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FAULT-TOLERANT PARTITION RESOLVABILITY OF CHEMICAL

CHAINS

K. AZHAR1, A. NADEEM1∗, S. ZAFAR1, A. KASHIF2, §

Abstract. An e partition X of the vertex set V (H) of a connected graph H is the collec-
tion of e number of ordered disjoint subsets of V (H), denoted as X = {X1, X2, . . . , Xe}.
The representation of a vertex u is a distance vector r(u|X) = (d(u,X1), d(u,X2), . . . ,
d(u,Xe)), where d(u,Xi) is the distance of u from Xi. Any ordered e partition X is re-
ferred as resolving partition if representations of all the vertices are distinct. The smallest
integer e is referred as the partition dimension of the graph. The advancement in the
concept of partition dimension is fault-tolerant partition dimension where the represen-
tations are distinct at two places for each pair of vertices. In this paper, we compute the
partition dimension and fault-tolerant partition dimension of some planar graphs.

Keywords: cactus chains, starphene chains, metric dimension, partition dimension, fault-
tolerant partition dimension.

AMS Subject Classification: 05C12

1. Introduction

Chemical graph theory is an important branch of computational chemistry and graph
theory, having applications in pharmaceutical engineering and chemistry. The structure
of chemical compounds or materials can be represented by a labeled graph whose vertex
and edge labels specify the atom and bond types, respectively. A class of simple linear
polymers called cactus chains, previously known as Husimi tree were emerged in the papers
of Husimi and Riddell [13, 23]. In a cactus graph, no edge lies in more than one cycle
so each of its blocks is either an edge or a cycle. Some aspects of cactus graphs such as
bounds on the 2-domination number and k-domination on hexagonal cactus chains can
be seen in [9] and [17]. Cactus graphs are used to model electronic circuits with specific
properties [22] and have recently been considered for genome comparison [25].
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Starphene is a single ring of benzene which is surrounded by three identical arene
substituents. Due to its physicochemical properties and characteristics inherited from
arenes, starphene plays an important role in the study of organic electronics and optics.
The starphene chains are used in many organic electronics to reduce the sizes of devices.
The starphene molecules have also been used in the construction of NAND [29] and NOR
[30] gates.

Many applications in the chemical field are based upon distance related parameters.
One of these distance related parameters is metric dimension (MD) of graph that has
been used in different domains of scientific research. Slater [28] and Harary and Melter
[11] independently introduced the notion of minimum cardinality of resolving set within
the graph, known as the metric dimension .

Suppose a network of a chain, formed by m processing devices to solve some task.
Failure of any single device, will result in the replacement of another fault free unit in
a chain to continue its intended operation. A fault-tolerant system empowers a system
to perform its working even at a reduced level, rather failing in total. The extended
concept of metric dimension as fault-tolerant metric dimension (FTMD) of graphs has
been applied in different areas like resolvability of crystal structures, network analysis,
chemical structures of Methylene and mathematical formalization of woven structures [1].

Chartrand et al. [8] initiated the notion of partition dimension (PD) in graphs as a
generalized version of MD of graph. Its applications can be seen in areas of network
discovery and verification [6], combinatorial optimization [15], image processing [18] and
modelling of chemical substances [16]. The PD problem has been discussed for different
classes of graphs. The PD of certain families of toeplitz graph was computed by Luo et
al. [24] and Siddiqui et al. [27] computed the MD and PD of nanotubes. Chu et al. [10]
and Wei et al. [32] studied the PD problem for convex polytopes and cycle related graphs
respectively.

Non-deterministic polynomial time-hardness and computational complexity for param-
eters from the resolvability family are addressed by researches [7, 8, 15].

The progression in the area of investigation of partition dimension as fault-tolerant
partition dimension (FTPD) of graph was made known by Javaid et al. [26]. Kamran
et al. [4, 5, 3] computed the FTPD of mesh related networks, cycle related graphs and
chemical graphs. They also gave applications of PD and FTPD in scenario of water flow
in a locality [4] and sensors deployed in homes [5]. Asim et al. [19, 21] discussed FTPD of
toeplitz networks and 2-partition resolvability of induced subgraphs of certain hydrocarbon
nanotubes.

We protract this discipline in the paper by examining chain triangular cactus, ortho-
chain square cactus, para-chain square cactus, para-chain hexagonal cactus and starphene
chain and conclude that they have constant FTPD.

