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ρ−STATISTICAL BOUNDEDNESS

M. ET1, C. CHOUDHURY2, S. DEBNATH2∗, §

Abstract. In this paper, we introduce and examine the concept of ρ−statistical bound-
edness and give some relations between statistical boundedness and ρ−statistical bound-
edness. We also introduce the notion of ρ−statistical upper bound, ρ−statistical lower
bound, ρ−statistical supremum and ρ−statistical infimum and investigate their interre-
lationships.

Keywords: ρ−statistical boundedness, ρ−statistical convergence, ρ−statistical supre-
mum, ρ−statistical infimum.
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1. Introduction, Definitions and Preliminaries

Statistical convergence was introduced by Fast [12] and Steinhaus [26] independently
in the same year 1951. Though the notion was firstly handled as a summability method
by Schoenberg [27]. Salat [21] researched some topological properties of statistical conver-
gence for sequences of real numbers. Fridy [13] defined the concept of statistical Cauchiness
and showed that it is equivalent to statistical convergence. He also dealt with some Taube-
rian theorems. Connor [9] proved that a strongly p-Cesaro summable sequence for 0 <
p < ∞ is statistically convergent and the converse holds for bounded sequences. Recently
several generalizations and applications of this concept have been investigated by various
authors. For more details, one may refer to [1, 6, 7, 15, 16, 17, 19, 20, 22, 23, 24, 25, 28, 29].

The opinion of statistical convergence depends on the density of subsets of the natural
set N. We say that δ(E) is density of a subset E of N if the following limit exists such
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that

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k),

where χE is the characteristic function of E. It is clear that any finite subset of N has
zero natural density and δ (Ec) = 1− δ (E).

We say that the sequence x = (xk) is statistically convergent to ℓ if for every ε > 0,

δ ({k ∈ N : |xk − ℓ| ≥ ε }) = 0.

Let K ⊂ N. Then, ρ−density of K is defined by

δρ(K) = lim
n→∞

1

ρn
|{ k ≤ n : k ∈ K}| ,

provided this limit exists, where and afterwards ρ = (ρn) is a non-decreasing sequence

of positive real numbers tending to ∞ such that lim supn
ρn
n

< ∞, ∆ρn = O(1), and

∆ρn = ρn+1 − ρn for each positive integer n.

If x = (xk) is a sequence such that xk holds property P (k) for all k except a set of
ρ−density zero, then we say that xk holds P (k) for “almost all k according ρ ” and we
denote this by “a.a.k (ρ)”.

A sequence x = (xk) is called ρ−statistically convergent [2] to ℓ if

lim
n→∞

1

ρn
|{k ≤ n : |xk − ℓ| ≥ ε}| = 0

for each ε > 0. In this case, it is denoted by xk
stρ−−→ l. If ρn = n for all n ∈ N, then

ρ−statistical convergence is coincides usual statistical convergence [12, 26]. The set of all
ρ−statisticallly convergent sequences will be denoted by Sρ.

The concept of statistical boundedness was given by Fridy and Orhan [14] as follows:

The real number sequence x is statistically bounded if there exists a number M > 0
such that

δ ({k : |xk| > M}) = 0. (1)

The set of all statistically bounded sequences will be denoted by

S (b) = {x = (xk) : (1) holds} .

It can be shown that every bounded sequence is statistically bounded, but the converse
is not true, in general. For this consider a sequence x = (xk) defined by

xk =

{
k, if k is a square,
1, if k is not a square.

Clearly, the sequence x = (xk) is not a bounded sequence, but it is statistically bounded.

Bhardwaj et al. [3, 4, 5] and Et et al. [10, 11] generalized the concept of statistical
boundedness.
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2. ρ−Statistically Bounded Sequences

In this section we introduce the concept of ρ−statistical boundedness and give the
relation between ρ−statistical convergence and ρ−statistical boundedness.

Definition 2.1. Let ρ = (ρn) be a non-decreasing sequence of positive real numbers as
above. A sequence x = (xk) is said to be ρ−statistically bounded if there exists a M ≥ 0
such that

lim
n→∞

1

ρn
|{k ≤ n : |xk| > M}| = 0, i.e., |xk| ≤ M a.a.k(ρ).

