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ON THE INJECTIVE CHROMATIC NUMBER OF SPLITTING

GRAPH AND SHADOW GRAPH OF CERTAIN REGULAR AND

BIREGULAR GRAPHS

C. K. BHANUPRIYA1∗, M. S. SUNITHA1, §

Abstract. The injective chromatic number of a graph G, denoted by χi(G) is the min-
imum number of colors needed to color the vertices of G such that two vertices with a
common neighbor are assigned distinct colors. The splitting graph and shadow graph are
larger graphs obtained from a graph by a construction. In this article, χi(G) of splitting
graph and shadow graph of certain classes of graphs are obtained in terms of number of
vertices. Also obtained a lower and upper bound for the injective chromatic number of
splitting graph and shadow graph of any graph.
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1. Introduction

All graphs considered in this article are simple, finite and undirected. The sets V (G)
and E(G) represent the vertex set and edge set of a graph G and the symbols ∆(G), ω(G)
and N(u) denote the maximum degree, clique number of a graph and neighborhood set of
a vertex u ∈ V (G) respectively. For further graph-theoretic notations and terminologies
refer [7] and [25].

In 2002, Hahn et al. [6] introduced the notion of injective coloring and injective chro-
matic number for a graph.

Definition 1.1. An injective coloring of a graph G is a vertex coloring, that assigns
different colors to pair of vertices that have a common neighbor.

Definition 1.2. The injective chromatic number of a graph G is the minimum number of
colors required for attaining an injective coloring for a graph G and is denoted by χi(G).
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In [6], the authors suggested the bounds of injective chromatic number in general and
computed χi(Qn), where Qn represents the hypercubes. The authors routed, χi(Qn) to
the context of error correcting codes also.

Later, for a chordal graph G, Hell et al.[8], determined χi(G) at least as efficiently as
one computes the chromatic number of (G−B)2. Note that here, B represents the bridges
of the graph G. The authors also designed a polynomial time algorithm which computes
the injective coloring for a given chordal graph. Nevertheless, they extended their study
about the injective coloring of split graphs also. Luzar et al., in [13], studied the injective
coloring of different planar graphs having large girth using few colors. Kim et al. [10], in
2009 showed that, for a graph G, χi(G) ≥ 1

2χ(G
2), where G2 represents the square of G

and χ(G) represents the chromatic number of G.
Further, in [11], A. Kishore and Sunitha introduced and studied about injective chro-

matic sum along with injective strength of graphs. The authors determined injective
chromatic sum for certain graph classes. The authors also computed bounds of injective
chromatic sum and determined injective chromatic sum for different product graphs and
also introduced the notion of injective chromatic polynomial. Later in 2015, for join, union,
direct product, Cartesian product, graph composition and disjuction of graphs, Song and
Yue [21] computed sharp bounds (or the exact values) for the injective chromatic num-
ber. Further, in the same year, A. Kishore and Sunitha [12] studied about the coefficients
of injective chromatic polynomials of different graph classes like complete graphs, cycles
and wheel graphs. For different graph operations like join, union and corona of different
graphs, the authors computed the injective chromatic polynomial.

In 1981, Sampathkumar and Walikar [18] introduced the concept of splitting graph of
a graph and it is constructed as follows.

Definition 1.3. Let G be a graph. For each vertex v of G, take new vertex v′. Join v′ to
all vertices of G adjacent to v. The graph S(G) thus obtained is called the splitting graph
of G.

Definition 1.4. The shadow graph D2(G) of a connected graph G is constructed by taking
two copies of G say G′ and G′′ join each vertex v′ in G′ to the neighbors of the correspond-
ing vertex v′′ in G′′.
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Figure 1: Example of splitting graph and shadow graph of C4

The domination parameters of splitting graph and shadow graph is well studied in
[3, 9, 20, 15]. The Wiener and Harary Index of Splitting Graphs are obtained in [5].
Further in 2017 Ponraj et al. obtained the energy of shadow graph and splitting graph in
[24] and in 2022 determined the pair difference cordiality of shadow graph and splitting
graph of certain graphs in [17]. Also other graph theoretic parameters for splitting graph
and shadow graph are addressed by different authors [14, 19, 1, 23]. Also different coloring
parameters of splitting graph and shadow graph are well studied by different authors in
[16, 2, 22, 4].