1.1. Motivation. The computational complexity of MD and FTMD motivated researchers
to compute these parameters for some specific classes. The MD and parameters related
to MD of cactus graphs have been addressed by Kuziak and Sedlar et al. [14, 25], which
motivated the present study to compute PD and FTPD for these important families of
chains to give readers more insight of cactus and starphene chains through these newly
defined distance related parameters.

2. Preliminaries

Consider a graph H of order |V (H)| having vertex and edge sets as V (H) and E(H)
respectively. The distance between two vertices t, u ∈ V (H) is the least number of edges
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in t− u path and is expressed as d(t, u). The distance between a vertex u and η ⊆ V (H)
is defined as min{d(u, y)|y ∈ η} and is denoted by d(u, η). For a vertex u ∈ V (H), N(u)
denotes the open neighbourhood whereas, N [u] denotes the closed neighbourhood of u in
H. Consider an ordered subset Γ = {τ1, τ2, . . . , τe} of vertices of H. The representation
r(u|Γ) of u in association with Γ is e-ordered distances (d(u, τ1), d(u, τ2), . . . , d(u, τe)). If
representation of all the vertices of H in association with Γ is unique, then Γ is called a
resolving set (RS) of H. The MD is defined as the least cardinality of resolving set Γ of
H symbolized by β(H).

The fault-tolerant concept of the definition of RS was introduced by Hernando et al.
[12]. If for every pair of distinct vertices ρ, u ∈ V (H), there exists at least two vertices
α1, α2 ∈ Γ such that d(ρ, αm) 6= d(u, αm) for m ∈ {1, 2}, then, the RS Γ of V (H) is called

fault-tolerant. The fault-tolerant metric dimension (FTMD) of H, symbolized by β
′
(H)

is the least number of members in fault-tolerant resolving set Γ.
Consider X = {X1, X2, . . . , Xe} having e partition classes of vertices of connected

graph H. The representation r(u|X) of vertex u associated to partition set X is e-vector
(d(u,X1), d(u,X2), . . . , d(u,Xe)). If representation of all the vertices in H are unique, then
the partition X is called resolving partition (RP) of H. We define the partition dimension
(PD) of graph H as, min{|X| : X is resolving partition of H} and is denoted by P(H).

Let X = {X1, X2, . . . , Xe} be the ordered partition of V (H) with e partition classes.
The partition X is known to be fault-tolerant resolving partition (FTRP) of H if for
every pair of distinct vertices ρ, u ∈ V (H), r(ρ|X) and r(u|X) have at least two different
coordinates. The FTPD of H is defined as the minimum number of subsets in FTRP and
is denoted by F(H).
Some Useful Results
Chartrand et al. [8] examined successive conclusions on P(H).

Proposition 2.1. [8] Let H be a connected graph with order z, then;

(a) P(H) ≤ β(H) + 1.
(b) P(H) = 2 iff H = Pz where Pz is a path.
(c) P(H) = z iff H = Kz where Kz is the complete graph.

Javaid et al. probed following conclusions on F(H).

Proposition 2.2. [26]

(a) For z ≥ 2, β
′
(H) and F(H) are related as F(H) ≤ β′(H) + 1.

(b) For z ≥ 3, 3 ≤ F(H) ≤ z.

An important result of FTPD of graph recently provided by Asim et al. is given in the
following lemma.

Lemma 2.1. [20] Let H be a graph of order z ≥ 5. If H has a node of degree at least 4,
then F(H) ≥ 4.

In this paper, Section 3, provides the computation of fault tolerant partition dimension
of triangular and square cactus chains. Section 4, provides the computation of FTPD
of para-chain hexagonal cactus graph. Section 5, is about the computation of FTPD of
starphene chain. Finally, future research direction is given in the concluding section.

3. FTPD of triangular and square cactus chains

We evaluate FTPD of triangular and square cactus chains in this section. In a graph
the length of the triangular chain is represented by the number of triangles. The chain
triangular cactus of length z has order 2z + 1 and is denoted by Rz. Chain triangular
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Figure 1. Chain triangular cactus graph R5.

cactus R5 is given in Figure 1. Wang et al. [31] computed the metric based parameters of
chain triangular cactus graph.

