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ACCURATE NUMERICAL SCHEME FOR SINGULARLY PERTURBED

TIME DELAYED PARABOLIC DIFFERENTIAL EQUATIONS

N. T. NEGERO1∗, G. F. DURESSA2, §

Abstract. For the numerical solution of the singularly perturbed parabolic convection-
diffusion equation with large time delays, a novel class of fitted operator finite difference
method is constructed using the Mickens-type scheme. Since the perturbation param-
eter is the source for the simultaneous occurrence of time-consuming and high-speed
phenomena in physical systems that depend on present and past history, our study here
is to capture the effect of the parameter on the boundary layer. The time derivative is
suitably replaced by a Crank-Nicolson-based scheme, followed by the spatial derivative,
which is replaced by a non-standard fitted operator scheme. First-order error bounds in
space and second-order error bounds in time are established to provide numerical results.

Keywords: singular perturbation; large time delay; parabolic convection-diffusion prob-
lem; denominator function; uniformly convergent.
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1. Introduction

A realistic model with time delay partial differential equations has significantly more
complicated dynamics than a model without time delay partial differential equations,
because a time delay can cause a stable equilibrium to become unstable. Such type of
equation arises frequently in the mathematical modelling of science and engineering. A
few classical examples involves, for example, control theory [30], population dynamics[15],
immune response [4], and chemical kinetics [7]. A wide range of delay parabolic partial
differential equations models can be found in Wu [33]. The occurrence of boundary layer
in singular perturbation problem was originated in nineteenth century [31]. The solution
to such problems undergoes abrupt changes in narrow regions of the domain due to the
multiscale character of the associated perturbation parameter(s) [6, 9]. For the numerical
solution of singularly perturbed delay partial differential equations, layers are connected
with additional difficulties; besides instabilities of certain discretization methods, high
computational costs and insufficient resolution are essentially due to the existence of layers
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[3, 6, 7, 10]. Solutions of time delay differential equations are of immense interest, equally
in applications and theory.

Much attention has been paid to delay parabolic differential equations and their numeri-
cal approximations. Among the first rigorous numerical treatments of singularly perturbed
parabolic delay differential equations with delay is the pioneering work of Ansari et al.
[1] in which second order singularly perturbed delay parabolic differential equations are
approximated by finite differences on piecewise Shishkin meshes. In [18, 19, 20, 21] authors
solve convection-diffusion singularly perturbed parabolic problems with two small param-
eters. In the papers, [2, 5, 8, 12, 13, 14, 27, 28, 29, 32], the authors considered numerical
study of one parameter singularly perturbed parabolic convection-diffusion equation with
time delay.

Except for the authors in[22, 23, 24, 25, 26] most of the previous works for numerical
solution of singularly perturbed delay parabolic partial differential equations of convection-
diffusion type have been studied on the ε-uniform convergence of solutions based on fitted
mesh, and a few interest has been paid to the construction of fitted operator finite difference
methods of solutions. As a result, when the perturbation parameter ε becomes very small,
it is critical to improve appropriate numerical techniques to cope with the oscillatory
character of the solutions, whose accuracy is independent of the parameter value ε.

In this work, we proposed a numerical scheme using a denominator function. Moreover,
the goal of this study is to implement more accurate, stable and uniformly convergent
numerical scheme for solving singularly perturbed parabolic convection-diffusion problem
having large time delay.

2. Problem formulation

Let Ωx = (0, 1), D = Ωx × (0, T ], and Γ = Γl ∪ Γb ∪ Γr, where Γl and Γr are the left and
the right side of the rectangular domain D corresponding to x = 0 and x = 1, respectively
and Γb = [0, 1]× [−τ, 0]. Here in this paper, we consider the following class of second-order
singularly perturbed time delayed one-dimensional parabolic convection-diffusion problem:

£ε,xu(x, t) ≡ ∂u(x, t)

∂t
− εuxx(x, t) + a(x, t)ux(x, t) + b(x, t)u(x, t) =

− c(x, t)u(x, t− τ) + f(x, t),∀(x, t) ∈ D,
(1)

initial condition

u(x, t) = φb(x, t), (x, t) ∈ Γb, (2)

and subject to the boundary condition

u(0, t) = φl(t), Γl = {(0, t) : 0 ≤ t ≤ T}, (3)

u(1, t) = φr(t), Γr = {(1, t) : 0 ≤ t ≤ T}. (4)

