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EXTENSIVE EXPLORATION OF MULTI-TERM HYBRID
FUNCTIONAL EQUATION VIA HYBRID DIFFERENTIAL FEEDBACK
CONTROL

A. M. A. EL-SAYED! | SH. M. AL-ISSA?3* | H. H. G. HASHEM!, 1. H. KADDOURA?3, A. A.
NAJDI?, §

ABSTRACT. This paper investigates the existence of solutions for a multidimensional
hybrid functional equation with multiple delays, incorporating differential feedback con-
trol. The focus is on finding well-defined, continuous, and bounded solutions on the
semi-infinite interval. To establish the existence of these solutions, we employ measures
of noncompactness associated with a specified modulus of continuity within the space
BC(R4). Furthermore, we derive sufficient conditions to ensure the asymptotic stabil-
ity of the solutions to this integral equation. An illustrative example is provided to
demonstrate the applicability of the theoretical results.

Keywords: multi-term hybrid functional equation, existence of continuous solution, a
measure of noncompactness; Darbofixed-point theorem, differential feedback control.
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1. INTRODUCTION

Incorporating control variables into such problems is increasingly important, especially
in modeling real-world phenomena, where unexpected disruptions can significantly im-
pact ecosystems. In ecology, a critical issue is understanding whether an ecosystem can
withstand temporary disturbances that may alter biological characteristics, such as sur-
vival rates. These disruptions are modeled through control variables, which represent
external disturbances. In [10], Chen derived averaged conditions for the persistence and
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global attractivity of a nonautonomous feedback-controlled Lotka-Volterra system using
an appropriately constructed Lyapunov functional.

The significance of feedback control in functional equations has also been explored in
various contexts. Nasertayoob et al. [11] studied a class of nonlinear functional-integral
equations involving feedback control, demonstrating the existence of solutions that are
both asymptotically stable and globally attractive by applying the measure of noncom-
pactness and Darbo’s fixed point theorem. Furthermore, under suitable conditions, the
existence of positive periodic solutions for nonlinear neutral delay population systems
with feedback control has been investigated [12], with the proof relying on the fixed-point
theorem for strict-set-contraction operators.

El-Sayed et al. [7] considered a functional integral equation involving a control param-
eter that satisfies a multivalued feedback control, while [8] extended these results to study
nonlinear functional integral equations constrained by fractal feedback control.

In this article, we establish the existence and asymptotic stability of solutions for a class
of multidimensional functional equations, which take the form

wo) —mo,pulo) _ -y Be(0) —m(o, ule(o)))
) M) T @) M
1(61(0)) = mi(o, (1 (0))) [V p(1) = mu (7, (7))
9 ("’ (0, 1(61(0))) / N Y (3),
1(81(0)) — m (o, w(dr(0))) [+ p(1) = mu (7, (7))
o o MR dT)’
subject to a hybrid differential feedback control described by

dv;éa) = =g (o) + f(m v2(0), u(ozh—(:’l/g((ft;gi)(o))) vo=0g(0), A>0, cER,.  (2)

In our approach, we utilize the method of measures of noncompactness to prove the ex-
istence of solutions for this multidimensional functional equation in the space of bounded
continuous functions on the positive real line, denoted BC(R;). The analysis primarily
relies on Darbo’s fixed point theorem [6] and techniques involving the measure of noncom-
pactness.

The measure of noncompactness and Darbo’s fixed point theorem have proven to be
effective tools for analyzing nonlinear functional-integral equations, which are pertinent
to various fields, including vehicular traffic theory, biology, and queuing theory [4]. The
application of noncompactness measures in the Banach space BC(R), which consists of
all bounded and continuous functions on the positive real line, was pioneered by J. Banas
[5].This approach has been widely employed to establish the existence of asymptotically
stable solutions for integral and quadratic integral equations [4, 5]. Further discussions on
solvability in the half-axis domain can be found in [1, 2].

The structure of the article is as follows: Section 2 provides essential background in-
formation and elaborates on the concept of the measure of noncompactness. In Section
3, we introduce and demonstrate an existence theorem for multidimensional functional
equations with multiple delays, along with an analysis of the asymptotic stability of the
solutions. Lastly, Section 4 presents an illustrative example to support the theoretical
results.

) dr,

2. BACKGROUND AND AUXILIARY FACTS

In this section, we review key foundational concepts and auxiliary information related
to the theory of noncompactness in Banach spaces. Before proceeding with our discussion
on the space BC(R), we first define the function space in which solutions exist.
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Let E be a Banach space equipped with the norm || - ||. We consider the space of
bounded continuous functions on R, denoted by BC(R.), which consists of all functions
u : Ry — R such that u(o) is continuous and there exists a constant M > 0 satisfying
|u(o)| < M for all 0 € Ry. The norm in this space is given by:

[lull = sup |u(o)],
occRy
which ensures that (BC(Ry),||-||) is a complete normed space.