Lemma 3.1. [31] Let Rz be a chain triangular cactus graph with z ≥ 2. Then, β(Rz) = 2.

Lemma 3.2. [31] Let Rz be a chain triangular cactus graph, then,

β
′
(Rz) =

 3 if z = 2, 3;

4 if z ≥ 4.

We compute P(Rz) in the subsequent theorem.

Theorem 3.1. For every z ≥ 2, the PD of chain triangular cactus Rz, is 3.

Proof. It complies with Lemma 3.1, and Proposition 2.1(a), that P(Rz) ≤ 3. Also from
Proposition 2.1(b), P(Rz) ≥ 3. Thus, P(Rz) = 3, this completes the proof. �

Following theorem will allow us to compute the F(H) of chain triangular cactus.

Theorem 3.2. For every z ≥ 2, the FTPD of chain triangular cactus Rz, is 4.

Proof. Consider X = {X1, X2, X3, X4}, where, X1 = {wi : 1 ≤ i ≤ z}, X2 = {wj : z + 1 ≤
j ≤ 2z − 1}, X3 = {w2z} and X4 = {w2z+1} are partition classes of V (Rz). The r(w|X)
of Rz are shown beneath:

r(wl|X) =



(0, 1, z − l, z − l + 1) if 1 ≤ l ≤ z − 1;

(0, 2, 1, 1) if l = z;

(1, 0, 2z − l, 2z − l + 1) if z + 1 ≤ l ≤ 2z − 1;

(1, 1, 0, 1) if l = 2z;

(1, 2, 1, 0) if l = 2z + 1.

Mentioned unique identifications authenticate that X is FTRP of Rz, so, F(Rz) ≤ 4.
As Rz has vertices of degree at least 4, so from Lemma 2.1, F(Rz) ≥ 4. From both
inequalities, it is proved that F(Rz) = 4. �

3.1. FTPD of square cactus chains. A square cacti is obtained when triangles in
triangular cactus are replaced by cycles of length 4. The internal squares may connect to
their neighbors in different ways. A square is an ortho-square if cut-vertices of internal
squares are adjacent. A chain with ortho-squares is called ortho-chain square cactus and is
denoted by Oz. A square is para-square if cut-vertices of internal squares are not adjacent.
A chain with para-squares is called para-chain square cactus and is denoted by Qs. The
orders of Oz and Qz are 6z − 2 and 3z + 1 respectively. Square cactus chains O3 and Q5

are shown Figure 2 and 3 respectively.
We compute the P(Oz), F(Oz), P(Qz) and F(Qz) in the subsequent theorems.
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Figure 2. Ortho-chain square cactus O3.

Figure 3. Para-chain square cactus Q5.

Theorem 3.3. For every z ≥ 2, the partition dimension of ortho-chain square cactus
graph Oz, is 3.

Proof. Let X = {X1, X2, X3} be a set of V (Oz) for z ≥ 2, with 3 partition classes. The
r(w|X), where, X1 = {wi : 1 ≤ i ≤ 2z} ∪ {wj : 2z + 2 ≤ j ≤ 4z − 1} ∪ {w4z+1},
X2 = {w2z+1} ∪ {wj : 4z + 2 ≤ j ≤ 6z − 2} and X3 = {w4z} are shown below.

r(wl|X) =



(0, 1, 2z) if l = 1;

(0, 2, 2z − l + 1) if 2 ≤ l ≤ 2z− 1;

(0, 3, 1) if l = 2z;

(1, 0, 2z − 1) if l = 2z + 1;

(0, 1, 4z − l) if 2z + 2 ≤ l ≤ 4z − 1;

(1, 2, 0) if l = 4z;

(0, 1, 2z − 1) if l = 4z + 1;

(1, 0, 6z − l) if 4z + 2 ≤ l ≤ 6z − 2.

Mentioned distinct identifications justify that X is RP of Oz, so, P(Oz) ≤ 3. Also by
Proposition 2.1(b), P(Oz) ≥ 3, accomplishes the proof. �

Theorem 3.4. For every z ≥ 2, the FTPD of ortho-chain square cactus Oz, is 4.