The set of all ρ−statisticallly bounded sequences will be denoted by Sρ (b). If ρn = n
for all n ∈ N, then ρ−statistically boundedness is coincides statistically boundedness.

Theorem 2.1. ℓ∞ ⊂ Sρ (b) and the inclusion is strict, in general.

Proof. If x ∈ ℓ∞, then there exists M > 0 such that |xk| ≤ M for all k ∈ N. So,
{k ≤ n : |xk| > M} = ∅. This fact implies that x ∈ Sρ (b).

For strictness of the inclusion let a sequence x = (xk) be defined as follows

xk =

 ρk, k is square,
0, k is odd non-square,
1, k is even non-square.

.

Then, for any M > 0, there exists k0 ∈ N such that

{k : |xk| > M} ⊂
{
ρ21, ρ

2
2, ρ

2
3, · · · , ρ2k0 , ρ

2
k0+1, · · ·

}
= A.

This follows

δρ({k : |xk| > M}) ≤ δρ
({

ρ21, ρ
2
2, ρ

2
3, · · · , ρ2k0 , ρ

2
k0+1, · · ·

})
= lim

n→∞

√
ρn

ρn
= 0.

Thus x ∈ Sρ (b). However x /∈ ℓ∞ and this completes the proof. □

Theorem 2.2. A ρ−statistically convergent sequence is ρ−statistically bounded, but con-
verse is not true, in general.

Proof. Let x = (xk) ∈ Sρ. Then there exists an ℓ ∈ R such that

lim
n→∞

1

ρn
|{k ≤ n : |xk − ℓ| ≥ ε}| = 0

holds, for all ε > 0. So it holds ε = 1 in particular. By reverse triangle inequality we see

{k ≤ n : |xk| ≥ |ℓ|+ 1} ⊆ {k ≤ n : |xk − ℓ| ≥ 1}
and

1

ρn
|{k ≤ n : |xk| ≥ |ℓ|+ 1}| ≤ 1

ρn
|{k ≤ n : |xk − ℓ| ≥ 1}|

for all n ∈ N. Taking limit in the last inequality and choosingM = |ℓ|+1 we get x ∈ Sρ (b).

To show the strictness of the inclusion choose x = (xk) = (1, 2, 3, 1, 2, 3, ...) and take
ρn = n for all n ∈ N. Then, x is not statistically convergent since it has no any dense
subsequence which is convergent. However, x is ρ−statistically bounded. □

Corollary 2.1. Every convergent sequence is ρ−statistically bounded, but the converse is
not true.
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Proof. Proof is clear from Theorem 2.1, because of regularity of ρ−statistical convergence.
□

Theorem 2.3. Let ρ = (ρn) be a non-decreasing sequence of positive real numbers tending
to ∞ such that lim supn

ρn
n < ∞, ∆ρn = O(1), then Sρ (b) ⊂ S(b).

Proof. Let x = (xk) ∈ Sρ (b) be an arbitrary sequence. For a given M,K > 0, we have

1

n
|{k ≤ n : |xk| > M}| = ρn

n

1

ρn
|{k ≤ n : |xk| > M}|

≤ K

ρn
|{k ≤ n : |xk| > M}| .

Since, lim supn
ρn
n < ∞, then we get Sρ (b) ⊂ S (b). □

Theorem 2.4. Let ρ = (ρn) be a non-decreasing sequence of positive real numbers tending

to ∞ such that lim supn
ρn
n

< ∞,∆ρn = O(1). If ρn ≥ n for all n ∈ N, then S(b) ⊂ Sρ (b).

Proof. If x ∈ S(b), then for some M > 0 we have

1

n
|{k ≤ n : |xk| > M}| = ρn

n

1

ρn
|{{k ≤ n : |xk| > M} |

≥ 1

ρn
| {k ≤ n : |xk| > M} |.

