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A CRANK-NICOLSON TYPE HIGHER ORDER COMPACT

EXPONENTIAL SCHEME FOR SOLVING VARIABLE ORDER TIME

FRACTIONAL MOBILE-IMMOBILE ADVECTION-DISPERSION

MODEL

S. THOMAS1, S. K. NADUPURI1,∗, §

Abstract. This paper gives the construction and analysis of a new numerical method
to solve variable order time fractional mobile-immobile transport model. The proposed
numerical method is based on Crank-Nicolson approach with fourth order accurate com-
pact exponential scheme for spatial discretization. We prove that the new scheme is
uniquely solvable and unconditionally stable. Furthermore, some numerical results are
presented to check the effectiveness of the proposed scheme and consistency of compu-
tational results with the theoretical findings.
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1. Introduction

Recently many complex phenomena with anomalous diffusion and transport dynamics
are effectively described by mathematical models using fractional derivatives than the con-
ventional integer derivatives. Numerous physical processes have been recently discovered
to display the fractional order behaviour [5, 8]. Since the models defined by the variable
order fractional derivatives are extremely complex and challenging to handle analytically,
it is desirable to find their solutions numerically due to the quick evolution of their appli-
cations. Classical advection-diffusion models are used to describe the transport in porous
media in past, but recently this phenomena is effectively described by time fractional
mobile-immobile advection-dispersion models consisting of both integer and fractional time
derivatives that describles the transport in mobile and immobile regions respectively [17].
The fractional order mobile-immobile model was first developed by Schumer et al [17]. In
[24], this model is used to simulate solute concentrations for an experiment along the river
Dee. This model characterizes a variety of issues in physical and mathematical systems,
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including heat diffusion and ocean acoustic propagation, which behave essentially like heat
dripping through a solid. The connectivity and spatial heterogeneity can be better repre-
sented by the transportation model in terms of solute movement in the total network, the
anomalous transport based on connectivity is studied in [20]. Hydrologists researching the
movement of water in saturated and unsaturated areas [3] have lauded mobile-immobile
models in great detail. Some successful applications of mobile-immobile models to explain
the anomalous movement in heterogeneous porous media can be seen in [1, 9, 21]. An alter-
native mobile–immobile model is employed for describing solute transport in both porous
and fractured media in [2]. Gao et al [4], introduced a mobile–immobile model with an
asymptotic scale-dependent dispersion function. The exploration of numerical techniques
for the fractional order mobile-immobile equation has received a lot of attention in recent
decades. The authors in [15] developed an unconditionally stable method for fractional
mobile-immobile equation. Liu and Li [10] provide a new second-order discrete finite dif-
ference technique based on an equivalent transformative Caputo formulation for a fractal
mobile-immobile transport model. Yu et al [22] introduced unconditionally stable schemes
with second-order and fourth-order spatial accuracy. Kanth and Deepika [16] proposed a
scheme by approximating spatial and temporal derivatives based on parametric spline and
quadrature formula, and the time fractional derivative in the Caputo sense. The authors
in [12] developed a fast numerical technique which is based on a fast Fourier transform
for time fractional mobile-immobile advection–diffusion model. Recently in [13], a new
scheme based on Crank–Nicolson difference method is constructed to solve time fractional
mobile-immobile advection–diffusion model in which the fractional derivative is approxi-
mated using the Atangana–Baleanu Caputo fractional derivative. In literature, there are
a few numerical schemes for mobile-immobile model with time variable fractional order.
The variable order time fractional advection–dispersion equation reads as:

∂y

∂t
+
∂γy

∂tγ
+ a

∂y

∂x
= d

∂2y

∂x2
+ f(x, t), 0 ≤ x ≤ L, 0 ≤ t ≤ T. (1)

with the initial condition u(x, 0) = φ(x), 0 ≤ x ≤ L, and boundary conditions u(0, t) =
u(L, t) = 0, a 6= 0, d > 0, 0 < γ(x, t) < 1. In [23], a scheme is derived based on
BDF, central differences in space and an implicit Euler in time for solving (1). A Crank-
Nicolson approach was utilised by Liu and Li [11] for numerically solving this model.
There are other numerical methods like, Jiang and Liu [6] used the collocation method
and reproducing Kernal theory to solve the time variable fractional order mobile-immobile
advection-dispersion model. A numerical simulation of this model based on a finite dif-
ference scheme in time and Legendre spectral method in space is taken into account by
Pourbashash [14]. In this paper, we derive a new higher order accurate numerical method
based on Crank-Nicolson approach to solve (1) subject to initial and boundary conditions.
The time fractional derivative is considered in the Caputo sense, the integer derivative
with central difference and the spatial part is discretized with the fourth order compact
exponential method. It has been demonstrated that our method is unconditionally sta-
ble, uniquely solvable and also the convergence analysis is performed. To illustrate the
convergence and correctness of the new method, some test problems are presented.