We now define the Hausdorff measure of noncompactness, denoted by x(X), for a
nonempty, bounded subset X C E:

X(X) =inf{e > 0: X admits a finite e-net in E}.

We then extend this to the space of bounded continuous functions, BC(R ), which was
investigated in earlier studies. Let X C BC(Ry) be a nonempty, bounded subset, and let
T > 0 be a given constant. For any function v € X and for € > 0, we define the modulus
of continuity over the interval [0,7] as:

o

w' (v,€) = sup{|v(o) —v(7)| : 0,7 € [0, T, |0 — 7| < €}.

Additional notations related to the measure of noncompactness are given as follows:

wl'(X,e) =sup{wl (v, €) ;v e X}, wl(X)= linéwT(X, €),
e—

and

wo(X) = lim wi (X).

T—oo

It has been shown that the measure of noncompactness can be expressed as:

1

X(X) = 5(X).

Furthermore, we define the diameter of the set X at a given time o as:

diam X (o) = sup{|u(o) — v(o)| : u,v € X}.

The measure of noncompactness for functions in the space BC'(R;) has been explored
in detail in various works. Additionally, we introduce a function u, which is defined on
the family of subsets Mpc(r, ), as follows:

u(X) =wo(X)+ lim supdiam X (o).
g—00
Next, we present a fixed-point result, known as Darbo’s fixed point theorem, which will
be instrumental in proving the existence of solutions in subsequent sections (see [17]).

Theorem 2.1. Let M be a nonempty, bounded, closed, and convex subset of a Banach
space E, and let F : M — M be a continuous operator satisfying pu(F(X)) < lu(X) for
any subset X C M, where l € [0,1) is a constant. Then, the operator F has a fixed point
m M.
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3. MULTI-TERM EQUATION WITH MULTIPLE DELAYS

Consider the equation

(o) —m(o, u(o))
(o) = , 3
) n2(0, (o)) ®
from which any solution of the functional equation (1) can be expressed as:
(o) =mlo,z(0)) + z(o)n(o, u(0)), o =0, (4)

where x (o) satisfies the following multidimensional equation:

Y1(o)
z(o) = g1 (0,v4(0),2(p(0))) g2 (U,a:(gbl(a))/o hi(o,1,2(T)) dT,\. .., (5)

Vi (o)
: ..,x(¢k(a))/0 hi (o, 7,2(T)) dT>, o € [0.00),

accompanied by the differential feedback control condition:
dvg (o)
do

We analyze the multidimensional functional equation (5) under the following assump-
tions:

= —Xvz(0) + f(0,vz(0),2(0)), wvo=10vz(0), A>0. (6)

(i) The functions ¢, ¢;, ¢; = [0,00) — [0,00) (for i = 1,2,...,k) are continuous and
satisfy the condition (o), ¢;(0),vi(0) < o.

(ii) The function f: Ry x R x R — R is continuously differentiable in its arguments.
Additionally, there exists a bounded measurable function n : [0,00) — R and a
constant m > 0 such that:

‘f(0'7$1,y1) - f(0,$2,y2)| < m(‘xl - $2’ + |y1 - y2|)7
[f(o,z,y)| < In(o)] +m (=] +[y]) .
with |n(o)| = |f(0,0,0)|, and

lim/ In(s)|ds =0, Sup/ In(s)|ds < N.
T—r00 0 0

U€R+

(iii) The function g : Ry x R* — R is continuous and satisfies the Lipschitz condition:

k
|92(O',£L'1, o ,fEk) - 92(0', Yt - 7yk:)| < ZZ ’xl - yl|
i=1

for all 0 € Ry and x;,y; € R. Additionally, the function g»(o,0,...,0) belongs to

k
|92(U)‘T1)' . 71"]4:)’ S ZZ |$Z| + GZ(U)a
i=1

where Ga(0) = |g2(0,0,...,0)] € BC(R4) and
lim Ga(0) =0, Gz = sup Ga(o) < 0.

g—00 UER+
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(iv) The function g1 : Ry X R — R is continuous, with a positive constant 7, such that:

91(0, 21, 22) — g1(0,y1,y2)| < n(|z1 — yil + 22 — y2l)
for all o € Ry and z,y € R. Moreover, gi(c,0,0) € BC(R), and
[91(0, 1, 22)| < n([@1] + [22]) + G1(0),
where G1(0) = |g1(0,0,0)| € BC(R4), with

lim Gi(0) =0, G; = sup Gi(0) < .
T—00 O'ER+

(v) The functions h; : Ry x R — Ry (for i = 1,2,..., k) are Carathéodory functions,
measurable in ¢ € R, for all x € R, and continuous in z for all ¢ € R;. Addition-
ally, there exist measurable and bounded functions «;, 8; : Ry x Ry — Ry such
that:

|hi(0’, 7—7'1")| < ai(UaT) + ﬁi(077)|x|a
for o, 7 € [0,00), and

lim ai(o,7)dr =0, sup / ai(o,7)dr = ay,
0

7700 Jo a€[0,T]

oz

lim Bi(o,7)dTr =0, sup /0’ Bi(o,T)dT = B;.
0

7= Jo o€l0,T]

Let a = sup{e;} and 8 = sup{p;}.
(vi) There exists a positive solution r of the following equation:

nlk(Ng + 1)Br3 + (G11kB + nlk(R + Ry + R3) S 4 nlk(Rg + 1)a) 72
+ [(Gllka + TLGQ(NQ + 1) + nlk(N + Ny + N3)O¢) — 1}’/“ + G1G9 + nGg(N + Ny + Ng) =0,
such that

n(A+1)[ Ga+lkr|la+Br]]+1k[Gr+n R+ +Ro r+ Ry +7)][a+B7] < 1.