This proves the proof. □

Theorem 2.5. Let ρ = (ρn) and τ = (τn) be two sequences that satisfy the conditions in
Definition 2.1 such that ρn ≤ τn for all n ∈ N. If

lim
n→∞

sup
ρn
τn

< ∞ (2)

then Sρ (b) ⊆ Sτ (b) .

Proof. The proof follows from the following inequality

1

τn
|{k ≤ n : |xk| > M}| = ρn

τn

1

ρn
|{k ≤ n : |xk| > M}|

≤ K

ρn
|{k ≤ n : |xk| > M}| .

□

Theorem 2.6. Let ρ = (ρn) and τ = (τn) be two sequences that satisfy the conditions in
Definition 2.1 such that ρn ≤ τn for all n ∈ N. If

lim
n→∞

inf
ρn
τn

> 0 (3)

then Sτ (b) ⊆ Sρ (b) .

Proof. Suppose that ρn ≤ τn for all n ∈ N and let (3) be satisfied, K > 0 we may write

1

τn
|{k ≤ n : |xk| > M}| ≥ ρn

τn

1

ρn
|{k ≤ n : |xk| > M}| .

Now taking the limit as n → ∞ in the above inequality and using (3), we get Sτ (b) ⊆
Sρ (b) . □
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3. ρ−statistical upper bound, lower bound, supremum, infimum

In 2013, Küçükaslan and Altınok [18] introduced the notion of statistical supremum
and statistical infimum using the concept of statistical upper bound and statistical lower
bound. In this section, we introduce ρ−statistical analogs of the above notion and prove
some interesting results.

Definition 3.1. Let x = (xk) be a real-valued sequence.
(i) The real number l is said to be a ρ−statistical lower bound of x, if

δρ({k ∈ N : xk < l}) = 0 (or δρ({k ∈ N : xk ≥ l}) = 1.

(ii) The real number u is said to be a ρ−statistical upper bound of x, if

δρ({k ∈ N : xk > u}) = 0 (or δρ({k ∈ N : xk ≤ u}) = 1.

The set of all ρ−statistical lower and upper bounds of the sequence x = (xk) is denoted
by Lρ(x) and Uρ(x), respectively.

Definition 3.2. Let x = (xk) be a real-valued sequence.
(i) The real number i is said to be the ρ−statistical infimum of the sequence x = (xk) if i
is the supremum of the set Lρ(x). In other words,

stρ − inf x = supLρ(x).

(ii) The real number s is said to be the ρ−statistical supremum of the sequence x = (xk)
if s is the infimum of the set Uρ(x). In other words,

stρ − supx = inf Uρ(x).

If we take ρn = n for all n ∈ N, then Definition 3.1 and Definition 3.2 coincides with
Definitions given in [18] for natural density.

Theorem 3.1. (i) If L(x) denotes the set of all usual lower bounds of a sequence x = (xk),
then strictly

L(x) ⊂ Lρ(x);

(ii) If U(x) denotes the set of all upper lower bounds of a sequence x = (xk), then strictly

U(x) ⊂ Uρ(x).

Proof. (i) Let l ∈ L(x). Then, we have {k ∈ N : xk ≥ l} = N and consequently, δρ({k ∈ N :
xk ≥ l}) = 1. Hence, l ∈ Lρ(x), proving that L(x) ⊆ Lρ(x). To prove that the inclusion
is strict we construct a counterexample. Let A be a set such that δρ(A) = 0. Define a
sequence x = (xk) as follows:

xk =

{
1, k /∈ A

(−1)kk, otherwise.

Then, 1 ∈ Lρ(x) but 1 /∈ L(x).
(ii) The proof is similar to that of (i), so omitted. □

Theorem 3.2. Let x = (xk) be a real-valued sequence. Then,
(i) If l ∈ Lρ(x), then all real numbers smaller than l are ρ−statistical lower bound of x.
(ii) If u ∈ Uρ(x), then all real numbers bigger than u are ρ−statistical upper bound of x.

