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DISTANCE MAGIC LABELING FOR SOME PRODUCT GRAPHS

N. P. SHRIMALI1, Y. M. PARMAR2∗, M. A. PATEL2, §

Abstract. In this paper, we prove Wt □ G and Wt ⊠ G are not distance magic if
graph G contains two vertices with the same neighborhood. And we also prove Wt ×C4

(t ≥ 5), W3□Pn and W4 × Pn (n ≥ 3) are not distance magic graphs.
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1. Introduction

We consider here, all graphs G are simple with vertex set V (G) and edge set E(G)
are finite. We adopt Gross and Yeelen [4] for various graphs and its theoretic notation
and Burton [2] for number theoretic results. For acquiring the latest update, we follow a
dynamic survey on graph labeling by Gallian [3].

A distance magic labeling of a graph G is a bijection f : V (G) → {1, 2, . . . , n} such that∑
p∈N(q)

f(p) = γ, for all q ∈ V (G), where N(q) is the set of all vertices of V (G) which are

adjacent to q. The constant γ is called the magic constant of the distance magic labeling
of f . A graph which admits a distance magic labeling is called distance magic graph.

For any vertex q ∈ V (G), the neighbor sum
∑

p∈N(q)

f(p) is called the weight of the vertex

q ∈ V (G) and is denoted by w(q).

Different terminologies are being used for this concept by various authors. Like, Vilfred
[9] used the term sigma labeling; Miller et al. [6] used the term 1-vertex magic labeling
[1-VML]; Acharya et al. [1] used the term neighborhood magic labeling, and Sugeng et
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al. [8] used the term distance magic labeling.
Among them, Miller et al. [6] have proved the following Lemmas.

Lemma 1.1. [6] A necessary condition for the existence of a distance magic labeling f of
a graph G is

γv =
∑

p∈N(q)

d(p)f(p)

where d(p) is the degree of vertex p and v is the number of vertices.

Lemma 1.2. [6] If G contains two vertices p and q such that |N(p)∩N(q)| = d(p)− 1 =
d(q)− 1, then G has no distance magic labeling.

Miller et al. [6] have proved: Pn admits distance magic labeling if and only if n = 1, 3;
Cn admits distance magic labeling if and only if n = 4; Kn admits distance magic labeling
if and only if n = 1, and Wn admits distance magic labeling if and only if n = 4.

Definition 1.1. [5] A Cartesian product, denoted by G □ H is a graph with vertex set
V (G)× V (H). Vertices (p, q) and (p′, q′) in G □ H are adjacent if and only if p = p′ and
q is adjacent to q′ in H or q = q′ and p is adjacent to p′ in G.

Definition 1.2. [5] A direct product, denoted by G×H is a graph with vertex set V (G)×
V (H). Vertices (p, q) and (p′, q′) in G×H are adjacent if and only if p is adjacent to p′

in G and q is adjacent to q′ in H.

Definition 1.3. [5] A strong product, denoted by G⊠H is a graph with vertex set V (G)×
V (H). Vertices (p, q) and (p′, q′) in G ⊠ H are adjacent if and only if p = p′ and q is
adjacent to q′ in H or q = q′ and p is adjacent to p′ in G or p is adjacent to p′ in G and
q is adjacent to q′ in H.

Shrimali and Parmar [7] have proved Ct
3□C4, C4 × Ct

3 are not distance magic graphs.
In the present paper again we deal with some product graphs.

2. Main Results

To prove all results in this section, we have used necessary condition for the existence
of a distance magic labeling of a graph. Here we establish some sufficient conditions for
the non-existence of distance magic product graphs.
Let Wt be a wheel graph obtained by joining all vertices u1, u2, . . . , ut of a cycle Ct to
central vertex r and let G be a graph with n vertices v1, v2, . . . , vn.
Consider Wt □ G, Wt ⊠ G are graphs with vertex set, {uik, ri/1 ≤ k ≤ t, 1 ≤ i ≤ n},
where uik = (uk, vi), ri = (r, vi).

Lemma 2.1. Let G be a graph of order n. If G contains two vertices vi and vj such that
N(vi) = N(vj), then Wt □ G is not a distance magic graph.