C. K. BHANUPRIYA AND M. S. SUNITHA: ON THE INJECTIVE CHROMATIC NUMBER... 81

Motivated from this, the topic of this work is the injective coloring of the splitting graph
and the shadow graph of various kinds of graphs.
The following result is useful for our main results.

Proposition 1.1. [6]

(1) Let G be an arbitrary graph of order at least four. Then χi(G) = |V (G)| if and only if
either G is a complete graph, or G has diameter 2 and every edge of G is contained in a
triangle.

(2) Let G be a graph with maximum degree ∆. Then χi(G) ≥ ∆.

(3) Let Pn be a path of length n, then χi(Pn) =

{
1, n = 1, 2
2, n > 2

.

(4) Let Cn be a cycle of length n, then χi(Cn) =

{
2, n ≡ 0 mod 4
3, n ̸≡ 4 mod 4

.

2. Injective chromatic number of splitting graph of classes of graphs

The injective chromatic number of splitting graphs for several classes of graphs are
shown in this section, along with bounds for the injective chromatic number of splitting
graph of any given graph G. The injective chromatic number of a splitting graph of any
path of length n is found in Theorem 2.1.

Theorem 2.1. The injective chromatic number of splitting graph of Pn is

χi(S(Pn)) =

{
n, n = 1, 2
4, n > 2

.

Proof. Let v1, v2, · · · , vn be the vertices of Pn and u1, u2, · · · , un be the new set of of
vertices for the construction of S (Pn).
Case 1: n = 1.
S (P1) is a graph with two isolated vertices. It is injectively colored with a single color.
Case 2: n = 2.
By the construction, S (P2) is P4 and P4 is colored injectivey with 2 colors.
Case 3: n > 2.
Let v1 − v2 − v3 − · · · − vn be a path of length n. Now by the construction of splitting
graph the new vertices u1 and un are adjacent to v2 and vn−1 respectively. Also ui,
1 < i < n is adjacent to vi−1 and vi+1. Thus the vertices v1 and vn are of degree 2
each and vi, 1 < i < n are of degree 4 each. Also u1 and un are of degree 1 each and
ui, 1 < i < n are of degree 2 each. Thus ∆(S(Pn)) = 4. Since χi(G) ≥ ∆(G), we have,
χi(S(Pn)) ≥ ∆(S(Pn)) = 4. Now it is enough to provide an injective coloring of S(Pn)
with 4 colors. First color the vertices v1, v2, · · · , vn sequentially as 1,1,4,4,1,1,4,4,· · · . Now
color the vertices u1, u2, · · · , un sequentially as 2,2,3,3,2,2,3,3,· · · , which gives an injective
coloring of S(Pn) with 4 colors. Thus χi(S(Pn)) = 4. □

The following theorem gives the injective chromatic number of S(Kn).

Theorem 2.2. The injective chromatic number of splitting graph of Kn is

χi(S(Kn)) =

{
n, n = 1, 2
2n, Otherwise.

.

Proof. Let v1, v2, v3, · · · , vn be the vertices of Kn and u1, u2, u3, · · · , un be the new set of
vertices for the construction of S(Kn). For n = 1 or 2, the result follows from Theorem
2.1. For n ≥ 3, the diameter of S(Kn) is 2 and every edge of S(Kn) lies on a triangle.
Then by Proposition 1.1(1) χi(S(Kn)) = |V (S(Kn))| = 2n. □
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Let C : V (G) → {1, 2, · · · , n} be an injective coloring of a graph G, C(u) represents the
color of the vertex u. Also define N2(u) = {v ∈ V : ∃ w ∈ V, u − w − v is a path in G}.
Note that the colors of the vertices in N2(u) cannot be assigned to the vertex u.

In the next theorem the injective chromatic number of splitting graph of cycles on n
vertices is obtained.

Theorem 2.3. The injective chromatic number of splitting graph of Cn is

χi(S(Cn)) =

 4, n ≡ 0 mod 4
6, n = 3, 6
5, Otherwise.