This paper is organized as follows. In Section 2, we derive a new numerical technique
for solving equation (1) by first applying a fourth order exponential compact scheme for
the steady state problem. Then a Crank-Nicolson approach is adopted to derive the new
scheme for the unsteady case. In Section 3, the uniqueness of the solution is proved. Also
the convergence and unconditional stability are verified using the Fourier analysis. In
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Section 4, the theoretical deductions are supported by a few numerical examples and the
results are compared with some existing methods. In the end, conclusions are made.

2. Derivation of the numerical scheme

Let Ω = 0 ≤ x ≤ L and h = xi+1 − xi, i = 0, 1, 2, . . .M − 1. Divide the time interval

[0, T ] uniformly with step size τ =
tn
n

; tn is the nth time level.

Definition 2.1. The fractional derivative of order τ2−γ at t = tn+ 1
2

is defined by

∂γy

∂tγ

∣∣∣∣
(xi,tn+1

2
)

=
τ−γ

Γ(2− γ)

[
g1y

n
i +

n−1∑
l=1

(gn−l+1 − gn−l) yli − gny0
i +

yn+1
i − yni

21−γ

]
+O

(
τ2−γ) ,

(2)
where gj = (j + 1

2)1−γ − (j − 1
2)1−γ which satisfies g1 ≥ g2 ≥ g3 ≥ . . . ≥ 0, (see [7]).

The derivation of similar type of approximation of fractional derivative for solving time
fractional diffusion-wave system can be found in [18].
First, consider the steady state equation of (1), given by

a
∂y

∂x
− d∂

2y

∂x2
= F, in Ω. (3)

The fourth order exponential compact scheme [19] for (3) is

−ωδ2
xyi + aδxyi = Fi + ω1δxFi + ω2δ

2
xFi, (4)

where

ω =
ah

2
coth

(
ah

2d

)
, ω1 =

d− ω
a

, ω2 =
d(d− ω)

a2
+
h2

6
,

δx and δ2
x, for x ∈ (xi−1, xi+1), i = 1, 2, ...,M − 1, are the standard second order central

difference operators for first and second order derivatives respectively. Replacing F with

−∂y
∂t
− ∂γy

∂tγ
+ f in equation (4), a fourth order semi-discrete approximation for (1) is

obtained as(ω2

h2
− ω1

2h

)(∂y
∂t

+
∂γy

∂tγ
− f

)n+ 1
2

i−1

+

(
1− 2ω2

h2

)(
∂y

∂t
+
∂γy

∂tγ
− f

)n+ 1
2

i

+
(ω2

h2
+
ω1

2h

)(∂y
∂t

+
∂γy

∂tγ
− f

)n+ 1
2

i+1

=
( ω
h2

+
a

2h

)
y
n+ 1

2
i−1 −

2ω

h2
y
n+ 1

2
i +

( ω
h2
− a

2h

)
y
n+ 1

2
i+1 .

(5)
The time derivatives of integer order in (5) are replaced with central differences and the
fractional order is approximated by the definition 2.1. After rearranging the terms, the
scheme for (1) is obtained as the following system of equations[