0 < ε� 1 is a singular perturbation parameter and τ > 0 represents the delay param-
eter and the functions a(x, t), b(x, t), c(x, t), f(x, t) on D and φb(x, t), φl(t), φr(t) on Γ
are sufficiently smooth, bounded functions and independent of ε. For small values of
perturbation parameter(ε→ 0) the solution of the problem typically exhibits layer behav-
ior depending on the sign of the convection term. When a(x, t) ≥ α > 0, b(x, t) ≥ β > 0,
c(x, t) ≥ ϑ > 0, (x, t) ∈ D, the solutions of (1)-(4) exhibits boundary layer along x = 1(i.e,
in the neighborhood of Γr).
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3. Bounds for the solution of the continuous problem

Lemma 3.1 (Continuous maximum principle). Let Ψ(x, t) ∈ C2 (D) ∩ C0
(
D̄
)
, with

£ε,xΨ (x, t) ≥ 0 in D and Ψ(x, t) ≥ 0 for all (x, t) ∈ Γ. Then we have Ψ(x, t) ≥ 0,
∀(x, t) ∈ D̄.

Proof. Suppose there exists (x∗, t∗) ∈ D̄ be such that Ψ (x∗, t∗) = min(x,t)∈D̄ Ψ (x, t) and

suppose that Ψ (x, t) < 0 which implies (x∗, t∗) /∈ Γ as Ψ(x, t) ≥ 0 on Γ. Then, we
have Ψx (x∗, t∗) = Ψt (x∗, t∗) = 0 and Ψxx (x∗, t∗) ≥ 0 and thus £ε,xΨ (x∗, t∗) < 0 which
contradicts the given hypothesis and hence Ψ(x, t) ≥ 0, ∀(x, t) ∈ D̄. �

Lemma 3.2. The solution u (x, t) of the continuous problem (1)-(4) satisfy the following
estimate:

|u (x, t)− φb (x, 0) | ≤ Ct. (5)

Proof. For the proof reader can refer to Das and Natesan [5]. �

Lemma 3.3 (Uniform stability estimate for continuous problem ). The uniform stability
bound on the solution u(x, t) of the continuous problems (1)-(2) satisfy:

‖u‖ ≤ β−1 ‖£ε,xu‖+ max (|φb| , (|φl|+ |φr|)) .

Proof. For the barrier functions Ψ± (x, t) = β−1 ‖£ε,xu‖+ max (|φb| , (|φl|+ |φr|))±u (x, t) ,
∀ (x, t) ∈ D̄ we have

Ψ± (0, t) = β−1 ‖£ε,xu‖+ max (φb,max (φl, φr))± u (0, t) ≥ 0,

Ψ± (1, t) = β−1 ‖£ε,xu‖+ max (|φb| , (|φl|+ |φr|))± u (1, t) ≥ 0,

£ε,xΨ± = b
[
β−1 ‖£ε,xu‖+ max (|φb| , (|φl|+ |φr|))

]
±£ε,xu (x, t) ≥

‖£ε,xu‖+ βmax (|φb| , (|φl|+ |φr|))±£ε,xu (x, t) ≥ ‖£ε,xu‖ ± ‖£ε,xu (x, t)‖ ≥ 0.

Thus, by applying the maximum principle we obtain the required result. �

Lemma 3.4. The exact solution u(x, t) and its derivatives of problems (1)-(4), satisfy the
bound: ∥∥∥∥ ∂i+ju∂xi∂tj

∥∥∥∥
∞
≤ C

(
1 + ε−iexp (−α (1− x) /ε)

)
, 0 ≤ i+ 2j ≤ 4, ∀(x, t) ∈ D̄.