Proof. (i) Let l ∈ Lρ(x) and l′ < l. Then, by definition δρ({k ∈ N : xk ≥ l}) = 1. Since,
l′ < l, so the inclusion

{k ∈ N : xk ≥ l} ⊆ {k ∈ N : xk ≥ l′}
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holds and consequently δρ({k ∈ N : xk ≥ l′}) = 1. Hence, l′ ∈ Lρ(x).
(ii) The proof is similar to that of (i), so omitted. □

Theorem 3.3. For any real-valued sequence x = (xk), following inequation

inf x ≤ stρ − inf x ≤ stρ − supx ≤ supx

holds.

Proof. From the definition of usual infimum we have δρ({k ∈ N : xk ≥ inf x}) = 1.
Therefore, inf x ∈ Lρ(x) and consequently,

inf x ≤ stρ − inf x. (2)

In a similar way, one can prove that

supx ≥ stρ − supx. (3)

Now we will show that stρ − inf x ≤ stρ − supx. To prove this, it is sufficient to prove
that l ≤ u for any l ∈ Lρ(x) and u ∈ Uρ(x).

If possible suppose there exists l′ ∈ Lρ(x) and u′ ∈ Uρ(x) such that l′ > u′. Then, since
l′ ∈ Lρ(x), so by Theorem 3.2, u′ ∈ Lρ(x), which is a contradiction on the assumption of
u′. Hence, we must have l ≤ u for any l ∈ Lρ(x) and u ∈ Uρ(x). In other words,

stρ − inf x ≤ stρ − supx. (4)

Combining (2), (3), and (4) we obtain the desired result. □

Theorem 3.4. Let x = (xk) be a real-valued sequence such that xk → x0 as k → ∞.
Then, stρ − inf x = stρ − supx = x0.

Proof. There are two possible cases:
Case-I: When x0 is finite.
From the assumption, it is easy to show that for any ε > 0, there exists k0 ∈ N such that
the following inclusions hold

{k ∈ N : xk ≥ x0 − ε} ⊇ N \ {1, 2, ..., k0} (5)

and

{k ∈ N : xk ≤ x0 + ε} ⊇ N \ {1, 2, ..., k0}. (6)

From, (5), (6), and monotonicity properties of ρ−density we obtain

δρ({k ∈ N : xk ≥ x0 − ε}) = δρ({k ∈ N : xk ≤ x0 + ε}) = 1.

Thus, we have, for any ε > 0, x0−ε ∈ Lρ(x) and x0+ε ∈ Uρ(x) which means that Lρ(x) =
(−∞, x0) and Uρ(x) = (x0,∞). Therefore, by definition, stρ − inf x = supLρ(x) = x0 and
stρ − supx = inf Uρ(x) = x0. Hence, stρ − inf x = stρ − supx = x0.
Case-II: When x0 is infinite, i.e., xk → ∞ as k → ∞.
Then, for given B > 0, there exists k0 ∈ N such that the inclusions {k ∈ N : xk ≥ B} ⊇
N \ {1, 2, ..., k0} and {k ∈ N : xk ≤ B} ⊆ {1, 2, ..., k0} holds. As a consequence of these
inclusions, δρ({k ∈ N : xk ≥ B}) = 1 and δρ({k ∈ N : xk ≤ B}) ̸= 1. Therefore, B ∈ Lρ(x)
and B /∈ Uρ(x) i.e., Lρ(x) = (−∞,∞) and Uρ(x) = ∅. Hence, stρ − inf x = stρ − supx =
∞. □

Theorem 3.5. For any real-valued sequence x = (xk), xk
stρ−−→ x0 if and only if stρ−inf x =

stρ − supx = x0.
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Proof. Firstly we assume that xk
stρ−−→ x0 holds. Then, by definition of ρ−statistical

convergence for any ε > 0,

δρ({k ∈ N : |xk − x0| ≥ ε}) = 0. (7)

This implies that, for any ε > 0,

δρ({k ∈ N : xk ≥ x0 + ε}) = 0 and δρ({k ∈ N : xk < x0 + ε}) = 1 (8)

and

δρ({k ∈ N : xk ≤ x0 − ε}) = 0 and δρ({k ∈ N : xk > x0 − ε}) = 1. (9)

Now from (8) and (9), we obtain x0 + ε ∈ Uρ(x) and x0 − ε ∈ Lρ(x). Eventually, Uρ(x) =
(x0,∞) and Lρ(x) = (−∞, x0) holds and we have stρ − inf x = stρ − supx = x0.

