
TWMS J. App. and Eng. Math. V.14, N.4, 2024, pp. 1590-1596

ON TOTAL VERTEX IRREGULAR LABELINGS WITH NO-HOLE

WEIGHTS OF SOME CORONA GRAPHS

S. MITRA1∗, S. BHOUMIK1, §

Abstract. A total vertex irregular k-labeling of a graph G = (V,E), ∂ : V ∪ E →
{1, 2, 3, · · · , k} is a labeling of vertices and edges of G in such a way that the weights
of all vertices are distinct. A total vertex irregularity strength of graph G, denoted by
tvs(G) is defined as the minimum k for which a graph G has a totally irregular total
k-labeling. In this paper, we investigate the no-hole total vertex irregularity strength for
corona product of cyclic graphs and complete graphs.
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1. Introduction

Let G be a finite, simple, and undirected graph with vertex set V (G) and edge set E(G).
In 1988, Chartrand et al. [6] defined an irregular labeling of a graph as an assignment
of positive integer labels to the edges of a connected graph of order at least 3, in such a
way that the sum of the weights of the edges at each vertex are distinct. The minimum
of the largest label of an edge over all irregular labelings is called the irregularity strength
s(G) of G. Over the years many researchers investigated the calculation s(G), as well as
providing upper bounds for graphs with special characteristics (see [7], a dynamic survey).

Motivated by their work, and by a book of Wallis [16], Beča et al. [4] introduced the
total vertex (and edge) irregularity strength of a graph. A total vertex irregular k-labeling
∂ of a graph G = (V,E) is a labeling of the vertices and edges of G with labels from the
set {1, 2, · · · , k} in such a way that for any two different vertices u and v their weights

ϕ(u) and ϕ(v) are distinct, where the weight of a vertex v is ϕ(v) = ∂(v) +
∑

uv∈E(G)

∂(uv),

i.e. the sum of the label of the vertex v and the labels of the edges incident on v. The
total vertex irregularity strength, tvs(G), is minimum k for which the graph has a vertex
irregular total k-labeling.
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In [4] Bača et al. determined the exact values of total vertex irregularity strength for
few well known families of graphs (Paths, Cycles, Complete Graphs, Star etc.). Nurdin et
al. [13] determined the total vertex irregularity strength for trees with a constraint that
there is no vertex of degree 2 or 3. Anholcer and Palmer [3] determined the total vertex
irregularity strength of the Ck

n, that is the circulant graphs of Zn with connection set
{1, 2, · · · , k}. In [2] Ahmad et al. studied the total vertex irregularity strength of wheel
related graphs (flowers, helms, generalized friendship graphs, and web graphs). Slamin,
Dafik, and Winnona determined the total vertex irregularity strengths of the disjoint
(isomorphic and nonisomorphic) union of sun graphs (Cn�K1) [14]. Jeyanthi and Sudha
determine the total vertex irregularity strength of Cn�K2, Cn�Km, Pn�K1, Pn�K2 etc.
in [11], and Cn � Pm in [12]. In this paper, we are particularly interested in investigating
the total vertex irregularity strength for the family of Cn � Km graphs with restriction
that the weights must be consecutive or the set of weights must be a no-hole set (i.e. there
is no gap between the weights).

2. Main Result

In this section, we begin with introducing a stronger version of total vertex irregularity
labeling of a graph, as follows:

Definition 2.1. The (a, d)-total vertex irregularity strength of a graph G is the minimum
value of k if there exists a mapping ∂ : V ∪E → {1, 2, · · · , k} such that the set of all vertex
weights is {a, a+ d, a+ 2d, · · · , a+ (n− 1)d}, where a and d are fixed integers with d ≥ 0.

We note that d = 0 and 1 generates a magic labeling, and no-hole weights respectively.
Furthermore it can be easily observed that δ+ 1 ≤ a ≤ ∆ + 1. We define below the corona
product of two graphs.

Definition 2.2. The corona of two graphs G1 and G2 is the graph, denoted by G1 �G2,
obtained by taking one copy of G1, and p copies of G2 (where |V (G1)| = p), and then
joining the ith vertex of G1 by an edge to every vertex in the ith copy of G2.