1

2

( ω
h2
− a

2h

)
− µ

(ω2

h2
+
ω1

2h

)]
y1
i+1 +

[
− ω
h2
− µ

(
1− 2ω2

h2

)]
y1
i

+

[
1

2

( ω
h2

+
a

2h

)
− µ

(ω2

h2
− ω1

2h

)]
y1
i−1 =

[
−1

2

( ω
h2
− a

2h

)
− µ

(ω2

h2
+
ω1

2h

)]
y0
i+1

+

[
ω

h2
− µ

(
1− 2ω2

h2

)]
y0
i +

[
−1

2

( ω
h2

+
a

2h

)
− µ

(ω2

h2
− ω1

2h

)]
y0
i−1

−
[(ω2

h2
+
ω1

2h

)
f

1
2
i+1 +

(
1− 2ω2

h2

)
f

1
2
i +

(ω2

h2
− ω1

2h

)
f

1
2
i−1

]
, 1 ≤ i ≤M − 1,

(6)
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and[
1

2

( ω
h2
− a

2h

)
− µ

(ω2

h2
+
ω1

2h

)]
yn+1
i+1 +

[
− ω
h2
− µ

(
1− 2ω2

h2

)]
yn+1
i

+

[
1

2

( ω
h2

+
a

2h

)
− µ

(ω2

h2
− ω1

2h

)]
yn+1
i−1 =

[
−1

2

( ω
h2
− a

2h

)
− (µ− g1)

(ω2

h2
+
ω1

2h

)]
yni+1

+

[
ω

h2
− (µ− g1)

(
1− 2ω2

h2

)]
yni +

[
−1

2

( ω
h2

+
a

2h

)
− (µ− g1)

(ω2

h2
− ω1

2h

)]
yni−1

+

n−1∑
l=1

(gn−l+1 − gn−l)
[(ω2

h2
+
ω1

2h

)
yli+1 +

(
1− 2ω2

h2

)
yli +

(ω2

h2
− ω1

2h

)
yli−1

]
− gn

[(ω2

h2
+
ω1

2h

)
y0
i+1 +

(
1− 2ω2

h2

)
y0
i +

(ω2

h2
− ω1

2h

)
y0
i−1

]
−
[(ω2

h2
+
ω1

2h

)
f
n+ 1

2
i+1 +

(
1− 2ω2

h2

)
f
n+ 1

2
i +

(ω2

h2
− ω1

2h

)
f
n+ 1

2
i−1

]
, 1 ≤ i ≤M − 1, 1 ≤ n ≤ N,

(7)

where µ =
1

τ
+

τ−γ

21−γΓ(2− γ)
. The solution of equations (6)-(7) for 0 < γ(x, t) < 1, gives

the solution to equation (1).

3. Analysis of the proposed scheme

In this section, we provide the mathematical analysis of the proposed scheme. First, we
show that the scheme (6) and (7) for (1) is uniquely solvable.

Theorem 3.1. The proposed new scheme (6)-(7) has a unique solution.

Proof. The linear system (6)-(7) which is expressed as in the following matrix form has
unique solution if the matrix A is invertible. Let

AY n+1 =
n∑
l=0

BlY
l + Cn+ 1

2 ,

where A = tridiag(L,D,U), with L =
1

2

( ω
h2

+
a

2h

)
− (µ− g1)

(ω2

h2
− ω1

2h

)
,

D =
ω

h2
− (µ− g1)

(
1− 2ω2

h2

)
and U =

1

2

( ω
h2
− a

2h

)
− (µ− g1)

(ω2

h2
+
ω1

2h

)
.

Note that
ω

h2
± a

2h
=

d

h2

(
ah

2d
coth

(
ah

2d

)
± ah

2d

)
≥ 0.

Using Lemmas 1 and 3 in [19], we get∣∣∣ ω
h2

+
a

2h

∣∣∣+
∣∣∣ ω
h2
− a

2h

∣∣∣ =

∣∣∣∣2ωh2

∣∣∣∣ =
2ω

h2
.

Also since, 1− 2ω2

h2
=

∣∣∣∣1− 2ω2

h2

∣∣∣∣ > ∣∣∣ω2

h2
+
ω1

2h

∣∣∣+
∣∣∣ω2

h2
− ω1

2h

∣∣∣, we obtain

|L|+ |U | ≤ |µ− g1|
(∣∣∣ω2

h2
+
ω1

2h

∣∣∣+
∣∣∣ω2

h2
− ω1

2h

∣∣∣)+
1

2

(∣∣∣ ω
h2

+
a

2h

∣∣∣+
∣∣∣ ω
h2
− a

2h

∣∣∣)
< |µ− g1|

∣∣∣∣(1− 2ω2

h2

)∣∣∣∣+

∣∣∣∣2ωh2

∣∣∣∣ =

∣∣∣∣(µ− g1)

(
1− 2ω2

h2

)
+

2ω

h2

∣∣∣∣= |D|. (8)
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Hence the matrix A is strictly diagonaly dominant. This completes the proof. �

3.1. Stability analysis. In this section, we provide the stability analysis of the proposed
scheme (6)-(7). In the beginning we give some preliminaries and notations required in the
subsequent analysis. We denote

s1 =
1

2

( ω
h2
− a

2h

)
− µ

(ω2

h2
+
ω1

2h

)
, s2 = − ω

h2
− µ

(
1− 2ω2

h2

)
,

s3 =
1

2

( ω
h2

+
a

2h

)
− µ

(ω2

h2
− ω1

2h

)
, z1 = −1

2

( ω
h2
− a

2h

)
− µ

(ω2

h2
+
ω1

2h

)
,

z2 =
ω

h2
− µ

(
1− 2ω2

h2

)
, z3 = −1

2

( ω
h2

+
a

2h

)
− µ

(ω2

h2
− ω1

2h

)
,

w1 =
(ω2

h2
+
ω1

2h

)
, w2 =

(
1− 2ω2

h2

)
, w3 =

(ω2

h2
− ω1

2h

)
.

(9)

Let Ỹ n
j be the approximate solution of (6)-(7) and denote, ρnj = Y n

j − Ỹ n
j , 1 ≤ j ≤

M − 1, 0 ≤ n ≤ N, with corresponding vector ρn =
(
ρn1 , ρ

n
2 , . . . , ρ

n
M−1

)T
. Define ρn(x) :

[0, L]→ R as

ρn(x) =

{
ρnj , in xj−h

2
< x ≤ xj+h

2
, 1 ≤ j ≤M − 1,

0, in 0 ≤ x ≤ h/2 and L− h/2 < x ≤ L.

The Fourier series for ρn(x) can be expressed as ρn(x) =
∞∑

l=−∞
ξn(l)e2πilx/L. For any vector

y ∈ RM−1, the discrete l2 norm is considered as ‖y‖l2 =

(
h
M−1∑
j=1

y2
j

) 1
2

. The discrete

Fourier coefficients are given by ξn(l) =
1

L

∫ L

0
ρn(x)e−2πilx/Ldx. The Parseval’s equality

for the discrete Fourier transform is

‖ρn‖2l2 =

M−1∑
j=1

h
∣∣ρnj ∣∣2 =

∫ L

0
|ρn(x)|2 dx =

∞∑
l=−∞

|ξn(l)|2 .

Suppose ρnj = ξneiσjh, where σ = 2πl/L. Then the approximate error equation for (6) can
be obtained as

s1ρ
1
j+1 + s2ρ

1
j + s3ρ

1
j−1 = z1ρ

0
j+1 + z2ρ

0
j + z3ρ

0
j−1, for n = 1, (10)

is transformed to

ξ1((s1 + s3) cosσh+s2 +i (s1 − s3) sinσh) = ((z1 + z3) cosσh+ z2 + i (w1 − z3) sinσh) ξ0.
(11)

Similarly the error equation for (7) can be obtained as

s1ρ
n+1
j+1 + s2ρ

n+1
j + s3ρ

n+1
j−1 =

(
z1ρ

n
j+1 + z2ρ

n
j + z3ρ

n
j−1

)
+ a1

(
w1ρ

n
j+1 + w2ρ

n
j + w3ρ

n
j−1

)
+

n−1∑
l=1

(gn−l+1 − gn−l)
(
w1ρ

l
j+1 + w2ρ

l
j + w3ρ

l
j−1

)
− an

(
w1ρ

0
j+1 + w2ρ

0
j + w3ρ

0
j−1

)
,

(12)
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for n ≥ 1, is transformed to

((s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh)ξn+1

=

[
[(z1 + z3) cosσh+ z2 + i (z1 − z3) sinσh] ξn

+ g1 [(w1 + w3) cosσh+ w2 + i (w1 − w3) sinσh] ξn

− gn [(w1 + w3) cosσh+ w2 + i (w1 − w3) sinσh] ξ0

+
n−1∑
l=1

(gn−l+1 − gn−l) [(w1 + w3) cosσh+ w2 + i (w1 − w3) sinσh] ξl
]
.

(13)

Theorem 3.2. The proposed new scheme (6)-(7) is unconditionally stable.