Proof. For the proof the Lemma 3.4 refer [5]. �

4. Numerical scheme formulation

4.1. The time semidiscretization. On the time domain [0, T ] we introduce the equidis-
tant meshes with uniform step size ∆t such that

Ω̄M
t = {tn = n∆t, n = 0, 1, ...,M,∆t = T/M} ,

where M = T/∆t is the total number of mesh elements in the domain [0, T ]. Here,
we propose a numerical scheme to solve Equations (1)-(4), which consists of the Crank-
Nicolson method for the time derivative. This gives the following system of semi-discretize
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problem,

Un+1 (x)− Un (x)

∆t
− ε (Uxx)n+1/2 (x) + an+1/2 (x) (Ux)n+1/2 (x) + bn+1/2 (x)Un+1/2 (x)

= −cn+1/2(x)Un+1/2−s (x) + fn+1/2 (x) ,

Un+1 (0) = φl (tn+1) , 0 ≤ n ≤M,

Un+1 (1) = φr (tn+1) , 0 ≤ n ≤M,

Un+1 (x) = φb (x, tn+1) , x ∈ Ωx,− (s+ 1) ≤ n ≤ −1,

(6)
where Un+1(x) is the approximate solution of u(x, tn+1) at (n+1)th time level. The above
equation (6) can be rewritten in operator form as

£M
ε,xU

n+1(x) ≡ −ε
2

(Uxx)n+1 (x) +
an+1/2 (x)

2
(Ux)n+1 (x) +

1

2

(
2

∆t
+ bn+1/2 (x)

)
Un+1 (x) = Ĥn (x)

Un+1 (0) = φl (tn+1) , 0 ≤ n ≤M,

Un+1 (1) = φr (tn+1) , 0 ≤ n ≤M,

Un+1 (x) = φb (x, tn+1) , x ∈ Ωx,− (s+ 1) ≤ n ≤ −1,

(7)

where

Ĥn (x) =



ε

2
(Uxx)n (x)− an+1/2 (x)

2
(Ux)n (x)− 1

2

(
−2

∆t
+ bn+1/2 (x)

)
Un (x)−

cn+1/2(x)φ
n+1/2
b (x) + fn+1/2(x), if tn < s,

ε

2
(Uxx)n (x)− an+1/2 (x)

2
(Ux)n (x)− 1

2

(
−2

∆t
+ bn+1/2 (x)

)
Un (x)−

cn+1/2(x)Un+1/2−s (x) + fn+1/2(x), if tn ≥ s.

The semidiscrete difference operator £M
ε,xU

n+1(x) in Equation (7) satisfies the maximum
principle as follows.

Lemma 4.1 (Semi-discrete maximum principle). Let Υn+1 (x) be a smooth function such
that Υn+1 (0) ≥ 0 and Υn+1 (1) ≥ 0. Then £M

ε,xΥn+1 (x) ≥ 0 for all x ∈ D, implies that

Υn+1(x) ≥ 0 for all x ∈ D̄.

Proof. The proof continue as of Lemma 4.1. �

The local truncation error en+1 of the temporal semi-discretization (7) is given by
Un(x)− u(x, tn) where u(x, tn) and Un(x) are the exact and approximate solution of the
problem in (1)-(4) as follows.

Lemma 4.2 (Local error estimate). Suppose that Lemma 3.4 hold. Then the local error
estimate associated to the semi-discretized problem (7) is given by

‖en+1‖∞ ≤ C (∆t)3 .

Proof. The proof can be done by using the Taylor’s series expansion up to O
(

(∆t)3
)

such

that u(x, tn+1/2) = u(x, tn + ∆t/2), u(x, tn) = u(x, tn−∆t/2) and applying the maximum
principle given at Lemma 4.1. For more detail the reader referred to Kumar et al. [16]. �
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Lemma 4.3 (Global error estimate.). Under the hypothesis of Lemma 4.2, global error
estimate En in the temporal direction is given by

‖En‖∞ ≤ C (∆t)2

where En is the global error in the temporal direction at (n+ 1) th time level.

Proof. Using local error estimates given in Lemma 4.2, the global error estimate at the
(n+ 1) th time step is given by

‖En‖∞ =

∥∥∥∥∥
n∑
k=1

ek

∥∥∥∥∥ , n ≤ T

∆t

≤ ‖e1‖+ ‖e2‖+ ...+ ‖en‖

≤ C0 ((n)∆t)2 (∆t)

≤ C0T (∆t)2 , since n (∆t) ≤ T ≤ C (∆t)2 , C = C0T,

where C is constant independent of ε and ∆t. �

Lemma 4.4. [8] The solution Un(x) of semi-discretized problem (7) and its derivatives
satisfies ∣∣∣∣diUn(x)

dxi

∣∣∣∣ ≤ C (1 + ε−i exp (−α (1− x) /ε)
)
,∀(x) ∈ D̄, 0 ≤ i ≤ 4.

