φ∆−1

3 Φ6 +
∑N+1

j=N+∆−1Φ
N+∆−1−j
3 Φ4

q
0

 , (24)
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where

H1 =

[
H 0
0 E

]
, H2 =

[
0 0
0 0

]
, H3 =

[
0
H ′

]
, H4 =

[
0 0

]
, H5 =

[
0 E

]
, H6 = 0.

After finding

[
x0
λ0

]
from (24) we solve the system of difference equation (21), i.e. we find

the trajectory xi on the interval 0 ≤ i ≤ N. Then according (15) we find control u0.Further,
we obtain the control ui from (16) on the interval 1 ≤ i ≤ N. Thus we get the control

ui on the interval 0 ≤ i ≤ N.Then from (19) we find

[
xN+1

λN+1

]
.Further, substituting the

obtained expression of

[
xN+1

λN+1

]
into (22), we solve the system of difference equation (22),

i.e. we find the trajectory xi on the interval N +1 ≤ i ≤ N +∆. The control ui is defined
from (17) on the interval N + 1 ≤ i ≤ N +∆.

5. Example

Let us consider an example that describes the vertical movements of a flying object on
the interval 0 ≤ i ≤ N +∆.We assume that the object moves only vertically. In this case,
from (5) and (6) the parameters have the form:

x
′
(t) =

[
z1(t) z2(t)

]
, Φ =

[
1 0.01
0 1

]
, Γ =

[
0

0.01

]
, ω =

[
0

−0.01g

]
, H =[

1 0
0 0

]
, q = z10 g is a gravitational acceleration.

Now introduce the following functional which is to be minimized

J = 1
2(xN − xd)

′N(xN − xd) + (uN − C)′δ(uN − C)+
1
2h

∑N−1
i=0 (x′iQxi + 2x′iKui + u′iRui) +

1
2h

∑N+∆−1
i=M+1 (ui − C)′γ(ui − C),

where

N =

[
χ 0
0 α

]
, xd =

[
zd
0

]
, Q =

[
q1 0
0 q2

]
, K =

[
k1
0

]
, χ, α, zd, δ, c, R, q1, q2, k1, γ

are given positive numbers.

Using the procedure outlined in sections 3-4, we can find xi solving on the interval
0 ≤ i ≤ N + ∆ and the control action ui determining by formulas (16), (17) on the
interval 0 ≤ i ≤ N + ∆. The results in the discrete case coincide with the results in
the continuous case [20] of the order of 10−5. Let us introduce the graphs of program
trajectory z1(i) and control action ui on the interval 0 ≤ i ≤ N +∆:
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Figure 1. Changing z1(i) on the interval 0 ≤ i ≤ N +∆.

Figure 3. Changing u1(i) on the interval 0 ≤ i ≤ N +∆.

6. Conclusions

In the current paper, a discrete linear quadratic optimization problem was investigated,
where in a known part of the time interval some coordinates of the control actions in
the form of a penalty function with a certain weight are added to the quadratic func-
tional. Constructing the discrete Euler-Lagrange equations and obtaining the control and
trajectories using a discrete fundamental matrix.
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