Proof. Let v1, v2, v3, · · · , vn be the vertices of Cn and u1, u2, u3, · · · , un be the new set of
vertices for the construction of S(Cn).
Case 1: n ≡ 0 mod 4.
Since ∆(S(Cn)) = 4, χi(S(Cn)) ≥ ∆(S(Cn)) = 4. Now it is enough to provide an injec-
tive coloring of S(Cn) with 4 colors. First color the vertices v1, v2, · · · , vn sequentially as
1, 1, 2, 2, 1, 1, 2, 2, · · · . Now color the vertices u1, u2, · · · , un sequentially as 3, 3, 4, 4, 3, 3, 4, 4, · · · ,
which gives an injective coloring of S(Cn) with 4 colors.
Case 2: n = 3, 6.
Subcase 1: n = 3.
By Proposition 1.1(1), the result is obvious.
Subcase 2: n = 6.
In S(C6), note that, for any two vertices u, v ∈ V (S(C6)), d(u, v) ≤ 3 and for w ∈
V (S(C6)) − {u, v}, either d(u,w) = 2 or d(v, w) = 2. Therefore not more than two ver-

tices can have the same colors. Hence χi(S(C6)) ≥ |V (S(C6))|
2 = 6. Also Figure 2 gives an

injective coloring of S(C6) with 6 colors. Thus χi(S(C6)) = 6.
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Figure 2: Injective coloring of S(C6)

Case 3: n ̸≡ 0 mod 4 and n ̸= 3, 6.
For n ̸≡ 0 mod 4, χi(Cn) = 3, therefore three colors are needed to color the vertices of
Cn. Also for n ≡ 0 mod 4, a total χi(Cn) + 2 colors are used to color the vertices of
S(Cn). Thus here χi(Cn) + 2 = 5 colors are needed to color the vertices of S(Cn).
Subcase 1: n ≡ 1 mod 4.
First color the vertices v1, v2, · · · , vn−1 of Cn sequentially as 1,1,2,2,1,1,2,2,· · · and the
vertex vn with color 3. Now color the vertices u1, u2, · · · , un as follows.

• N2(u1) = {v1, u3, v3, un−1, vn−1}. Colors of the vertices in N2(u1) are 1 and 2.
Thus C(u1) = 3.
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• N2(u2) = {v2, vn, un, v4, u4}. Colors of the vertices in N2(u2) are 1, 2 and 3. Thus
C(u2) = 4.

• For i = 3, 4, · · · , n − 2, N2(ui) = {vi, vi−2, ui−2, vi+2, ui+2}. Colors of the vertices
in N2(ui) are 1, 2, 3 for i such that i ≡ 3, 2 mod 4 and 1, 2, 4 for i such that
i ≡ 0, 1 mod 4). Thus the vertices u3, u4, · · · , un−2 are colored sequentially as
4,3,3,4,4,3,3· · · .

• N2(un−1) = {vn−1, v1, u1, vn−3, un−3}. Colors of the vertices in N2(un−1) are
1, 2, 3, 4. Thus C(un−1) = 5.

• N2(un) = {un, u2, v2, un−2, vn−2}. Colors of the vertices in N2(un) are 1, 2, 3, 4.
Thus C(un) = 5.

Which gives an injective coloring of S(Cn) for n ≡ 1 mod 4 with 5 colors. Similarly, we
can injectively color for S(Cn) where n ≡ 2 mod 4 and n ≡ 3 mod 4 with 5 colors. □

A sharp bound for the injective chromatic number of a splitting graph of any graph
with maximum degree ∆(G) and number of vertices n is given as follows.

Theorem 2.4. Let G be a graph with n vertices. Then 2∆(G) ≤ χi(S(G)) ≤ 2n.

Proof. We have χi(G) ≥ ∆(G) and ∆(S(G)) = 2∆(G). Thus χi(S(G)) ≥ 2∆(G). Also
we have χi(G) ≤ n, where n is the number of vertices. Clearly the number of vertices of
S(G) is 2n. Also the bound is sharp since the lower bound is attained for S(Pn) for any
n > 2 and the upper bound is attained for S(Kn) for any n. □

In Theorem 2.5, the injective chromatic number of splitting graph of Km,n is obtained.

Theorem 2.5. The injective chromatic number of splitting graph of Km,n is χi(S(Km,n)) =
2m, m ≥ n.