4.2. Spatial discretization. Consider the semi-discretized problem corresponding to the
Equation (6):

− ε

2
(Uxx)n+1 (x) +

an+1/2 (x)

2
(Ux)n+1 (x) +

1

2

(
2

∆t
+ bn+1/2 (x)

)
Un+1 (x) = Ĥn (x) .

(8)

Using the homogeneous problems corresponding to (8) with constant coefficients gives

−ε (Uxx)n+1 (x) + α̂ (Ux)n+1 (x) + r̂∗Un+1 (x) = 0 (9)

where 1
2

(
2

∆t
+ bn+1/2 (x)

)
≥ r̂∗ > 0. From Equation (9) we have two linear independent

solutions exp
(
λ̂1x

)
and exp

(
λ̂2x

)
such that

λ̂1,2 =
−α̂±

√
α̂2 + 4εr̂∗

−2ε
. (10)

Now we partitioned spatial domain [0, 1] into N number of mesh elements with a uniform
meshes of equal length of h. This gives the spatial mesh

ΩN
x = {xm = mh,m = 1, 2, ..., N, x0 = 0, xN = 1, h = 1/N} ,

where xm is nodal points. Let us denote the approximate solution to u (x, tn) at the grid

point xm by Um = c1exp
(
λ̂1xm

)
+ c2exp

(
λ̂2xm

)
. Using the method in [17] we have∣∣∣∣∣∣∣∣∣

Um−1 exp
(
λ̂1xm−1

)
exp

(
λ̂2xm−1

)
Um exp

(
λ̂1xm

)
exp

(
λ̂2xm

)
Um+1 exp

(
λ̂1xm+1

)
exp

(
λ̂2xm+1

)
∣∣∣∣∣∣∣∣∣ = 0.
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Evaluation of the determinant gives:

exp

(
α̂h

2ε

)
Um−1 − 2 cosh

(
h
√
α̂2 + 4εr̂∗

2ε

)
Um + exp

(
−α̂h
2ε

)
Um+1 = 0, (11)

which is an exact difference scheme for (9). With some manipulations (11) yields the
following scheme for the non homogeneous problem corresponding to the problem (9)

−ε
Un+1
m−1 − 2Un+1

m + Un+1
m+1

hε

α̂

(
exp

(
hα̂
ε

)
− 1
) + α̂

Un+1
m − Un+1

m−1

h
= Ĥn+1

m . (12)

According to Mickens [17] we introduce a denominator function that constitutes a general
property of the schemes (12). Motivated by (12), the non-standard finite difference scheme
for the variable coefficient problem is given by

− ε

2

δ2
xU

n+1
m

γ̂2
+
a
n+1/2
m

2
D−x U

n+1
m +

1

2

(
2

∆t
+ bn+1/2

m

)
Un+1
m = Ĥn

m, (13)

where

Ĥn (x) =



ε

2

δ2
xU

n+1
m

γ̂2
− a

n+1/2
m

2
D−x U

n+1
m − 1

2

(
−2

∆t
+ bn+1/2

m

)
Unm − cn+1/2

m φ
n+1/2
b (xm)

+ fn+1/2
m , if tn < s,

ε

2

δ2
xU

n+1
m

γ̂2
− a

n+1/2
m

2
D−x U

n+1
m − 1

2

(
−2

∆t
+ bn+1/2

m

)
Unm − cn+1/2

m Un+1/2−s
m

+ fn+1/2
m , if tn ≥ s,

with δ2
xU

n
m = Unm−1 − 2Unm + Unm+1, γ̂

2 =
hε

am

(
exp

(
ham
ε

)
− 1
)
, D−x U

n
m =

Unm − Unm−1

h
.

Equation (13) can be rewritten as:

£N,M
ε,m Un+1

m = Ĥn+1
m ,

Un+1 (0) = φl (tn+1) , 0 ≤ n ≤M,

Un+1 (1) = φr (tn+1) , 0 ≤ n ≤M,

Un+1 (xm) = φb (xm, tn+1) ,

− (s+ 1) ≤ n ≤ −1, xm ∈ Ω̄N ,

(14)

where

£N,M
ε,m Un+1

m = −ε
2

δ2
xU

n+1
m

γ̂2
+
a
n+1/2
m

2
D−x U

n+1
m +

1

2

(
2

∆t
+ bnm

)
Un+1
m .