Proof. Denote v =
ah

2d
, then ω = dv coth(v), ω2 =

(
d

a

)2

(1− v coth(v)) +
h2

6
and consider

|(s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh| − |(z1 + z3) cosσh+ z2 + i (z1 − z3) sinσh|

=

[(
ω

h2
− 2ω2

h2
µ

)
cosσh−

(
ω

h2
+

(
1− 2ω2

h2

)
µ

)]2

+
( a

2h
+
ω1

h
µ
)2

sinσ2h

−

[[
−
(
ω

h2
+

2ω2

h2
µ

)
cosσh+

(
ω

h2
−
(

1− 2ω2

h2

)
µ

)]2

+
( a

2h
− ω1

h
µ
)2

sinσ2h

]

= 8
(ωω2

h4
µ cosσh

)
(1− cosσh) + 4µ

ω

h2

(
1− 2ω2

h2

)
(1− cosσh) + 2

a

h2
ω1µ sin2 σh

= 2 sin2 σh

2
µ

(
8
ωω2

h4
cosσh+ 4

ω

h2

(
1− 2ω2

h2

))
+ 8µ

d− ω
h2

sin2 σh

2
cos2 σh

2

=
8µ

h2
sin2 σh

2

(
ω

(
1− 4ω2

h2
sin2 σh

2

)
+ (d− ω) cos2 σh

2

)
=

8µ

h2
sin2 σh

2

(
ω
(

1− 4
ω2

h2

)
sin2

(
σh

2

)
+ d cos2

(
σh

2

))
≥ 8µ

h2
sin2 σh

2

(
du coth(v)

(
1

3
+ 4

(
d

ah

)2

(v coth(v)− 1)

)
sin2

(
σh

2

))
≥ 0.

Hence
|(z1 + z3) cosσh+ z2 + i (z1 − z3) sinσh|
|(s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh|

≤ 1. (14)

Therefore by (11), we have |ξ1| ≤ |ξ0|. With the assumption, |ξn| ≤
∣∣ξ0
∣∣ , n = 1, 2, . . . , k

and equation (13), we can obtain∣∣∣ξk+1
∣∣∣ ≤ 1

|(s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh|

[
| (z1 + z3) cosσh+ z2

+ i (z1 − z3) sinσh||ξk|+
∣∣∣∣g1((w1 + w3) cosσh+ w2 + i (w1 − w3) sinσh)(ξk)

+
k−1∑
l=1

(gk−l+1 − gk−l) ((w1 + w3) cosσh+ w2 + i (w1 − w3) sinσh)(ξl)

− gk((w1 + w3) cosσh+ w2 + i (w1 − w3) sinσh)(ξ0)

∣∣∣∣]
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=

∣∣∣∣ (z1 + z3) cosσh+ z2 + i (z1 − z3) sinσh

(s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh

∣∣∣∣ ∣∣ξ0
∣∣ ≤ ∣∣ξ0

∣∣ .
Thus by induction, we can say that |ξn| ≤ |ξ0| for all n. Hence, we obtain

‖ρn‖2l2 = h

M−1∑
j=1

∣∣ρnj ∣∣2 =
h

L

M−1∑
j=1

∣∣∣ξneiσjh∣∣∣2 ≤ h

L

M−1∑
j=1

∣∣ξ0
∣∣2 =

h

L

M−1∑
j=1

∣∣∣ξ0eiσjh
∣∣∣2 =

∥∥ρ0
∥∥2

l2
,

n = 1, 2, . . . , N . This completes the proof. �

3.2. Convergence analysis. This section uses a Fourier analysis approach to verify the
convergence of the suggested compact numerical technique. Use enj = ynj − Y n

j , 1 ≤ j ≤
M − 1 and 1 ≤ n ≤ N , to denote the error in the numerical solution. The error equation
at t = t1 is

s1e
1
j+1 + s2e

1
j + s3e

1
j−1 =

(
z1e

0
j+1 + z2e

0
j + z3e

0
j−1

)
+R

1
2
j , (15)

and for n ≥ 1, we have

s1e
n+1
j+1 + s2e

n+1
j + s3e

n+1
j−1

=
(
z1e

n
j+1 + z2e

n
j + z3e

n
j−1

)
+

n−1∑
l=1

(gn−l+1 − gn−l)
(
w1e

l
j+1 + w2e

l
j + w3e

l
j−1

)
+ g1

(
w1e

n
j+1 + w2e

n
j + w3e

n
j−1

)
− gn

(
w1e

0
j+1 + w2e

0
j + w3e

0
j−1

)
+R

n+ 1
2

j .