Proof. Consider X = {X1, X2, X3, X4}, where, X1 = {wi : 1 ≤ i ≤ 2z} ∪ {wj : 2z + 2 ≤
j ≤ 4z−1}, X2 = {w2z+1}, X3 = {w4z} and X4 = {wj : 4z+1 ≤ j ≤ 6z−2} are partition
classes of V (Oz). The r(w|X) of Oz are given below:
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r(wl|X) =



(0, 1, 2z, 3) if l = 1;

(0, l, 2z − l + 1, 2) if 2 ≤ l ≤ 2z − 1;

(0, 2z, 1, 3) if l = 2z;

(1, 0, 2z − 1, 2) if l = 2z + 1;

(0, l − 2z − 1, 4z − l, 1) if 2z + 2 ≤ l ≤ 4z − 1;

(1, 2z − 1, 0, 2) if l = 4z;

(1, l − 4z + 1, 6z − l, 0) if 4z + 1 ≤ l ≤ 6z − 2.

Mentioned distinct identifications justify that X is FTRP of Oz, so, F(Oz) ≤ 4. As Oz

has vertices of degree at least 4, so from Lemma 2.1, F(Oz) ≥ 4. From both inequalities
F(Oz) = 4, accomplishes the proof. �

Theorem 3.5. For every z ≥ 2, the PD of para-chain square cactus Qz, is 3.

Proof. Let X = {X1, X2, X3} be a set of V (Qz) for z ≥ 2, with 3 partition classes. The
r(w|X), where, X1 = {wi : 1 ≤ i ≤ 2z}, X2 = {wj : 2z + 1 ≤ j ≤ 3z} and X3 = {w3z+1}
are shown below:

r(wl|X) =



(0, 2, 2z − 2l) if 1 ≤ l ≤ z − 1;

(0, 1, 2) if l = z;

(0, 1, 4z − 2l + 1) if z + 1 ≤ l ≤ 2z;

(1, 0, 1) if l = 2z + 1;

(1, 0, 6z − 2l + 2) if 2z + 2 ≤ l ≤ 3z;

(1, 1, 0) if l = 3z + 1.

Mentioned unique representations justify that X is resolving partition of Qz, therefore,
P(Qz) ≤ 3. Also by Proposition 2.1(b), P(Qz) ≥ 3, accomplishes the proof. �

Theorem 3.6. For every z ≥ 2, the FTPD of para-chain square cactus Qz, is 4.

Proof. Consider X = {X1, X2, X3, X4} be a set of vertices of Qz. For z = 2, consider
X1 = {w1, w2, w4}, X2 = {w3, w6}, X3 = {w5} and X4 = {w7}. Easily it can be verified
that X is fault-tolerant partition basis. For z ≥ 3, consider, X1 = {wi : 1 ≤ i ≤ 2z − 1},
X2 = {w2z, w3z, w3z+1}, X3 = {w2z+1} and X4 = {wj : 2z+ 2 ≤ j ≤ 3z− 1}. The r(w|X)
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of Qz for z ≥ 3 are given below:

r(wl|X) =



(0, 2z − 2l − 2, 2z − 2l + 1, 2) if 1 ≤ l ≤ z − 2;

(0, 1, 3, 2) if l = z − 1;

(0, 1, 1, 4) if l = z;

(0, 4z − 2l − 1, 4z − 2l + 2, 1) if z + 1 ≤ l ≤ 2z − 1;

(1, 0, 2, 3) if l = 2z;

(1, 1, 0, 5) if l = 2z + 1;

(1, 6z − 2l, 6z − 2l + 3, 0) if 2z + 2 ≤ l ≤ 3z − 1;

(1, 0, 3, 2) if l = 3z;

(2, 0, 1, 4) if l = 3z + 1.

Mentioned distinct identifications authenticate that X is FTRP of Qz, so, F(Qz) ≤ 4.
As Qz has vertices of degree at least 4, so from Lemma 2.1, F(Qz) ≥ 4. Thus F(Qs) = 4,
completes the proof. �

4. FTPD of para-chain hexagonal cactus graph

We compute the FTPD of para-chain hexagonal cactus graph in this section. A hexag-
onal cacti is obtained when triangles in triangular cactus are replaced by cycles of length
6. The internal hexagon may connect to their neighbors in different ways. Hexagon is
called an ortho-hexagon, if cut-vertices of internal hexagon are adjacent. Hexagon is called
a para-hexagon, if cut-vertices of internal hexagon are not adjacent. A chain with para-
hexagons is called para-chain hexagonal cactus and is denoted by Lz. The orders of Lz is
5z + 1. Para-chain hexagonal cactus L5 is shown Figure 4.