Lemma 3.1. Let assumption (ii) hold, if a solution to the differential feedback control
variable in (2) exists, it can be expressed as the solution of the following integral equation:

vg(0) = v e 4 /U eiA(Uif)f(T,U(T),x(T)) dr, vy = v;(0), (7)
0

where vy (o) is the solution.

Proof. Starting from the differential feedback control (2), we have:

LelT) — Nvalo) + (0,00, 2(0)).
Multiplying both sides by e’ we get:
e dv;(ga) + A u,(0) = X f(o,v(0), z(0)).
Then
% (vx(a)e)‘o) = e f(0,v(0), z(0)).

Integrating both sides with respect to o:

Ve (0)eMN = v, Je” 7,0(7), z(7)) dr.
(o) O+ [ i) d
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Thus, solving for v,(0):

ve(0) = v e + /0 e M £ (7 0(r), 2(7)) dr,
0

as expressed in (7).
Now, for any real-valued function z(c), the solution v,(o) is bounded. If vy > 0, we
have:

[v2(0)] < Jvole ™ + /U e N m(Jvg ()| + [ (7)]) + (7)) dr
0

<R+ sup ( / e—MU—T)mm(T)uT) + sup < / e—M“—T)meHdT)
oel 0 Tel 0

+ sup (/ e’\("T)n(T)dT)
Tel 0

§N+N1+N2T+N3,

where the constants N, Ny, Ny, N3 are defined as:
lim vy e ™ =0, sup vge M =N,
T—r00 O'E]R+
g

lim e M I, (r)|dr =0,  sup / e M mlug (1) |dr = Ry,
770 Jo oeR, Jo

g
lim e M m|z||dr =0, sup / e M mz||dr = Ry,
0

7= Jo o€Ry

lim e Mo n(r)dr =0,  sup / e Mo n(1)dr = 3.
0

770 Jo o€R

Additionally, for two distinct functions x1(0) and x2(0), the difference in solutions
satisfies:

[0, () — Vzy (0)] < /0 e MO | F(7, 00, (1), 21(7)) — f (7, 02y (7), (7)) | dr

< m/og e ([va, (7) = Voo (7)] + [1(7) — w2(7)]) dT
< 5 (e = vl + Il = 2]
Thus, the bound for the difference between solutions is:
[021 = Ve, | < Al — 22,
where A = 55 and m/A < 1. O
Theorem 3.1. Assume that conditions (i)-(vi) are satisfied. Then the multidimensional
functional equation (5) admits at least one solution x = x(o) in the space BC(Ry.).

Proof. Let us define the operator F as follows:
Fa(o) = g1(0, va(0), 2(p(0)))

P1(o) Yr (o)
X go <a,x(¢1(a))/0 hi(o,m, (1)) dT,. .. ,:c(d)k(a))/o hi(o,T,2(T)) d7'> ,

o € Ry. By assumptions (¢i¢) and (v), the functions g; (o, vz, x) and g2(o, 1, 22, . .., Tk)
are continuous, and thus, Fx € C(R4,R).
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We will now show that for some r > 0, the operator F maps the ball B, into itself.
Specifically, we have

|Fz(0)| = |91(0,v2(0), z(0(0)))

P1(o) Y (o)
X g2 (o, 2(61(0)) / b0y, a(r)) dr, .., 2 (0)) / hi(o, 7, 2(7) dT)
< [191(0,0,0)] + 1 (fva(0)] + 22 ()]

k (o)
X [92(0’0, ., 0) +ZZ |$(¢i(0))|/0 (i (0, 7) + Bio, T)fﬂ(T)DdT]

<[Gp +n R+ Ry + Ror + Rz + )] [G2 + Irk(a + Br)] = 7.

Considering assumption (vi) and the estimate above, we conclude that the operator F
maps the ball B, into itself, provided there exists a positive solution r» = r( to the equation

nlk(Ng + 1)Br3 + (G11kB + nlk(R + Ry + R3) S 4 nlk(Rg + 1)a) 72
+ [(Gilka + nGa(Ng 4 1) + nlk(R 4+ Ny 4+ Rz)a) — 1]r + G1G2 + nG2(R 4 Xy 4+ R3) = 0.