Lemma 4.5 (Discrete maximum principle). Let Ψn+1 (xm) be a mesh function such that

Ψn+1 (x0) ≥ 0 and Ψn+1 (xN ) ≥ 0. Then £N,M
ε,m Ψn+1 (xm) ≥ 0 for 1 ≤ m ≤ N −1, implies

that Ψn+1(xm) ≥ 0 for 0 ≤ m ≤ N .

Proof. The proof is same as Lemma 3.1. �

Lemma 4.6 (Uniform stability estimate). The solution Un+1
m of the discrete scheme in

(14) satisfy the bound

∣∣Un+1
m

∣∣ ≤ max
∣∣∣£N,M

ε,m Un+1
m

∣∣∣
r∗

+ max {|φl(tn+1)| , |φr(tn+1)|} ,
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Proof. The proof is as of Lemma 3.3. �

Lemma 4.7. For all k ∈ Z+ on a fixed number of mesh numbers N , and ε −→ 0, we
have

lim
ε−→0

max
1≤m≤N−1

exp (−αxm/ε)
εk

= 0 and

lim
ε−→0

max
1≤m≤N−1

exp (−α (1− xm) /ε)

εk
= 0,

where xm = mh,∀m = 1, 2, ...N − 1.

Proof. The proof is given in [11]. �

5. Convergence analysis of the method

Next, we consider the semidiscrete problem in Equation (7) and the discrete scheme in
(14) to find the truncation error of the spatial direction discretization.

Theorem 5.1 (Error estimate in the spatial direction). Let Un+1 (xm) be the solution
of continuous solution (7) after temporal discretization and Un+1

m be the approximate so-
lutions of (14) after the full discretization. Then, the numerical solution Un+1

m of the
problem in (14) satisfies the error bound∣∣£N,M

ε,m

(
Un+1(xm)− Un+1

m

)∣∣ ≤ CN−1

Proof. Consider the error bound in the spatial direction∣∣∣∣∣£N,M
ε,m

(
Un+1(xm)− Un+1

m

) ∣∣∣∣∣ =∣∣∣∣∣− ε

2
(Uxx)n+1 (xm) +

an+1/2 (xm)

2
(Ux)n+1 (xm)−

{
−ε

2

δ2
xU

n+1
m

γ2
+
a
n+1/2
m

2
D−x U

n+1
m

}∣∣∣∣∣
=

∣∣∣∣∣− ε

2

(
(Uxx)n+1 (xm)− δ2

xU
n+1
m

γ2

)
+
an+1/2 (xm)

2

(
(Ux)n+1 (xm)−D−x Un+1

m

) ∣∣∣∣∣
≤ Cεh2 (Uxxxx)n+1 (xm) + Ch (Uxx)n+1 (xm),

≤ Cεh2

∣∣∣∣∣1 + ε−4 exp (−α (1− xm))

∣∣∣∣∣+ Ch

∣∣∣∣∣1 + ε−2 exp (−α (1− xm))

∣∣∣∣∣.
Applying the bound given in Lemma 3.4 and Lemma 4.7 gives∣∣£N,M

ε,m

(
Un+1(xm)− Un+1

m

)∣∣ ≤ Ch = CN−1

�

Theorem 5.2 (Error estimate in the fully discrete scheme). Let u be the solution of the
problem (1)-(4) and U be the numerical solution of (14). For the fully discrete scheme,
the following parameter uniform error estimate holds:

sup
0≤ε<1

|u− U | ≤ C
(
N−1 + (∆t)2

)
.

Proof. Immediate result follows from the combination of temporal error bound (Lemma
4.3) and spatial error bound (Theorem 5.1). �
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6. Numerical results

In this section, we utilize the double mesh technique to calculate the maximum point
wise error and rate of convergence because the exact solution to the issues is unknown.