In this paper, we consider the family of Cn�Km, which is corona product of a cycle of
order n and the complete graph Km, and find the no-hole total irregular edge labeling for
it. Let {v1, e1, v2, e2, · · · , vn, en, v1} be the cycle, and {ui1, ui2, · · · , uim} be the vertices
adjacent to the vertex vi, i = 1, 2, · · · , n. Also eij be the edge connecting uij with vi for
1 ≤ i ≤ n and 1 ≤ j ≤ m. Note that |V (Cn �Km)| = n(m + 1), and |E(Cn �Km)| =
n(m(m+ 1)/2 + 1).
Since δ(G) = m and ∆(G) = m+ 2, from [4], we get the range for tvs(G), as⌈mn+m+ n

m+ 3

⌉
≤ tvs(G) ≤ mn+ n−m+ 3

We denote the total vertex irregularity strength with consecutive weights as γ′(G), for any
graph G. As it is clear that as γ′(G) ≥ tvs(G), γ′(G) ≥ d(mn+m+ n+ 1)/(m+ 4)e.

Theorem 2.1. γ′(Cn�Km) ≥ max
{
n+1,

⌈m(n+ 1) + 1− s
3

⌉}
, where s = m(m+1)/2.

Proof. For the graph G = Cn � Km, the consecutive weights of the vertices form the
sequence {m+ 1,m+ 2, · · · ,mn+m+n}. For convenience, we refer the vertices lying on
Cn as the inner vertices and others as outer vertices. Since the degree of the inner vertices
are more than the outer vertices, we wish to generate the highest (last) n many vertex
weights, i.e., {mn+m+1,mn+m+2, · · · ,mn+m+n} from the vertices {vi : 1 ≤ i ≤ n}.
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Thus the maximum of the remaining weights must occur at one the outer vertices. As the
degree of any outer vertex is m, it immediately implies that γ′(G) ≥ d(mn+m)/me = n+1.

Without loss of generality we can assume that the weights of the outer vertices {u1j :
1 ≤ j ≤ m} are {m + 1,m + 2, · · · , 2m}, and weight of v1 is mn + m + 1, minimum
of the last n vertex weights. In order to generate those weights, the labels of the edges
{e1j : 1 ≤ j ≤ m} be at most 1, 2, · · · ,m (by labeling 1 at the outer vertices {u1j} and all
outer edges). Thus

mn+m+ 1 = ∂(v1) + ∂(e1) + ∂(en) +
∑

1≤j≤m
(eij)

≤ 3γ′(G) + 1 + 2 + · · ·+m

= 3γ′(G) +m(m+ 1)/2

which implies γ′(G) ≥ d(m(n+ 1) + 1− s)/3e, where s = m(m+ 1)/2.
�

Next we provide the vertex irregular total labeling with consecutive weighs for some
particular cases and finally for the general family of Cn �Km graphs, for n > m.

Theorem 2.2. γ′(Cn �K2) =
⌈2n+ 2

3

⌉
Proof. Let G = Cn � K2, and ∂ : V (G) ∪ E(G) → {1, 2, · · · , d(2n + 2)/3e} be the total
labeling as follows: for any integer n ≥ 3, the labelings of the outer vertices and edges are,

∂(eij) =
⌈2i+ j

3

⌉
, ∂(ei3) =

⌈2i

3

⌉
, ∂(ui1) =

⌊2i+ 1

3

⌋
, ∂(ui2) =

⌈2i+ 1

3

⌉
. Finally

∂(vi) =

{
2p− 2− bi/3c if n = 3p+ 1 or n = 3p for p ≥ 3

2p− bi/3c if n = 3p+ 2 for p ≥ 1

∂(ei) =


2p+ 2 if n = 3p+ 1 for p ≥ 3

2p+ 2 if n = 3p+ 2 for p ≥ 1

2p+ 1 if n = 3p for p ≥ 3

for all i ∈ {1, 2, · · · , n}. Now it remains to provide the labelings for the vertices and the
edges of the cycle for n = 3, 4, 6 and 7.