Next, we show that the operator I is continuous on the ball B,. Let ¢ > 0 and take
z,y € B, such that ||z —y|| <e. For o € Ry, we have:

|[Fa(o) = Fy(0)] < (jva(o) = vy(0)] + |2(0(0)) — y((o)])

k Pi(o)
: (Gz +lZ|x(¢i(0))|/ (ai(a,f)+ﬁi(a,7)||x||)d7>
i=1 0

+ LG+ (Joy ()] +[ly1)

k Yi(o)
| (i) — y(¢i(0))|/o (ai(o,7) + 51‘(07T)|33||)d7>

7

+

Consider the following two cases:
Case i): Let T' > 0 be chosen such that for o > T, the following inequalities hold:

k Yi(o)
\y(@(o))l/o | hi(o,7,2(7)) = hi(o,7,y(7)) |dT}~

1

k r/ [ai(o,7) + Bi(o,7)||z||]dT < €1 and k r/ [vi(o,7) + Bi(o,7)||ly||]dT < €.
0 0
We then obtain

[F(z(0)) —F(y(o))| <n(A+ 1)z —yll [G2 + lkr /00[0%’(0, 7) + Bi(o, T)r]dr

+ 1[G+ R+ Xy 4+ Nor + V3 + 1) kl|z — y| /Og[ai(a, 7) + Bi(o, T)r|dr

whr [ il + Aol + Iyllar

< (A +1) [Go + lkr(ci + Bir)] + 1[G + (R + Ry 4+ Ror + N3 +7)] k(o + Bi7))
<

Case ii): For ¢ < T, define the function w? (h;,€) for i = 1,2,..., k, where for ¢ > 0,
we have

W (h,€) = sup {|hi(o, 7, 2(7)) — hi(o,7,y(7))| : 0,7 € [0,T], ||z — y|| < €}
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Using the uniform continuity of h, we know that w’ (h,€) — 0 as ¢ — 0. Therefore, by the
above estimates, we get

[F(z(0)) = F(y(o))| < n(A+ Dz -y [G2 + lkr(o + fr)]
+1[G1 + N+ Ny +Nor + Rz +7)] k [||x —yll(a + Br) + krw? (hi, e)]
<A +1)[Ge + lkr(a+ pr)] + L[G1 + (R + Ry + Ror + Rz + )] k(o + fr)] e <e.

Conclusion: From cases (i) and (ii), we conclude that the operator F is continuous on
the ball B,, mapping B, into itself.

Now, consider a non-empty subset X of B,. Fix € > 0 and choose x € X and 01,09 € R
such that |0y — 01| < e. Without loss of generality, assume o1 < g9. Then

| Fx(o2) — Fz(o1) |

IN

g1(02,v:(02), 2(p(02))

P1(o2) Y (o2)
X gg(og,x((bl(ag))/o hl(og,T,x(T))dT,....,:z:(gbk(T)))/O hi (o9, T, x(T))dr
= gi(o1,vz(01), 2(p(01)))

P1(o2) Yy (o2)
X gg(ag,m(¢1(02))/0 hl(Ug,T,SL'(T))dT7....,Qi(gbk(T)))/O hi (o2, 1, 2(7))dT

gi1(o1,vz(01), 2((01)))

1 (o2) Y (o2)
X 92(0'271'(¢1(0'2))/0 hl(ag,T,x(T))dﬂ....,:U(gbk(T)))/O hi (o9, T, x(T))dr
— g1(01,v:(01),2(p(01)))

7,/z'(ffl) d)k(‘fl)
< mona@ilo)) [ honna)n @) [ o)
< gi(o2,v0(02), 2(9(02))) = g1(o1,v2(01), 2(p(01)))]

P1(o2) P (o)
X |ga(o2 2(61(02)) / (02,7, 2(0))dT, . 2(1(0))) / hi (0, 7y o(7))dr|

+ 9101, vz (01), 2(p(01)))]

Y1 (o2) i (o2)
[\gzm,xwl(@» / (02,7, (7)), o 2(4(02))) / hi(2, 7 2(7))dr

P1(o1) Y (o1)
— gg(ol,m(¢1(01))/0 hl(al,T,x(T))dT,....,a:(gbk(al)))/0 hk(al,T,:v(T))dT|

< lgr(o2, ve(02), 2(9((02))) — g1 (01, v2(02), 2((02)))|
+ 9101, v2(02), 2(0(02))) — g1(01, v2(01), 2(2(01)))]]

k pi(o2)
X Hgg(ag,O,O7 ceey 0)] —l—lz |x(¢z(02))|/0 \hi(ag,T,x(T)ﬂdT]
i=1
+  [lg1(01,0,0)| +n(Jvz(o1)| + |2(e((01))]]

P1(o2) P (o2)
X {‘gg(ag,x((/)i((og)))/o hl(ag,r,m(r))dT,....,x(qﬁk(ag)))/o hi(o2, 7,2(7))dT