The maximum pointwise errors EN,∆tε and the corresponding order of convergence pN,∆tε

are computed as

EN,∆tε = max
m,n

∣∣∣∣UN,∆tm,n − U
4N,∆t

2
m,n

∣∣∣∣ ,
pN,∆tε = log2

(
EN,∆tε

E
4N,∆t

2
ε

)
and from these values we obtain the ε-uniform error EN,∆t and the corresponding ε-
uniform order of convergence pN,∆t by:

EN,∆t = maxεE
N,∆t
ε and pN,∆t = log2

(
EN,∆t

E4N,∆t
2

)
.

where UN,∆tm,n is the numerical solutions obtained by using N , M mesh intervals in space

and time direction, respectively. To compute U
2N,∆t

2
m,n we use 2N and 2M mesh intervals

in spatial and temporal direction, respectively.

Example 6.1. Consider

∂u

∂t
− ε∂

2u

∂x2
+

(5− x2)

3

∂u

∂x
+ tu(x, t) = −u(x, t− τ)+

t3x (1− x) sin (πx) , (x, t) ∈ (0, 1)× (0, 2],

with {
u(0, t) = 0, u(1, t) = 0, t ∈ (0, 2] ,

u(x, t) = 0, (x, t) ∈ [0, 1]× [−τ, 0] .

Example 6.2. Consider

∂u

∂t
− ε∂

2u

∂x2
+ (2− x2)

∂u

∂x
+ (x+ 1)(t+ 1)u(x, t)

= −u(x, t− τ) + 10t2exp(−t)x(1− x),

(x, t) ∈ (0, 1)× (0, 2],

with {
u(0, t) = 0, u(1, t) = 0, t ∈ (0, 2] ,

u(x, t) = 0, (x, t) ∈ [0, 1]× [−τ, 0] .

We have illustrated the maximum point wise errors EN,∆tε and the corresponding nu-

merical rates of convergence pN,∆tε calculated by numerical scheme (14) for Example 6.1
and Example 6.2 in Table 1 and Table 3, respectively. The numerical results presented in
Tables 1 and 3 shows the fact that the proposed numerical method is accurate of order

O
(
N−1 + (∆t)2

)
as predicted by the theory. From the Tables 1,2,3 and 4 one can clearly

observe the ε-uniform convergence of the proposed scheme (14). Figures 1 and 2 clearly
indicate that the boundary layer is located at the right side of the rectangular domain.
The two Figures (Figure 1 and Figure 2 ) shows the effect of perturbation parameter on
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Table 1. Maximum pointwise errors (EN,∆t
ε ) and the corresponding rate of conver-

gence (pN,∆t
ε ) of the scheme (14) for Example 6.1.

ε↓ N = 16 N = 32 N = 64 N = 128 N = 256
M = 32 M = 64 M = 128 M = 256 M = 512

2−10 8.5794e− 03 4.7247e− 03 2.4842e− 03 1.2662e− 03 5.7271e− 04
0.86065 0.92744 0.97228 1.1446 −

2−12 8.5794e− 03 4.7247e− 03 2.4842e− 03 1.2743e− 03 6.4503e− 04
0.86065 0.92744 0.96308 0.98227 −

2−14 8.5794e− 03 4.7247e− 03 2.4842e− 03 1.2743e− 03 6.4504e− 04
0.86065 0.92744 0.96308 0.98224 −

2−16 8.5794e− 03 4.7247e− 03 2.4842e− 03 1.2743e− 03 6.4504e− 04
0.86065 0.92744 0.96308 0.98224 −

2−18 8.5794e− 03 4.7247e− 03 2.4842e− 03 1.2743e− 03 6.4504e− 04
0.86065 0.92744 0.96308 0.98224 −

2−20 8.5794e− 03 4.7247e− 03 2.4842e− 03 1.2743e− 03 6.4504e− 04
0.86065 0.92744 0.96308 0.98224 −

2−22 8.5794e− 03 4.7247e− 03 2.4842e− 03 1.2743e− 03 6.4504e− 04
0.86065 0.92744 0.96308 0.98224 −

2−30 8.5794e− 03 4.7247e− 03 2.4842e− 03 1.2743e− 03 6.4504e− 04
0.86065 0.92744 0.96308 0.98224 −

EN,∆t 8.5794e− 03 4.7247e− 03 2.4842e− 03 1.2743e− 03 6.4504e− 04
pN,∆t 0.86065 0.92744 0.96308 0.98224 -

Table 2. Maximum pointwise errors (EN,∆t
ε ) and the corresponding rate of conver-

gence (pN,∆t
ε ) of the scheme (14) for Example 6.1.