Proof. Assume that G∗ = Wt □ G is a distance magic graph under a distance magic
labeling f .
Let N(vi) = N(vj) = {vi1 , vi2 , . . . vip}, 1 ≤ i1, i2, . . . , ip ≤ n.
Now,

w(ri) =

t∑
k=1

f(uik) +

ip∑
β=i1

f(rβ) (1)
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and

w(rj) =
t∑

k=1

f(ujk) +

ip∑
β=i1

f(rβ). (2)

Since, G∗ is a distance magic graph, w(ri) = w(rj).
So by (1) and (2), we get

t∑
k=1

f(uik) =

t∑
k=1

f(ujk). (3)

Now,

t∑
k=1

w(uik) = tf(ri) + 2
t∑

k=1

f(uik) +
t∑

k=1

ip∑
β=i1

f(uβk) (4)

and
t∑

k=1

w(ujk) = tf(rj) + 2
t∑

k=1

f(ujk) +
t∑

k=1

ip∑
β=i1

f(uβk). (5)

Since, G∗ is a distance magic graph, by Equations (4) and (5), we get

tf(ri) + 2
t∑

k=1

f(uik) = tf(rj) + 2
t∑

k=1

f(ujk). (6)

So, by Equations (3) and (6), f(ri) = f(rj).
It gives us a contradiction to our statement that G∗ is a distance magic graph.
Hence, G∗ is not a distance magic graph. □

Lemma 2.2. Let G be a graph of order n. If G contains two vertices vi and vj such that
N(vi) = N(vj), then Wt ⊠ G is not a distance magic graph.

Proof. Assume that G∗ = Wt ⊠ G is a distance magic graph under a distance magic
labeling f .
Let N(vi) = N(vj) = {vi1 , vi2 , . . . vip}, 1 ≤ i1, i2, . . . , ip ≤ n.
Since, G∗ is a distance magic graph,

w(ri) = w(rj).

Therefore,

t∑
k=1

f(uik) +
t∑

k=1

ip∑
β=i1

f(uβk) +

ip∑
β=i1

f(rβ) =
t∑

k=1

f(ujk) +
t∑

k=1

ip∑
β=i1

f(uβk) +

ip∑
β=i1

f(rβ)

which implies,

t∑
k=1

f(uik) =
t∑

k=1

f(ujk). (7)

Now,

w(ui1) = f(ui2) + f(uin) + f(ri) +

ip∑
β=i1

[f(uβ1 ) + f(uβ2 ) + f(uβn) + f(rβ)]
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and

w(uj1) = f(uj2) + f(ujn) + f(rj) +

ip∑
β=i1

[f(uβ1 ) + f(uβ2 ) + f(uβn) + f(rβ)].

As w(ui1) = w(uj1), we get,

f(ui2) + f(uin) + f(ri) = f(uj2) + f(ujn) + f(rj).

Analogously, we get such t−equations for each uik and ujk, k = 1, 2, . . . , t. If we add all
such t−equations, we get,

2
t∑

k=1

f(uik) + tf(ri) = 2
t∑

k=1

f(ujk) + tf(rj). (8)

So, by Equations (7) and (8), f(ri) = f(rj), which contradicts our hypothesis.
Hence, Wt ⊠G is not a distance magic graph. □

Theorem 2.1. The graph Wt × C4, t ≥ 5 is not a distance magic graph.

Proof. Suppose that the cycle C4 has vertex set {v0, v1, v2, v3} and let G∗ = Wt × C4

be a distance magic graph under a distance magic labeling f and magic constant γ. So,
weights of each vertex are equal, called it γ.
Here, vertex set V (G∗) = {uik, ri/1 ≤ k ≤ t, 0 ≤ i ≤ 3}, where uik = (uk, vi), ri = (r, vi).
We have

γ = w(r0) =

t∑
k=1

[f(u1k) + f(u3k)]

= w(r1) =

t∑
k=1

[f(u0k) + f(u2k)].

(9)

Now,

t∑
k=1

w(u0k) = 2

t∑
k=1

[f(u1k) + f(u3k)] + t[f(r1) + f(r3)]. (10)

Since, G∗ is a distance magic graph, by Equations (9) and (10),

tγ =
t∑

k=1

w(u0k) = 2w(r0) + t(f(r1) + f(r3)). (11)

Similarly we can derive,

tγ =

t∑
k=1

w(u1k) = 2w(r1) + t(f(r0) + f(r2)). (12)

By Equations (9), (11) and (12), we get

f(r1) + f(r3) = f(r0) + f(r2) = δ (say). (13)

Let us take f(u1k) + f(u3k) = µk,∀k in Equation (9), we get

γ =

t∑
k=1

µk (14)
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Now, by Equations (10), (13) and (14)

t∑
k=1

µk =
t · δ
t− 2

. (15)

Let us find the sum of labels of all vertices except vertices rk(k = 0, 1, 2, 3), here |V (G∗)| =
4t+ 4
t∑

k=1

[
f(u0k) + f(u1k) + f(u2k) + f(u3k)

]
=

(4t+ 4)(4t+ 5)

2
−
(
f(r0) + f(r1) + f(r2) + f(r3)

)

2
t∑

k=1

µk = 2(t+ 1)(4t+ 5)− 2δ (16)

By Equations (15) and (16)

δ =
(t+ 1)(4t+ 5)(t− 2)

2(t− 1)
,

which implies that

f(r0) + f(r2) = f(r1) + f(r3) =
(t+ 1)(4t+ 5)(t− 2)

2(t− 1)
. (17)

Now, f(r0), f(r2) ∈ {1, 2, . . . , 4t+4}. If we take f(r0) = 4t+4, f(r1) = 4t+3, f(r2) = 4t+1
and f(r3) = 4t + 2 then f(r1) + f(r3) = f(r0) + f(r2) = δ = 8t + 5, which is less than
(t+1)(4t+5)(t−2)

2(t−1) , for t ≥ 5. So, equality in (17) cannot be possible.