P1(o2) Y (o2)
- 92(017x(¢1(02))/0 hl(ag,T,x(T))dﬂ....,x(qﬁk(ag)))/0 hi (o2, 7, 2(T))dT)|
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10.(8) + 1([12(02) — val00)] + |(p(02)) — (p(@1)])]

k Pi(o2)
[Ga+13[2(0u(02) / [04(0,7) + B0, 7)|e(r))]d]
G1 + 1(Jva (@) + lz(e(01)])]

k P (02) Yi(o1)
CROREDIECIE) / hal, 7, 2(r))dr — 2(n(01)) / hi(or, 7, 2(7))dr |
6, (8) + 1, (8) + nlax(p(02)) — (1)

k Y;(02)
[Go+13 [2(n(02) / (o0, 7) + B, 7)|(r))|]dr]
i=1 0

HG1 + R+ Ry + Ry 7+ R + [2(0(01))]))]

k Y;(02)
[00,(0) +1 S 2(i(02))] / (hi(o2, 7, 2(7)) — hi(or, 7 2(r))dr
i=1 0

k Yi(o1)
! Z\x(@(@)) —x(@(m))l/o |hi(ov, 7, 2(7))|dT

pi(o2)

k
! Z]m(@(az))] |hi(01,7,$(7))\d7]
i=1

pi(o1)
[0g, (0) + 1By, (6) + nlz(p(o2)) — z(p(01))l]

k oo
[ Gt 1Y atanon)] [ laulonr) + Bilormlatror]
k Pi(o2)

G+ n(8 X+ 18 + Ja((0) ] [9 O+ eloo)| [ w0 dr

k o1 "
13 fo(61(02)) ~0n(o) [ lauton, )+ il m)la(r)llde

k oo
13" le(ito)] [ (o +ﬁi<02,r>|x<r>>]dr]

k oo

[0g, (8) + 6., () + nlz(p(02)) — 2(p(01))]].[ G2 +lZ ||JU||/0 [i(o,7) + Bi(o, 7)||z[]dr]
[G1 + n(R+ Ry + Ng 4+ Rz + ||z|))] [092(5) +1 krw{i (z,€)

k o1
! Z |w(¢i(02))_x(¢i(al))|/0 [aj(02,T) + Bi(o2, 7)||]dT

k o2
! lexﬂ/ [aj(02,7) + Bi(o2, 7)||||]dT
[0g,(8) +1bu, (8) + 1 w” (z,w" (0, )] G2+ 17k [a+ B 1]

k k
[G1 + (R4 Ry + Nor + Ry +7)] [0, (6) + 1 Z rwi (z,€) + lZwT(:mwT(qbi, )a; + Bir]],
i=1 i=1
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where for 1,09 € I, 01 < 09, we denote
04, (6) = sup{|g1(02, %) — g1(01, @)| : |02 — 01| <6, [z| <7},
04, (0) = sup{|g2(02, 1, T2, ... Tk) — g2(01,, 21, X2, .., Tk)| : o2 — 01| <6, |zs| <1},
0,,(0) = sup{|vz(o2) — vi(01)| : |o2 — 1] < 8}

We therefore arrive at the following estimate

W (Froe) < [0, (0) + 00, (8) + 1w (2,07 (p,€))] (8)
[Go+lrkla+Br]]+ [Gi4+nR+R + Ry 7+ Rg+ 7)]
k k
X [0g,(6) +1 Z Tw,j;i(ac,e) +1 Z wl(z,wT (¢4, €)) [0 + Bs r]],
=1 =1

then based on the functions g1, g2 : [0,00) X B, — R, are uniform continuity, assumptions
(iii) and (iv), we have concluded 0y, (6) 04,(6),60,,(6) — 0, as d — 0. Moreover, it is
obvious that w’ (¢;,€) — 0, (i = 1,2,..,k) as € — 0, and w” (p;,€) — 0,as ¢ — 0. Thus,
linking the established facts with the estimate (8) we get

wg (FX) < [ (Ga + lrk(a + fr) (9)
+ K[Gy + (R 4Ry + Ror + Vg + )] (a0 + ﬁr)]wg(X).
Consequently, we obtain
wo(FX) < [n(Ga+lrk(a+ pBr))
+  1k[Gr + (R + Ry + Ror 4+ Rg + 7)) (o + Br)] wo(X). (10)

In the following, we take a non-empty set X C B,.Then for any z, y € X, and fixed o > 0,
we obtain

| Fz(0) — Fy(o) |

k -
n (A + 1) sup{|z(o) —y(o)], 2,y € X} [(Ga+ ) 1 Hxll/o i + Bil||)ds]
=1

F UG+ (R + Ry + Ror + Rz + [|y[])]

k o
[Zmup{rxwi(a)) ~ (@il oy e X} o+ il lar

k o
+; HyH/O | hi(o,7,2(7)) = hi(o, 7, y(7)) }dr}

Hence, we can easily derive the following inequality:
diam(FX)(c) < n (A + 1)diamX (o) G2 + 1 k r|[a+ S 7]]
+ Lk [Gr+nR+ N+ Ry r+R3 + 7)][diamX (o)[a+ B 1] +k rwt (h, e)].
Now, considering our assumptions, we get the following estimate:
Ullrgosup diamFX (o) < (n (A+1)[ G+ 1k r|la+ 3 7]
+IE[Gi+n (R+R +Ror +R3+7)][a + 8 r])ali_{r;osup diamX (o)

lim sup diamFX (o) <¢ lim sup diamX(o), (11)

ag—00 g—00
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where we denoted
c=n(A+1)[Ga+lkrlla+Br]]+1k[Gi4+n (R+R+Ror+Rg+7)][a+ 8]