Figure 4. Para-chain hexagonal cactus L5.

We compute the P(Lz) and F(Lz) in the following theorems.

Theorem 4.1. For every z ≥ 2, the PD of para-chain hexagonal cactus Lz, is 3.

Proof. Let X = {X1, X2, X3} be a set of vertices of Lz for z ≥ 2. The r(w|X), where,
X1 = {wi : 1 ≤ i ≤ 3z} ∪ {w3z+2}, X2 = {w3z+1} and X3 = {wj : 3z + 3 ≤ j ≤ 5z + 1}
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are shown as follows.

r(wl|X) =



(0, 3z, 2) if l = 1;

(0, 3z − 1, 3) if l = 2;

(0, 3z − l + 1, 2) if l = 3p,where, 1 ≤ p ≤ z;
(0, 3z − l + 1, 1) if l = 3p+ 1, where, 1 ≤ p ≤ z − 1;

(0, 3z − l + 1, 2) if l = 3p+ 2,where, 1 ≤ p ≤ z − 1;

(1, 0, 1) if l = 3z + 1;

(0, 3z − 1, 1) if l = 3z + 2;

(1, b15z−3l+5
2 c, 0) if 3z + 3 ≤ l ≤ 5z;

(2, 1, 0) if l = 5z + 1.

Mentioned unique identifications authenticate that X is resolving partition of Lz, thus,
P(Lz) ≤ 3. Also by Proposition 2.1(b), P(Lz) ≥ 3, completes the proof. �

Theorem 4.2. For every z ≥ 2, the FTPD of para-chain hexagonal cactus Lz, is 4.

Proof. Consider X = {X1, X2, X3, X4} be a set of V (Lz) with 4 partition classes, where,
X1 = {wi : 1 ≤ i ≤ 3z − 1} ∪ {w5z}, X2 = {w3z}, X3 = {w3z+1} and X4 = {wj : 3z + 2 ≤
j ≤ 5z − 1} ∪ {w5z+1}. The r(w|X) of Lz are given as follows.

r(wl|X) =



(0, 3z − l, 3z − l + 1, 1) if l = 3p− 2, where, 1 ≤ p ≤ z;
(0, 3z − l, 3z − l + 1, 2) if l = 3p− 1, where, 1 ≤ p ≤ z − 1;

(0, 3z − l, 3z − l + 1, 2) if l = 3p, where, 1 ≤ p ≤ z − 1;

(0, 1, 2, 2) if l = 3z − 1;

(1, 0, 1, 2) if l = 3z;

(2, 1, 0, 1) if l = 3z + 1;

(1, b15z−3l+3
2 c, b15z−3l+5

2 c, 0) if 3z + 2 ≤ l ≤ 5z − 1;

(0, 3, 2, 1) if l = 5z;

(1, 2, 1, 0) if l = 5z + 1.

Mentioned unique representations justify that X is fault-tolerant resolving partition of
Lz, so, F(Lz) ≤ 4. As Lz has vertices of degree at least 4, so from Lemma 2.1, F(Lz) ≥ 4.
Thus, F(Lz) = 4, completes the proof. �

5. FTPD of Starphene Chain

Starphene chain belong to the family of polycyclic aromatic hydrocarbons (PAH), hav-
ing three acene arms f , g and h connected on a centered benzene ring. Starphene chain
is denoted by St(f, g, h) and its order is 4(f + g + h)− 2. The vertex set of St(f, g, h) is
V (St(f+g+h)) = {ai : 1 ≤ i ≤ 2(f+h)}∪{bi : 1 ≤ i ≤ 2(f+g)}∪{ci : 1 ≤ i ≤ 2(g+h−1)}.
Graph of St(f, g, h) is shown in Figure 5.
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Figure 5. Starphene chain St(4, 4, 4)

Ali et al. computed the partition dimension of starphene graph St(f, g, h).

Lemma 5.1. [2] The PD of starphene graph St(f, g, h) for f, g, h ≥ 2, is 3.

Lemma 5.2. [3] The FTPD of z-linear benzene Bz for z ≥ 2, is 4.