Number of mesh intervals N = M
ε↓ 32 64 128 256 512
2−10 4.1194e− 03 2.2161e− 03 1.1402e− 03 5.1237e− 04 2.4987e− 04

0.89441 0.95874 1.1540 1.0360 −
2−12 4.1194e− 03 2.2162e− 03 1.1482e− 03 5.8424e− 04 2.9265e− 04

0.89435 0.94871 0.97474 0.99738 −
2−14 4.1194e− 03 2.2162e− 03 1.1482e− 03 5.8425e− 04 2.9470e− 04

0.89435 0.94871 0.97472 0.98734 −
2−16 4.1194e− 03 2.2162e− 03 1.1482e− 03 5.8425e− 04 2.9470e− 04

0.89435 0.94871 0.97472 0.98734 −
2−18 4.1194e− 03 2.2162e− 03 1.1482e− 03 5.8425e− 04 2.9470e− 04

0.89435 0.94871 0.97472 0.98734 −
2−20 4.1194e− 03 2.2162e− 03 1.1482e− 03 5.8425e− 04 2.9470e− 04

0.89435 0.94871 0.97472 0.98734 −
2−22 4.1194e− 03 2.2162e− 03 1.1482e− 03 5.8425e− 04 2.9470e− 04

0.89435 0.94871 0.97472 0.98734 −
2−30 4.1194e− 03 2.2162e− 03 1.1482e− 03 5.8425e− 04 2.9470e− 04

0.89435 0.94871 0.97472 0.98734 −
EN,∆t 4.1194e− 03 2.2162e− 03 1.1482e− 03 5.8425e− 04 2.9470e− 04
pN,∆t 0.89435 0.94871 0.97472 0.98734 −
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Table 3. Maximum pointwise errors (EN,∆t
ε ) and the corresponding rate of conver-

gence (pN,∆t
ε ) of the scheme (14) for Example 6.2.

ε↓ N=16 N=32 N=64 N=128 N=256
M=32 M=64 M=128 M=256 M=512

2−10 5.7930e− 03 3.1944e− 03 1.6717e− 03 8.6871e− 04 4.4658e− 04
0.85877 0.93423 0.94437 0.95996 −

2−12 5.7930e− 03 3.1944e− 03 1.6720e− 03 8.6885e− 04 4.4758e− 04
0.85877 0.93397 0.94440 0.95696 −

2−14 5.7930e− 03 3.1944e− 03 1.6720e− 03 8.6885e− 04 4.4813e− 04
0.85877 0.93397 0.94440 0.95519 −

2−16 5.7930e− 03 3.1944e− 03 1.6720e− 03 8.6885e− 04 4.4813e− 04
0.85877 0.93397 0.94440 0.95519 −

2−18 5.7930e− 03 3.1944e− 03 1.6720e− 03 8.6885e− 04 4.4813e− 04
0.85877 0.93397 0.94440 0.95519 −

2−20 5.7930e− 03 3.1944e− 03 1.6720e− 03 8.6885e− 04 4.4813e− 04
0.85877 0.93397 0.94440 0.95519 −

2−22 5.7930e− 03 3.1944e− 03 1.6720e− 03 8.6885e− 04 4.4813e− 04
0.85877 0.93397 0.94440 0.95519 −

2−30 5.7930e− 03 3.1944e− 03 1.6720e− 03 8.6885e− 04 4.4813e− 04
0.85877 0.93397 0.94440 0.95519 −

EN,∆t 5.7930e− 03 3.1944e− 03 1.6720e− 03 8.6885e− 04 4.4813e− 04
pN,∆t 0.85877 0.93397 0.94440 0.95519 −

Table 4. Maximum pointwise errors (EN,∆t
ε ) and the corresponding rate of conver-

gence (pN,∆t
ε ) of the scheme (14) for Example 6.2.