Clearly, given assumption (vi), we know that ¢ < 1.
Finally, linking (11) and (10) and the definition of the measure of noncompactness p,
we derive the following inequality

u(FX) < e p(X). (12)
Now, taking into account the condition that

c = n(A+1)[G2+lkr[a+ﬁrH
HEG+n (R4+R + R r+ R+ 7)][a+87] <1,

and Theorem 2.1, we deduce that the operator F has a fixed point x in the ball B,.
Obviously z is a solution of the functional integral equation (5). Moreover, taking into
account that the image of the space BC' (R ) under the operator F is contained in the ball
B, we infer that the set Fix [ of all fixed points of F is contained in Br . Obviously, the
set Fix [F contains all solutions of Eq. (5), we conclude that the set Fix F belongs to the
family kerp. Now, taking into account the description of sets belonging to kerp (given in
Section 2) we deduce that all solutions of Eq. (5) are globally asymptotically stable. This
completes the proof. ]

3.1. Applications and Special cases. In this section, we will present several specific
cases that are highly relevant for the qualitative analysis of certain functional integral
equations. These examples illustrate the significance of these equations in modeling real-
world problems, wherein they find applications across various scientific fields.

(1) Consider the case where g;(o, vz, x) = 1. In this scenario, the multidimensional
functional equation (5) simplifies to the following form:

P1(o) Yy (o)
£(0) = g (a, 2(¢1(0)) /0 ha(o, 7, 2(r))dr, ..., 2(én(0)) /0 hilo., xm)dT) ,
(13)

where, under the conditions outlined in Theorem 3.1, the multidimensional func-
tional equation (13) admits at least one asymptotically stable solution x € BC(R.).

(2) Now, if we take go(0, x1,22,...,2k) = Hle x;, this modifies the multidimensional
functional equation (13) to:

k ¥i(o)
w(o) = [[otto)) [ mtoma(r)) ar. (14)
i=1
Under the conditions outlined in Theorem 3.1, this updated functional equation
(14) also admits at least one asymptotically stable solution x € BC'(R4.).

The current study investigates the existence and uniqueness of solutions to a product of
k-quadratic integral equations. Quadratic integral equations are of particular interest as
they find applications in fields such as astrophysics, radiative transfer theory, and neutron
transport [13].

Furthermore, it is notable that various classes of quadratic integral equations have been
extensively studied within L, spaces [15] utilizing the measure of non-compactness analysis
coupled with Darbo’s fixed-point theorem under different sets of assumptions.
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Additionally, the study of the product of two or more operators is crucial, as highlighted
by Medved and Brestovanska [15, 16]. Their work focuses on the Banach algebras of contin-
uous functions, employing distinct techniques for proof and analysis in comparison to our
approach. This diversity in methodology underscores the importance of exploring different
mathematical frameworks for solving integral equations and enhances our understanding
of their behavior in various contexts.

Notably, our research extends the findings in [7, 8, 10, 12]. Unlike Chen [10], who ex-
plored feedback control for ecological models, our work provides a generalized framework
for multidimensional systems with delays and control parameters. Building on Nasertay-
oob [12], which focused on single-variable functional integral equations, our study investi-
gates the multidimensional case with differential feedback control on semi-infinite intervals.
El-Sayed et al. [7] and Hashem et al. [8] presented initial results on multidimensional sys-
tems and feedback control, while our work includes comprehensive stability analysis and
practical examples to demonstrate applicability.

3.2. Existence of Solutions for Functional Equations (4). In this section, we ex-
amine the existence of solutions v € BC(R) for the functional equation (4):

u(o) =m(o,z(0)) + z(o)na(o, z(0)), o=0.
We make the following assumptions:

(vii) The functions 7; : Rt X R — R and 73 : Ry x R — R\ {0} are continuous and
satisfy the following Lipschitz conditions:

m(o,z) —m(o,y)| < hlz—yl,  [n2(o,z) —n2(o,y)| < lo|lz —yl,
V(o,2),(0,y) € Ry xR, Iy,l3 > 0. (15)
(viii) The constants /; and [y satisfy the condition I; + Ml < 1.
From inequality (15), we can deduce:
Imi(o,z)| — Im(0,0)| < |m(o,2) —m(o,0)] < k],

Im (o, z)| < |m(o,0)[ + lifx],
and

Im (o, z)| < |ai(o)| + li|z].
Similarly, we obtain:

Im2(0, @)| < |az(o)| + la|z].