Proof. Let m ≥ n, u1, u2, · · · , um, v1, v2, · · · , vn be the vertices of Km,n and let u′1, u
′
2,

· · · , u′m, v′1, v
′
2, · · · , v′n be the new set of vertices for the construction of S(Km,n). By the

construction of splitting graph of Km,n, a vertex vi is adjacent to all ui and u′i, 1 ≤ i ≤ m.
Hence the vertices ui and u′i, 1 ≤ i ≤ m are colored with distinct 2m colors. Let color i be
the color of the vertex ui, 1 ≤ i ≤ m and colorm+i be the color of the vertex u′i, 1 ≤ i ≤ m.
Also no colored vertex is a common neighbor of the vertices v1, v2, · · · , vn, v′1, v′2, · · · , v′n.
So from the 2m colors, 2n colors are used to color the vertices vi and v′i, 1 ≤ i ≤ n. Let
color i be the color of the vertex vi, 1 ≤ i ≤ n and color n + i be the color of the vertex
v′i, 1 ≤ i ≤ n. Hence χi(S(Km,n)) = 2m. □

Corollary 2.1. The injective chromatic number of splitting graph of star graph Sn+1 is
χi(S(Sn+1)) = 2n.

In the following section, the injective chromatic number of shadow graph of different
classes of graphs and a bound for the injective chromatic number of shadow graph of any
arbitrary graph are discussed.

3. Injective chromatic number of shadow graph of classes of graphs

In this section, we obtained the injective chromatic number of shadow graph of different
classes of graphs and a sharp bound for the injective chromatic number of shadow graph
of any graphs are obtained. Assume for the following theorems that, if G is a graph with
n vertices, then the vertices of D2(G) be u1, u2, · · · , un, v1, v2, · · · , vn where u1, u2, · · · , un
be the vertices of first copy G′ of G and v1, v2, · · · , vn be the vertices of second copy G′′

of G. A result on the injective chromatic number of shadow graph of complete graph is
obtained as a Corollary to Proposition 1.1(1).
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Corollary 3.1. The injective chromatic number of shadow graph of Kn is χi(D2(Kn)) =
2n.

In Theorem 3.1, the injective chromatic number of D2(Pn) is obtained.

Theorem 3.1. The injective chromatic number of shadow graph of Pn is χi(D2(Pn)) =
∆(D2(Pn)).

Proof. The injective chromatic number ofD2(P2), χi(D2(P2)) ≥ ∆(D2(P2)) = 2 by Propo-
sition 1.1(2). Now Figure 4 provides an injective coloring of D2(P2) using 2 colors. Thus
χi(D2(P2)) = 2. Now for n > 2, maximum degree of D2(Pn) is 4, then by Proposition
1.1(2), χi(G) ≥ ∆(G) for any graph G. Thus χi(D2(Pn)) ≥ 4. Now providing an injective
coloring of D2(Pn) with 4 colors shows that χi(D2(Pn)) = 4. Figure 3 gives the injective
coloring of D2(Pn) with 4 color.
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Figure 3: Injective coloring of D2(Pn) Figure 4: Injective coloring of D2(P2)

□

A sharp bound for the injective chromatic number of shadow graph of any graph G
with maximum degree ∆(G) and number of vertices n is given in Theorem 3.2.

Theorem 3.2. Let G be a graph with n vertices. Then 2∆(G) ≤ χi(D2(G)) ≤ 2n.

Proof. We have χi(G) ≥ ∆(G) and ∆(D2(G)) = 2∆(G). Thus χi(D2(G)) ≥ 2∆(G). Also
we have χi(G) ≤ n, where n is the number of vertices in G, number of vertices in D2(G)
is 2n. Also the bound is sharp since the lower bound is attained for D2(Pn) for any n and
the upper bound is attained for D2(Kn) for any n. □

The injective chromatic number of D2(Cn) is obtained as follows.

Theorem 3.3. The injective chromatic number of shadow graph of Cn is

χi(D2(Cn)) =

 6, n = 3, 6
4, n ≡ 0 mod 4
5, n ̸= 3, 6 and n ̸≡ 0 mod 4

.

Proof. Case 1: n = 3, 6.
For n = 3, the result follows from Corollary 2. Also in D2(C6), note that, for any two
vertices u, v ∈ V (D2(C6)), d(u, v) ≤ 3 and for w ∈ V (S(C6))−{u, v}, either d(u,w) = 2 or
d(v, w) = 2. Therefore at most two vertices can have the same colors. Hence χi(D2(C6)) ≥
|V (D2(C6))|

2 = 6. Also Figure 5 gives an injective coloring of D2(C6) with 6 colors. Thus
χi(D2(C6)) = 6.