(16)

Due to the initial and boundary conditions, we have e0
j = 0, 0 ≤ j ≤M and

en0 = enM = 0, 0 ≤ n ≤ N . Define en(x) : [0, L]→ R and Rn+ 1
2 (x) : [0, L]→ R as

en(x) =

{
enj , xj−h

2
< x ≤ xj+h

2
, 1 ≤ j ≤M − 1,

0, 0 ≤ x ≤ h
2 and L− h

2 < x ≤ L,
(17)

and

Rn+ 1
2 (x) =

{
R
n+ 1

2
j , xj−h

2
< x ≤ xj+h

2
, 1 ≤ j ≤M − 1,

0, 0 ≤ x ≤ h
2 and L− h

2 < x ≤ L,
(18)

Consequently, the Fourier series for en(x) and Rn+ 1
2 (x) can be described as

en(x) =
∞∑

l=−∞
ηn(l)e2πilx/L and Rn+ 1

2 (x) =
∞∑

l=−∞
ζn+ 1

2 (l)e2πilx/L, (19)

where

ηn(l) =
1

L

∫ L

0
en(x)e−2πilx/Ldx and ζn+ 1

2 (l) =
1

L

∫ L

0
Rn+ 1

2 (x)e−2πilx/Ldx.

For en ∈ RM−1 and Rn+ 1
2 ∈ RM−1, we have

‖en‖2l2 =

M−1∑
n=1

h
∣∣enj ∣∣2 =

∫ L

0
|en(x)|2 dx =

∞∑
l=−∞

|ηn(l)|2 , (20)

∥∥∥Rn+ 1
2

∥∥∥2

l2
=

M−1∑
n=1

h

∣∣∣∣Rn+ 1
2

j

∣∣∣∣2 =

∫ L

0

∣∣∣Rn+ 1
2 (x)

∣∣∣2 dx =

∞∑
l=−∞

∣∣∣ζn+ 1
2 (l)

∣∣∣2 . (21)

By equation (21), there exists a constant K2 > 0, such that

|ζn+ 1
2 | = |ζn+ 1

2 (l)| ≤ 1

3
K2|ζ

1
2 (l)| = 1

3
K2|ζ

1
2 |, n = 0, 1, 2, . . . , N − 1. (22)



1616 TWMS J. APP. AND ENG. MATH. V.14, N.4, 2024

Let σ = 2πl/L, substituting enj = ηneiσjh, R
n+ 1

2
j = ζn+ 1

2 eiσjh in equations (15) and (16)
and by noting that η0 = 0, we get

η1((s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh) = ζ
1
2 , for t = t1, and

ηn+1((s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh) =

[
[(z1 + z3) cosσh+ z2

+ i (z1 − z3) sinσh]ηn + g1 ((w1 + w3) cosσh+ w2 + i (w1 − w3) sinσh) ηn

+

n−1∑
l=1

(gn−l+1 − gn−l) [(w1 + w3) cosσh+ w2 + i (w1 − w3) sinσh] ηl + ζn+ 1
2

]
, for n ≥ 1.

Lemma 3.1. The following inequality holds for 0 < τ < 1,

| (s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh| ≥ 1

3
. (23)

Proof. For τ ∈ (0, 1), we have

| (s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh|

=

∣∣∣∣( ω

h2
− 2ω2

h2
µ

)
cosσh+

(
ω

h2
−
(

1− 2ω2

h2

)
µ

)
− i
( a

2h
+
ω1

h
µ
)

sinσh

∣∣∣∣
≥
∣∣∣∣( ω

h2
− 2ω2

h2
µ

)
cosσh−

(
ω

h2
+

(
1− 2ω2

h2

)
µ

)∣∣∣∣
=

∣∣∣∣(1− cosσh)

(
2ω2

h2
µ− ω

h2

)
− µ

∣∣∣∣
=

∣∣∣∣∣(1− cosσh)

[
2µ

h2

((
d

a

)2

(1− v coth v) +
h2

6

)
− ω

h2

]
− µ

∣∣∣∣∣
=

∣∣∣∣∣(1− cosσh)
2µ

h2

(
d

a

)2

(v coth v − 1) + µ

(
1− (1− cosσh)

3

)
+ ω

(1− cosσh)

h2

∣∣∣∣∣
≥
∣∣∣∣µ(1− (1− cosσh)

3

)∣∣∣∣ ≥ 1

3τ
>

1

3
.