For n = 3: ∂(vi) = 1 for 1 ≤ i ≤ 3, ∂(e2) = ∂(e3) = 2, and ∂(e1) = 3.
For n = 4: ∂(vi) = 1 for 1 ≤ i ≤ 4, ∂(e1) = ∂(e2) = ∂(e4) = 4, and ∂(e3) = 3.
For n = 6: ∂(v1) = ∂(v2) = ∂(v5) = 2, ∂(v3) = ∂(v4) = ∂(v6) = 1 and

∂(ei) =

{
4 for i = 5

5 otherwise

For n = 7: ∂(vi) = 2p− 2− bi/3c for 1 ≤ i ≤ 7, and

∂(ei) =

{
5 for i = 6

6 otherwise

It is easy to check that the above labeling provides the upper bound on γ′(Cn �K2). On
the other hand we already know that tvs(Cn �Km) =

⌈
(2n+ 2)/3

⌉
, which completes the

proof.
�

Theorem 2.3. γ′(Cn �K3) = n
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Proof. Let G = Cn �K3, and ∂ : V (G) ∪E(G)→ {1, 2, · · · , n} be the total labeling such
that for the edges of the cycle ∂(en) = n, and ∂(ei) = n + 1 − i for 1 ≤ i < n, and the
vertices of the cycle get the labeling

∂(vi) =


n− 2 for i = 1

n for 2 ≤ i ≤ n− 1

1 for i = n

We define the labelings of the outer vertices as follows ∂(uij) = j and ∂(viuij) = ∂(uijuij′) =
i for 2 ≤ i ≤ n and 1 ≤ j, j′ ≤ 3 and ∂(u1j) = 1 for 1 ≤ j ≤ 3. Finally ∂(v1u1j) = j and
∂(u1ju1j′) = 1 for 1 ≤ j, j′ ≤ 3 and j 6= j′.
It is easy to check that the above labeling provides the upper bound on γ′(Cn � K3).
Recall, we already know that γ′(Cn�K3) ≥ d(3n− 2)/3e = n, which completes the proof.

�

Theorem 2.4. γ′(C3 �K4) = 4, and γ′(Cn �K4) =
⌈4n− 5

3

⌉
for n ≥ 4.

Proof. Let G = Cn�K4, we first prove the total irregularity strength with no-hole weights
for n ≥ 4, and consider n = 3 as a special case later. Theorem 2.1 leads us to the inequality
γ′(Cn �K4) ≥ d(4n− 5)/3e for n ≥ 3. To prove the tightness first we assume

i∗ =



⌊4p+ 5

3

⌋
for n = 3p⌊4p+ 8

3

⌋
for n = 3p+ 1⌊4p+ 9

3

⌋
for n = 3p+ 2

and define a total labeling ∂ : V (G) ∪ E(G) → {1, 2, · · · , d(4n − 5)/3e}, that assign the
following labeling to the outer edge and vertices: for 1 ≤ j ≤ 4,

∂(uij) =


1 for i = 1⌈ j

2

⌉
for i = 2

j for 3 ≤ i ≤ i∗

j + i− i∗ for i∗ < i ≤ n

∂(eij) =


j for i = 1⌈j + 3

2

⌉
for i = 2

i for 3 ≤ i ≤ i∗

i∗ for i∗ < i ≤ n
Now let n = 3p+ q for p, q being a non-negative integers where p ≥ 2 and q ∈ {0, 1, 2}.

It can easily be observed that d(4n − 5)/3e = 4p + q − 1. Now the vertices and edges of
the cycle get labeled as follows:

∂(ei) = 4p+ q − 1 for 1 ≤ i ≤ n

∂(vi) =


4p+ 2q − 2− i for i = 1, 2

4p+ 2q + 6− 3i for 3 ≤ i ≤ i∗

4p+ 2q + 6 + i− 4i∗ for i∗ < i ≤ n
We see that all the vertex and edge labels are at most d(4n−5)/3e. Also as ϕ(vi) = 4n+4+i
and ϕ(uij) = 4i+j for 1 ≤ i ≤ n and 1 ≤ j ≤ 4, the weights of the vertices formed under the
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labeling ∂ are {5, 6, · · · , 4n+4, 4n+5, 4n+6, · · · , 5n+4}. Hence γ′(Cn�K4) = d(4n−5)/3e.
It is easy to check that the above labeling provides the upper bound on γ′(Cn � Km).
Whereas we already have tvs(Cn �Km) =

⌈
(4n− 5)/3

⌉
, which completes the proof.