Number of mesh intervals N = M
ε↓ 32 64 128 256 512
2−10 2.7672e− 03 1.4555e− 03 7.2885e− 04 3.64176e− 04 1.8146e− 04

0.92691 0.99782 1.0010 1.0050 −
2−12 2.7672e− 03 1.4558e− 03 7.4606e− 04 3.7748e− 04 1.8914e− 04

0.92661 0.96445 0.98289 0.99695 −
2−14 2.7672e− 03 1.4558e− 03 7.4606e− 04 3.7757e− 04 1.8933e− 04

0.92661 0.96445 0.98255 0.99584 −
2−16 2.7672e− 03 1.4558e− 03 7.4606e− 04 3.7757e− 04 1.8933e− 04

0.92661 0.96445 0.98255 0.99584 −
2−18 2.7672e− 03 1.4558e− 03 7.4606e− 04 3.7757e− 04 1.8933e− 04

0.92661 0.96445 0.98255 0.99584 −
2−20 2.7672e− 03 1.4558e− 03 7.4606e− 04 3.7757e− 04 1.8933e− 04

0.92661 0.96445 0.98255 0.99584 −
2−22 2.7672e− 03 1.4558e− 03 7.4606e− 04 3.7757e− 04 1.8933e− 04

0.92661 0.96445 0.98255 0.99584 −
2−30 2.7672e− 03 1.4558e− 03 7.4606e− 04 3.7757e− 04 1.8933e− 04

0.92661 0.96445 0.98255 0.99584 −
EN,∆t 2.7672e− 03 1.4558e− 03 7.4606e− 04 3.7757e− 04 1.8933e− 04
pN,∆t 0.92661 0.96445 0.98255 0.99584 −
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Table 5. Comparison of uniform error (EN,∆t) and the corresponding uniform rate
of convergence (pN,∆t) for Example 6.2.

N = 32 N = 64 N = 128 N = 256
Methods↓ M = 40 M = 80 M = 160 M = 320
Proposed method EN,∆t 2.9360e− 03 1.5418e− 03 7.8940e− 04 3.9932e− 04

pN,∆t 0.92924 0.96579 0.98321 -
Method in [27] EN,∆t 7.8114e− 03 4.1163e− 03 2.1158e− 03 1.0729e− 03

pN,∆t 0.9242 0.9601 0.9797 -
Method in [8] EN,∆t 9.9504e− 03 5.8541e− 03 3.3439e− 03 1.8650e− 03

pN,∆t 0.7653 0.8079 0.8424 -

N = 32 N = 64 N = 128 N = 256
M = 30 M = 60 M = 120 M = 240

Proposed method EN,∆t 2.7115e− 03 1.4273e− 03 7.3165e− 04 3.7034e− 04
pN,∆t 0.92580 0.96406 0.98230 -

Method in [2] EN,∆t 1.0257e− 02 5.4993e− 03 2.8584e− 03 1.4628e− 03
pN,∆t 0.89928 0.94400 0.96647 -
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Figure 1. Surface plot of the numerical solution for Example 6.1 with N = 128,M =
64, a ε = 2−4,b ε = 2−18.
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Figure 2. Surface plot of the numerical solution for Example 6.2 with N = 120,M =
64, a ε = 2−4,b ε = 2−18.
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Figure 3. Log-Log plot of the maximum error for Example 6.1 on left ([a]) and
Example 6.2 on right([b]).

the steepness of layer of the solution. In order to reveal the numerical order of conver-
gence, we have plotted the maximum pointwise errors of Example 6.1 and Example 6.2 in
Figure 3 (a) and Figure 3(b), respectively in the log-log scale for which again confirms the
effectiveness of the proposed method and also it gives close to first-order.

7. Conclusion

In this paper, a singularly perturbed parabolic partial differential equation with a large
time delay is considered. Because of the perturbation parameter, the solution of the
investigated problem exhibits boundary layer behaviour on the right side of the spatial
domain. To obtain parameter-uniform convergence, we have employed the Mickens-type
finite difference method for the space discretization and the Crank-Nicolson method for the
time discretization, both on a uniform mesh. Thus, the proposed fitted finite difference
method converges properly, and the results are better (See Table 5). Theoretically, we
have derived that the proposed method provides a first-order in space and second-order in
time error estimate. Two numerical experiments are carried out to validate the analytical
findings.

Acknowledgement. The authors would like to extend their gratitude to the referees.
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