This completes the proof. �

Lemma 3.2. The following inequality holds

|ηn+1| ≤ K2((n+ 1)τ)|ζ
1
2 |, n = 0, 1, 2, . . . (24)

Proof. For n = 0, by means of of Lemma 3.1 and the inequality (22), we have

|η1| = |ζ
1
2 |

| (s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh|
≤ 3|ζ

1
2 | ≤ K2τ |ζ

1
2 |. (25)
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For sufficiently large n, assume
∣∣ηj∣∣ ≤ jK2τ

∣∣∣ζ 1
2

∣∣∣ for j = 1, 2, , · · · , n. Then by using (2.1),

Lemma 3.1 and the inequality (22), we get∣∣ηn+1
∣∣ ≤ 1

| (s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh|

[
| (z1 + z3) cosσh+ z2

+ i (z1 − z3) sinσh||ηn|+
∣∣∣∣g1 ((w1 + w3) cosσh+ w2 + i (w1 − w3) sinσh) ηn

+
n−1∑
l=1

(gn−l+1 − gn−l) ((w1 + w3) cosσh+ w2 + i (w1 − w3) sinσh) ηl
∣∣∣∣+|ζn+ 1

2 |
]

≤
K2(nτ)

∣∣∣ζ 1
2

∣∣∣
|(s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh|

[
|(z1 + z3) cosσh+ z2 + i (z1 − z3) sinσh|

]

+

∣∣∣ζn+ 1
2

∣∣∣
|(s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh|

≤ K2(nτ)|ζ
1
2 |

|(s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh|

[
|(z1 + z3) cosσh+ z2 + i (z1 − z3) sinσh|

]

+

1
3K2τ

∣∣∣ζ 1
2

∣∣∣
|(s1 + s3) cosσh+ s2 + i (s1 − s3) sinσh|

≤ K2(nτ)
∣∣∣ζ 1

2

∣∣∣+K2τ
∣∣∣ζ 1

2

∣∣∣ = K2((n+ 1)τ)
∣∣∣ζ 1

2

∣∣∣ .
The proof is completed. �

Theorem 3.3. The proposed exponential numerical scheme (6)-(7) is convergent
of O

(
τ2−γ + h4

)
.

Proof. Local truncation error of (6)-(7) is R
n+ 1

2
j = O

(
τ2−γ + h4

)
, hence there exists a

constant K3 > 0 satisfying∥∥∥Rn+ 1
2

∥∥∥2

l2
=

M−1∑
j=1

h

∣∣∣∣Rn+ 1
2

j

∣∣∣∣2 ≤ LK2
3

(
τ2−γ + h4

)2
, n = 0, 1, . . . , N − 1.

Since nτ ≤ T and using Lemma 3.2, we obtain

‖en‖2l2 =
∞∑

l=−∞
|ηn(l)|2 ≤

∞∑
l=−∞

K2
2 (nτ)2

∣∣∣ζ 1
2

∣∣∣2 = K2
2 (nτ)2

∞∑
l=−∞

∣∣∣ζ 1
2

∣∣∣2
= K2

2 (nτ)2
∥∥∥R 1

2

∥∥∥2

l2
≤ K2

2 (nτ)2LK2
3

(
τ2−γ + h4

)2 ≤ K2
(
τ2−γ + h4

)2
.

where K = K2K3T
√
L, that is

‖en‖l2 ≤ K
(
τ2−γ + h4

)
,

which completes the proof. �

4. Numerical observations

This section provides some numerical examples to demonstrate the accuracy and relia-
bility of the proposed scheme (6)-(7) for solving equation (1). We compare the accuracy
of the proposed scheme with that of the methods in [11, 16].
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4.1. Example 1. Consider the equation (1) with a = 1, d = 1 and f = t1−γ

Γ(2−γ) sin(πx)

+ sin(πx) + πt cos(πx) + π2t sin(πx), subject to the initial and boundary conditions
y(x, 0) = 0, 0 ≤ x ≤ 1, y(0, t) = 0, y(1, t) = 0, t > 0. The example above has an
analytical solution, which is y(x, t) = t sin(πx). Table 1 displays the maximum absolute
error for different fractional orders. This table gives a clear illustration that the results
with proposed compact exponential method are better than spline approximation method
given in [16] with α = 1

12 , β = 5
12 which is the best among the tabulated values of Table 1

in [16]. Fig. 1 presents the plots of the numerical and analytical solutions of Example 1
at different time levels and the space-time graph framed with T = 1 for γ = 0.5.