Now we complete our proof by providing the labeling for the particular case C3 �K4.
∂(v1) = ∂(v3) = ∂(uij) = 1 for 1 ≤ j ≤ 4 and ∂(v2) = 4. ∂(uij) = j and ∂(eij) =
∂(uijuij′) = i for 2 ≤ i ≤ 3 and 1 ≤ j ≤ 4. ∂(ei) = 3 for 1 ≤ i ≤ 3. Finally ∂(e1j) = j and
∂(u1ju1j′) = 1 for 1 ≤ j ≤ 4 �

Now after we provide the total vertex irregular labeling with no-hole weights for the
cases m = 2, 3, and 4, instead of proving more cases based on m, we look into the problem
asymptotically. We begin with providing a lower bound for γ′(Cn �Km) for some n, and
then propose a conjecture for the for almost all n.

Theorem 2.5. γ′(Cn�Km) > max
{⌈m(n+ 1)

m+ 1

⌉
,
⌈m(n+ 1) + 1− s

3

⌉}
, where s = m(m+

1)/2 if
⌈3 +

√
8m+ 25

2

⌉
≤ n ≤

⌊m3 + 3m− 2

2m2 − 4m

⌋
when m ≥ 13.

Proof. First we can easily verify that if m ≤ 12, then
⌈3 +

√
8m+ 25

2

⌉
≥
⌊m3 + 3m− 2

2m2 − 4m

⌋
.

Hence now onward we will only consider m ≥ 13. As deg(uij) = m and deg(vi) = m + 2
for 1 ≤ i ≤ n and 1 ≤ j ≤ m, it is evident that in order to minimize k, the weights
{mn + m + 1,mn + m + 1, · · · ,mn + m + n} must be generated on the vertices of the
cycle Cn. Without loss of generality let us assume that the weight of the vertex v1 must
be mn+m+ 1.

According to our assumption, as n ≤
⌊m3 + 3m− 2

2m2 − 4m

⌋
, we get that m3 + 3m − 2 >

n(2m2 − 4m), which simplifies to 4mn+ 3m > 2m2n−m3 + 2. From there we can easily

derive 2mn+ 3m > (m+ 1)(mn+m+ 1−m(m+ 1)/2), which concludes
⌈m(n+ 1)

m+ 1

⌉
>⌈m(n+ 1) + 1− s

3

⌉
.

On the other hand, as m >
⌊m3 + 3m− 2

2m2 − 4m

⌋
≥ n,

⌈m(n+ 1)

m+ 1

⌉
= n+ 1. Clearly in this

case
⌈m(n+ 1) + 1− s

3

⌉
≤ n if

γ′(Cn �Km) = max
{⌈m(n+ 1)

m+ 1

⌉
,
⌈m(n+ 1) + 1− s

3

⌉}
Now in order to generate the ϕ(v1) = mn+m+ 1, we can make this observation.

mn+m+ 1 =

m∑
j=1

e1j + e1 + en + v1

≤ 1 + 2 + · · ·+ (n+ 1) + (m− n− 1)(n+ 1) + 3(n+ 1)

= (n+ 1)((n+ 2/2) +m− n+ 2)

The above inequality implies to n2 − 3n− (2m+ 4) ≤ 0. But if n >
3 +
√

8m+ 25

2
, then

n2 − 3n − (2m + 4) > 0. Thus the possible maximum labels for and around v1, can not
generate mn+m+ 1.

�
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Conjecture 2.1. γ′(Cn � Km) = max
{⌈m(n+ 1)

m+ 1

⌉
,
⌈m(n+ 1) + 1− s

3

⌉}
, where n >⌊m3 + 3m− 2

2m2 − 4m

⌋
and s = m(m+ 1)/2.
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