Lemma 5.3. Let H be a graph containing z-linear benzene Bz, then, F(H) ≥ 4.

Proof. It is proved in [3], that F(Bz) ≥ 4, so any graph H containing z-linear benzene
Bz, will have F(H) ≥ 4. �

In next theorem, we compute the FTPD of starphene graph St(f, g, h).

Theorem 5.1. The FTPD of starphene graph St(f, g, h) for f, g, h ≥ 2, is 4.

Proof. Consider a set X = {X1, X2, X3, X4} of vertices of St(f, g, h) for f, g, h ≥ 2. The
r(v|X), where X1 = {ai : 1 ≤ i ≤ 2(f + g)} ∪ {bi : 1 ≤ i ≤ 2(f + h)} ∪ {c2g−1, c2g},
X2 = {c1, c2}, X3 = {ci : 3 ≤ i ≤ 2g − 2} ∪ {ci : 2g + 1 ≤ i ≤ 2g + 2h − 3} and
X4 = {c2(g+h−1)} are given as follows.

r(al|X) =



(0, 2f + 2g − l, 2l + 4− l, 2f + 2h− l + 2) 1 ≤ l ≤ 2f + 2;

(0, 2g − 2p− 1, 2, 2h+ 2p− 1) l = 2f + 2p+ 1, 1 ≤ p ≤ g − 2;

(0, 2g − 2p− 2, 1, 2h+ 2p) l = 2f + 2p+ 2, 1 ≤ i ≤ g − 2;

(0, 2, 2, 2g + 2h− 3) l = 2f + 2g − 1;

(0, 1, 3, 2g + 2h− 2) l = 2f + 2g.

r(bl|X) =



(0, 2f + 2g − l + 1, 2f + 4− l, 2f + 2h− l + 1) 1 ≤ l ≤ 2f + 2;

(0, 2g + 2p− 2, 2, 2h− 2p) l = 2f + 2p+ 1, 1 ≤ p ≤ h− 1;

(0, 2g + 2p− l, 1, 2h− 2p− 1) l = 2f + 2p+ 2, 1 ≤ i ≤ h− 2;

(0, 2g + 2h− 3, 2, 1) l = 2f + 2h.



1606 TWMS J. APP. AND ENG. MATH. V.14, N.4, 2024

r(cl|X) =



(l, 0, 3− l, 2g + 2h− l − 2) 1 ≤ l ≤ 2;

(1, 2p− 1, 0, 2g + 2h− 2p− 3) l = 2p+ 1, 1 ≤ p ≤ g − 2;

(2, 2p, 0, 2g + 2h− 2p− 4) l = 2p+ 2, 1 ≤ p ≤ g − 3;

(1, 2g − 4, 0, 2h) l = 2g − 2;

(0, 2g − 4 + p, 1, 2h− p) l = 2g − 2 + p, 1 ≤ p ≤ 2;

(1, 2g − 1, 0, 2h− 3) l = 2g + 1;

(1, 2g − 2 + 2p, 0, 2h− 2p− 2) l = 2g + 2p, 1 ≤ p ≤ h− 2;

(2, 2g − 1 + 2p, 0, 2h− 2p− 3) l = 2g + 2p+ 1, 1 ≤ p ≤ h− 2;

(1, 2g + 2h− 4, 1, 0) l = 2(g + h− 1).

Above mentioned representations authenticate that X is fault-tolerant resolving parti-
tion of St(f, g, h), so, F(St(f, g, h)) ≤ 4. As St(f, g, h) contains z-linear Benzene, so by
Lemma 5.3, F(St(f, g, h)) ≥ 4. From both inequalities, F(St(f, g, h)) = 4, accomplishes
the proof. �

6. Conclusion

We considered the cactus chains for z ≥ 2, and computed that partition dimension of
these chains is 3. We also computed fault-tolerant partition dimension of cactus chains and
starphene chain. We computed that fault-tolerant partition dimension of cactus chains for
z ≥ 2, and starphene chain for f, g, h ≥ 2, is 4. The partition dimension and fault-tolerant
partition dimension of these chemical graphs are independent of number of vertices of the
graph. Future research can be focused on computing the FTPD of meta chain hexagonal
cactus and polyphenyl chains.

Acknowledgement: The authors are grateful to the reviewer’s valuable comments that
improved the manuscript.
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