C. K. BHANUPRIYA AND M. S. SUNITHA: ON THE INJECTIVE CHROMATIC NUMBER... 85

v1 v2

v3

v4v5

v6

u1 u2

u3

u4u5

u6

4 4

1 1

2 35 6

2 3

5 6

Figure 5: Injective coloring of D2(C6)

Case 2: n ≡ 0 mod 4.
Since ∆(D2(Cn)) = 4, χi(D2(Cn)) ≥ ∆ = 4. Now it is enough to provide an injective color-
ing with 4 colors. First color the vertices v1, v2, · · · , vn sequentially as 1, 1, 2, 2, 1, 1, 2, 2, · · · .
Next color the vertices u1, u2, · · · , un sequentially as 3, 3, 4, 4, 3, 3, 4, 4, · · · , which gives an
injective coloring of D2(Cn) with 4 colors.
Case 3: n ̸= 3, 6 and n ̸≡ 0 mod 4.
For n ̸≡ 0 mod 4, χi(Cn) = 3, therefore three colors are needed to color the vertices of
copies of Cn. Also for n ≡ 0 mod 4, totally χi(Cn)+2 colors are used to color the vertices
of S(Cn). Thus χi(Cn) + 2 = 5 colors are needed to color the vertices of S(Cn).
Subcase 1: n ≡ 1 mod 4.
First color the vertices v1, v2, · · · , vn−1 of Cn sequentially as 1,1,2,2,1,1,2,2· · · and the
vertex vn with color 3. Now color the vertices u1, u2, · · · , un as follows.

• N2(u1) = {v1, u3, v3, un−1, vn−1}. Colors of the vertices in N2(u1) are 1, 2. Thus
C(u1) = 3.

• N2(u2) = {v2, vn, un, v4, u4}. Colors of the vertices in N2(u2) are 1, 2, 3. Thus
C(u2) = 4.

• For i = 3, 4, · · · , n − 2, N2(ui) = {vi, vi−2, ui−2, vi+2, ui+2}. colors of the vertices
in N2(ui) are 1, 2, 3 for i such that i ≡ 3, 2 mod 4 and 1, 2, 4 for i such that
i ≡ 0, 1 mod 4. Thus the vertices u3, u4, · · · , un−2 are colored sequentially as
4,3,3,4,4,3,3· · · .

• N2(un−1) = {vn−1, v1, u1, vn−3, un−3}. Colors of the vertices in N2(un−1) are
1, 2, 3, 4. Thus C(un−1) = 5.

• N2(un) = {un, u2, v2, un−2, vn−2}. Colors of the vertices in N2(un) are 1, 2, 3, 4.
Thus C(un) = 5.

This gives an injective coloring of D2(Cn) for n ≡ 1 mod 4 with 5 colors. Similarly, we
can injectively color D2(Cn) for n ≡ 2 mod 4 and n ≡ 3 mod 4 with 5 colors. □

In Theorem 3.4 the injective chromatic number of shadow graph of Km,n is obtained.

Theorem 3.4. The injective chromatic number of shadow graph of Km,n is χi(D2(Km,n)) =
2 max{m,n}.

Proof. Without loss of generality, assume that n ≥ m. Let v1, v2, · · · , vn, u1, u2, · · · , um
be the vertices of the first copy of Km,n and v′1, v

′
2, · · · , v′n, u′1, u′2, · · · , u′m be the vertices

of the second copy of Km,n for the construction of D2(Km,n).
From the Figure 6, it can be seen that no vertices vi’s or v

′
i’s, 1 ≤ i ≤ n can have the same
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colors, since any vertex uj , 1 ≤ j ≤ m is a common vertex for the vertices vi’s and v′i’s.
Thus 2n distinct colors are needed to color the vertices vi and v′i, 1 ≤ i ≤ n. The same
set of n colors are enough to color the vertices uj ’s and u′j ’s for 1 ≤ j ≤ m, since these

vertices have no common vertices with the vertices vi and v′i, 1 ≤ i ≤ n.
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Figure 6: Injective coloring of D2(Km,n)

□

Corollary 3.2. The injective chromatic number of shadow graph of Sn+1, star graph with
n+ 1 vertices is χi(D2(Sn+1)) = 2n.

4. Conclusions

Splitting graph, S(G) and shadow graph, D2(G) are larger graphs obtained from G by
means of construction. In this article the injective chromatic number of splitting graph and
shadow graph of different classes of graphs are expressed in terms of number of vertices.
Also a sharp lower and upper bound for the injective chromatic number of splitting graph
and shadow graph of any graph is suggested. It is open to compute the injective chromatic
number of splitting graph and shadow graph of any arbitrary graphs.
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