To prove the converse part, let stρ−inf x = stρ−supx = x0 i.e., supLρ(x) = inf Uρ(x) =
x0. Then, by definition of supremum and infimum, there exists at least one l′ ∈ Lρ(x)
and atleast one l′′ ∈ Uρ(x) such that for any ε > 0, x0 − ε < l′ and x0 + ε > l′′ holds.
Consequently,

{k ∈ N : xk ≥ x0 + ε} ⊂ {k ∈ N : xk ≥ l′}
and

{k ∈ N : xk ≤ x0 + ε} ⊂ {k ∈ N : xk ≤ l′′}.
Now since, l′ ∈ Lρ(x) and l′′ ∈ Uρ(x), so from the above inclusions we obtain δρ({k ∈ N :
xk ≥ x0+ ε}) = 0 and δρ({k ∈ N : xk ≤ x0− ε}) = 0 which altogether implies (7) and this
completes the proof. □

Theorem 3.6. Let x = (xk) and y = (yk) be two real-valued sequences such that δρ({k ∈
N : xk ̸= yk}) = 0. Then,

stρ − inf x = stρ − inf y and stρ − supx = stρ − sup y.

Proof. We only prove the first part i.e., stρ − inf x = stρ − inf y. The proof of the second
part can be obtained by applying a similar technique.

Let the given conditions hold and suppose l ∈ Lρ(x) be arbitrary. Then, by definition

δρ({k ∈ N : xk < l}) = 0.

Consequently,

{k ∈ N : yk < l} = {k ∈ N : xk ̸= yk, yk < l} ∪ {k ∈ N : xk = yk, yk < l}
⊆ {k ∈ N : xk ̸= yk} ∪ {k ∈ N : xk < l}.

From the above inclusion, it is clear that δρ({k ∈ N : yk < l}) = 0 which implies l ∈ Lρ(y).
This proves that

Lρ(x) ⊆ Lρ(y).

Similarly, one can establish Lρ(y) ⊆ Lρ(x). Hence, Lρ(x) = Lρ(y) holds and eventually
supLρ(x) = supLρ(y) i.e., stρ − inf x = stρ − inf y. □

Remark 3.1. The converse of the above theorem is not necessarily true. Let ρn = n, n ∈
N. Consider the sequences x = (xk) and y = (yk) defined by xk = 1− 1

k and yk = 1 + 1
k .

Then, it is easy to verify that stρ − inf x = stρ − inf y = 1. But δρ({k ∈ N : xk ̸= yk}) =
1 ̸= 0.
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4. Conclusion

In this paper, we mainly focus on the concept of ρ−statistical boundedness which is a
natural generalization of statistical boundedness. In section 2, Theorem 2.3 and Theorem
2.4 are established to show the connection between a ρ−statistically bounded sequence
and a statistically bounded sequence. Furthermore, Theorem 2.5 and Theorem 2.6 es-
tablishes two inclusion relations for the variation on the sequence ρ = (ρn). Section 3
basically deals with four new concepts namely ρ−statistical upper bound, ρ−statistical
lower bound, ρ−statistical supremum and ρ−statistical infimum. Theorem 3.3 estab-
lishes an inequation showing how ρ−statistical supremum and ρ−statistical infimum of
a sequence are connected to usual supremum and usual infimum. Theorem 3.5 gives a
necessary and sufficient condition for ρ−statistical convergence of a real valued sequence
x = (xk).

As a continuation of this research, one may investigate several properties such as solidity,
symmetry and monotonicity of the sequence space Sρ (b). Also, from the application point
of view, one may investigate the concept of ρ−statistical convergence in neutrosophic
normed space, complex uncertain space, credibility space etc.
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