Theorem 3.2. Let the assumptions of Theorems 3.1 hold. If assumptions (vii) and (viii)
are satisfied and x € BC(R4) is a solution of either (5), then there exists at least one
solution uw € BC(R4.) of the functional equation (4).

Proof. Let u € BC(Ry) and define the set B, as
lon |l + Mlas|
p={ue BORL) s ul < g}, p= 120
We define the operator A as follows:
Au(o) = ni(o,u(o)) + z(o)n2(o,u(o)), o >0.
Let u € BC(R4) and M = sup,cg, |z(0)|. Then, for all o > 0, we have
[Au(0)] < |ar(o)] + Lfu(o)] + |z(o)|(|az(o)| + l2|u(a)]),
which simplifies to

[Au(o)] < fea(o)] + Lifu(o)] + M(laz(a)] + lz|u(a))).
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Taking the norm on both sides, we obtain

[Aull < flaall + Lflull + M ([laz]| + LafJul)-

Substituting ||ul| < p, we get
[Aul| < flon]| +Lip+ M(llaz|l +l2p) = p.

Thus, the operator A maps B, into itself.

Now, let p > 0 be given and take ui,us € B,, such that ||ug —u1|| < 9, then for every
x € BC(R4) we have

|Aug(0) — Aur(o)| = |m(o,ua(0)) + z(o)m (o, uz(0))

—m(o,u1(0)) — z(o)n2(o, ui (o)),

which implies that
[Auz(0) — Aur(o)| < |mi(o,uz(0)) —m(o, ui(0))]
+la(o)l[m (o, uz(0)) — mi(o, ur ()]

(i) Choosing T' > 0 and for o > T', we get
|AUQ(O') —AU1(0)| < llHUQ—UlH +Ml2||’LL2 —U1||
< (4 Mlp)|lug — ua|
< (ll + Ml2)5 = €.

(ii) For T'> 0 and o € [0, 7], from equation (16) we have:

|AUQ(O') —AU1(0)| < l1||U2—U1H +Ml2||’LL2 —U1||
< (LL+ M) =e

Thus, the operator A is continuous.
Now, let u € B, be nonempty. Then for any uz,u; € X and T' > 0 such that o > T', then
from (16) we obtain

[Aug(0) — Aur(0)] < hifug(o) — ur(0)] + Mlafuz(o) — ui (o)
< lsup{luz(o) —ui(o)|,u1,us € X}
+Mlysup{|uz(c) — ui(o)|,ur,uz € X}
Iy diamX (o) + Mls diamX (o).

IN

Thus, we have:
diamAX (o) < (4 + Mls) diamX (o)

li_}rn sup diamAX (o) < (l1 + Mly) 1i_>m sup diamX (o). (17)

Let T > 0 and § > 0 be given, choose a function u € X and o € [0,7] such that
|og — 01| < 9, 01 < 09 and define

6771(5) = Sup {\771(02#) _771(017u)‘ 101,02 € [O’T]v HUH < P},

‘9712(5) = Sup {|772(02’u) _772(0-1’u)‘ 101,02 € [O’T]v HUH < p}'
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We then have:
\Au(ag) — Au(al)]

m (o2, u(02)) + x(02)n2(02, u(0og)) — mi(o1, u(or)) — z(o1)n2(o1, u(o1))

On, (6) + li|u(o2) — ulo1)| + |z(o2) — z(01)||n2(02, u(02))|

|z(o1)|n2(02, u(o2)) — n2(o1, u(02))| + (1) [[n2(01, u(o2)) — n2(o1, u(or))|
00, (0) + liu(o2) — u(or)| + |z(02) — z(o1)|([|az]| + l2p) + MOy, (5)
MZQ‘U(O'Q) —u(01)|.

+ IN + A

Then
[Au(o2) — Au(o1)| < 0y, (0) + lisup{|u(oz) — u(o1)[} + ([[ez]| + l2p)e
+ M6,,(0) + Mlysup{|u(oz) — u(o1)|}.
Now, let 01,09 € [0,T], |02 — 01| < §. Then we deduce that
STAX ) < (I + MI)™ (X,€) + 6, (6) + Mbyy(6) + (llaal| + Iap)e
AAX) < (0 + MB)E(X)
and as 7" — oo
wo(AX) < (I1 + Mly)wo(X). (18)
Now, from (17) and (18) we obtain
WAX) < (b + Mip)u(X).

Since [y + M1y < 1, A is a contraction with regard to the measure of noncompactness and
equation (4) has at least one solution u € B,,.

3.2.1. Asymptotic Stability. We now address the asymptotic stability of the solution u €
BC(R4) to the equation (1). This is based on the asymptotic behavior of the solutions
x € BC(R;) of equations (5).

Theorem 3.3. The solution u € BC(Ry) of the equation (1) is asymptotically stable.
Specifically, for any € > 0, there exist T'(e) > 0 and p > 0 such that for any two solutions
u,ug € By, we have |uz(o) —ui(0)| < € for o > T(e).