Hence, Wt × C4, t ≥ 5 is not a distance magic graph. □

Theorem 2.2. The graph W3□Pn is not a distance magic graph.

Proof. Let us assume that G∗ = W3□Pn be a distance magic graph. So weights of every
vertex are equal. Here, vertex set V (G∗) = {uik, ri/1 ≤ k ≤ 3, 1 ≤ i ≤ n}, where
uik = (uk, vi), r

i = (r, vi) and {vi/1 ≤ i ≤ n} is the vertex set of path Pn.
Now,

w(u11) = f(u12) + f(u13) + f(u21) + f(r1) (18)

and

w(u12) = f(u11) + f(u13) + f(u22) + f(r1). (19)

Since, weights are equal, we obtain from (18) and (19),

f(u12) + f(u21) = f(u11) + f(u22). (20)

Now,

w(u21) = w(u22) (21)

∴ f(u22) + f(u11) + f(u31) = f(u21) + f(u12) + f(u32). (22)

From (20) and (21), f(u31) = f(u32),
which is a contradict statement to our hypothesis.
Hence, W3□Pn is not a distance magic graph. □
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Theorem 2.3. The graph W4 × P3 is not a distance magic graph.

Proof. Let G∗ = W4 × P3 be a distance magic graph under the distance magic labeling f
with magic constant γ. Here, vertex set V (G∗) = {uik, ri/1 ≤ k ≤ 4, 1 ≤ i ≤ 3}, where
uik = (uk, vi), ri = (r, vi) and {v1, v2, v3} is the vertex set of path P3.
Here,

w(u21) = f(u12) + f(u14) + f(u32) + f(u34) + f(r1) + f(r3) (23)

w(u22) = f(u11) + f(u13) + f(u31) + f(u33) + f(r1) + f(r3) (24)

and

w(r2) = f(u11) + f(u12) + f(u13) + f(u14) + f(u31) + f(u32) + f(u33) + f(u34). (25)

From (23), (24) and (25), we get

w(u21) + w(u22) = w(r2) + 2f(r1) + 2f(r3).

Thus,

f(r1) + f(r3) =
γ

2
.

Now,

w(u11) = f(u22) + f(u24) + f(r2) (26)

w(u12) = f(u21) + f(u23) + f(r2) (27)

and

w(r1) = f(u21) + f(u22) + f(u23) + f(u24). (28)

From (26), (27) and (28), we get

w(u11) + w(u12) = w(r1) + 2f(r2).

Thus,

f(r2) =
γ

2
.

Here, |V (G∗)| = 15.
Thus, γ ≤ 30 as f(r2) ∈ {1, 2, . . . , 15}.
Therefore we have,

f(r1) + f(r3) ≤ 15,

f(u21) + f(u23) ≤ 15,

f(u22) + f(u24) ≤ 15,

f(u12) + f(u14) + f(u32) + f(u34) ≤ 15,

f(u11) + f(u13) + f(u31) + f(u33) ≤ 15,

which is not possible.
Hence, W4 × P3 is not a distance magic graph. □
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Theorem 2.4. The graph W4 × Pn, n ≥ 4 is not a distance magic graph.

Proof. Let G∗ = W4 × Pn, n ≥ 4 be a distance magic graph under the distance magic
labeling f with magic constant γ. Here, vertex set V (G∗) = {uik, ri/1 ≤ k ≤ 4, 1 ≤ i ≤ n},
where uik = (uk, vi), ri = (r, vi) and {vi/1 ≤ i ≤ n} is the vertex set of path Pn

Here,

w(u11) = f(u22) + f(u24) + f(r2) (29)

and

w(u31) = f(u22) + f(u24) + f(u42) + f(u44) + f(r2) + f(r4) (30)

Since, G∗ is a distance magic graph, by Equations (29) and (30), we get

f(u42) + f(u44) + f(r4) = 0,

which is not possible.
Hence, the graph W4 × Pn, n ≥ 4 is not a distance magic. □

3. Conclusions

Here, we have proved Wt □ G and Wt ⊠ G are not distance magic if graph G contains
two vertices with same neighborhood. Then, we have proved Wt × C4 (t ≥ 5), W3□Pn

and W4 ×Pn (n ≥ 3) graphs are not distance magic. To explore some new distance magic
graphs is an open problem.
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