γ = 0.75 γ = 0.95
h k Ravi [16] Present Order Ravi[16] Present Order

1/8 1/12 8.7632e-04 4.8407e-05 4.3792e-03 4.8305e-05
1/16 1/36 2.1182e-04 3.0195e-06 4.0028 9.3521e-04 3.0131e-06 4.0029
1/32 1/108 5.2614e-05 1.8862e-07 4.0008 2.2423e-04 1.8822e-07 4.0008
1/64 1/324 1.3189e-05 1.1787e-08 4.0002 5.5504e-05 1.1762e-08 4.0002

Table 1. Maximum absolute error for Example 1 with T = 1.
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Figure 1. Numerical and exact solutions for various T (left) and space-
time graph with T = 1 (right) of Example 1 with h = 1/50, τ = 1/50 and
γ = 0.5.

4.2. Example 2. Consider the equation (1) with a = 1, d = 1 and f = 10(x − x2)2 +

10(x− x2)2t1−γ(x,t)

Γ(2− γ(x, t))
+ 20(t + 1)(x − 3x2 + 2x3) − 20(t + 1)(1 − 6x + 6x2), subject to

conditions y(x, 0) = 10(x − x2)2, 0 ≤ x ≤ 1 and y(0, t) = 0, y(1, t) = 0, t > 0. Let
γ(x, t) = 0.8 + 0.005 cos(xt) sin(x), then the analytical solution is y(x, t) = 10(x−x2)2(t+
1). The discrete l2 error for example 2 at time T = 1 with h = τ is displayed in Table
2. This table reveals that the proposed scheme betters the method used in [11]. The left
of Fig. 2 depicts the solution behaviour at different time levels and the right shows the
space-time graph with T = 1.
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h Liu [11] Present Order
1/8 5.1370e-02 7.7726e-05
1/16 1.2871e-02 4.8588e-06 3.9997
1/32 3.2194e-03 3.0374e-07 3.9997
1/64 8.0498e-04 1.9019e-08 3.9973
1/128 2.0124e-04 1.2145e-09 3.9690

Table 2. Discrete l2 error at T = 1 of Example 2.
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Figure 2. Numerical and exact solutions of Example 2 for various values
of time T with h = 1/16, τ = 1/16 (left). Space-time graph of Example 1
with h = 1/32, τ = 1/32 and T = 1 (right).

4.3. Example 3. Consider the equation (1) with a = 1, d = 1 and f = 5x(1 − x) +

5x(1− x)t1−γ(x,t)

Γ(2− γ(x, t))
+5(t+1)(1−2x)+10(t+1), subject to the boundary conditions y(0, t) =

0, y(1, t) = 0, t > 0 and initial condition y(x, 0) = 5x(1 − x), 0 ≤ x ≤ 1. Let γ(x, t) =
0.8 + 0.005 cos(xt) sin(x), then the analytical solution is y(x, t) = 5(t+ 1)x(1− x). Table
3 shows the absolute error of example 3 with different space and time steps. This table
provides a good demonstration of the accuracy of the proposed scheme.

h = τ = 1/10 h = τ = 1/100
x T = 0.1 T = 1 T = 0.1 T = 1

0.1 8.2919e-07 1.0851e-07 5.2888e-09 9.3762e-10
0.2 9.3501e-07 9.8422e-08 6.5150e-09 1.0375e-09
0.3 6.4491e-07 6.2466e-08 4.7893e-09 6.2910e-10
0.4 1.7048e-07 4.9039e-09 1.2742e-09 1.6469e-11
0.5 3.4518e-07 5.2978e-08 2.8907e-09 5.4839e-10
0.6 7.9731e-07 8.9393e-08 6.6454e-09 8.8806e-10
0.7 1.0979e-06 9.2427e-08 9.0285e-09 9.1808e-10
0.8 1.1560e-06 6.5343e-08 9.1814e-09 6.6191e-10
0.9 8.5230e-07 3.5247e-08 6.3652e-09 2.6367e-10

Table 3. Absolute error for Example 3.
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5. Conclusions

A new numerical scheme with fourth order accuracy in space based on Crank-Nicolson
approach is derived in this work to solve the time fractional variable order mobile-immobile
advection-dispersion model. We proved that the scheme is uniquely solvable, uncondi-
tionally stable and performed the convergence analysis. Numerical examples reveals the
effectiveness of the proposed scheme and the compatibility with the theoretical results.
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