Proof. Let u,up € B, be two solutions of equation (5). We have
luz(0) — w1 (o)
= |mlo,uz(0)) + z2(o)n2(o, uz(0)) — mlo, ui(o)) — z1(o)n2(o, ui(o))
< mlo,uz(o)) = mlo, ui(o))| + [z2(0)|[n2(0, u2(0)) — n2(o, ui(0))]
+  [z2(0) — 21(0)|[n2(0, ua(0))]
< hfug(o) = ui(o)| + Mlsglug(o) — ui(o)| + [w2(0) — z1(0)|([|az]| + lar2),

from Theorems 3.1 we have

|zo(0) — x1(0)] < €, t>T(e),
then

lug —wal| < liflug —wa|] + Mlallug — us]| + (|laz|| + lar2)e”.
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Hence

(llaal| + l2ra)e*
_ < M2 RRT2)R
HUQ U1|| - 1— (ll —+ Mlg) €

that is
lug(0) —ur(o)| < Jluz—w|| < e

Then v € BC(R;.) is asymptotically stable of equation (4).

3.2.2. Ezample. Consider the following multidimensional functional equation:

z(o) = I 002 arctan(o + (o))

Zk: 1 an sin (U i) /OJ <210+UZ + 2w(agfi1()7()r’ n 1)> dT) ’

under the feedback control differential equation:

dv, e 01 v,
”d((fo) — (o) + o 4 L@ OLuslo)] gy 09,

1+o0
We now examine the solvability of this functional equation in the space BC(Ry).
Take into account that this multidimensional functional equation is a specific case of
equation (5), where

e Jcosu(o)]

,u(cr) 7 14| cosu(o)]
e—TOo + e In(o+1)u2(o)
140 1+u2(o)

z(o) =

Thus,
2¢77 | cosp(o)]
7 14 |cosu(o)]’

m(o, u(o)) =

B e~ O N e—ln(a-l—l)luZ(o.)
140 1+ p?(o)

n2(0, ()

with 11 (0) = == and ly(0) = % We define the following functions:

o2+1
0.2
g1(o,vg,2(0)) = 112 arctan(o + vz (o) + z(0)),
k
20,10 tb(e)) = 3y g sl + i)
20 —T olx;(1)]

hi(o,1,2(1)) =

140t " 22+ 1)(r + 1)

B _p2  0.1|z(o)| + 0.1|vz(0)]
flo,vp(0),2(0)) = oe 7 + T

It is evident that g; is a continuous function. Moreover, for any z,y € R and o € [0, 1],
we have:

191(0,2(0)) = g1(0,y(0)] < Sllvalo) —vy(a)] + |2(0) = y(a)]].

DN |
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This implies that condition (iv) is satisfied, where G; = % and 1 = 1, with g1(c,0,0) =
11% arctan(o). Next, we observe:

92(0.21(0). - 2(0)) = 92(0, 01 (0). ()] < D 75 ei0) — o)
1
<yl —ulo)

where [ = % and g2(0,0, ...,0) = 17%; sin(o). Therefore, Gy = % holds. Also for function f

|f(o,v:(0),2(0))| < |Ue_02| i ’0-1@(0)]1—:—(;1@93(0)]

1
< % +0.1(|x| + |vg|),

where X = 0.02, ¥y = 0'%, Ny = 93 Ny = é. Moreover, we notice that h;(o, T, x) satisfies

assumption (v), with:

20— T N ol|z(T)]
“1+0* 2n(c24+1)(7+1)

Thus, we can define:

o(20 —7) B o
a+o) T = e )

ai(o, 1) =

To verify assumption (v), we compute:

o 30_3
Jm [ cileT)dr = Tm e =0
and
. 4 . oln(ec+1)
dm | Ao T)dr = lim oy =0

Moreover, we calculate «; =~ 0.14246919 and 5; ~ 0.0906987.
Finally, the roots of the cubic equation from Theorem 3.1 are approximated:

0.0292773 + 0.22475r2 — 0.68125r + 0.409 = 0
The roots of the cubic equation are approximately:
r1 ~ 0.722, ro = —0.912, r3 =~ —0.092,
and the root r ~ 0.722 satisfies the inequality:
n(A+1)[Go+lkr|la+B7r]]+1k[Gi+n (R+R1+Rg r+Ng+7)][a+ 7] ~0.390 < 1.

Hence, all the conditions of Theorem 3.1 are satisfied, and we conclude that equation (1)
accompanied with feedback control (2) has at least one solution in the space BC(R.).
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CONCLUSION

The unforeseen disturbances can continuously affect physical systems in many practi-
cal scenarios. These disturbances, often caused by variations in system parameters, are
referred to as perturbations. In control theory, perturbations can be treated as control
variables, particularly in integral equations. Many real-world scenarios, such as popu-
lation dynamics, control systems, and signal processing play a crucial role in modeling
interactions over time.

The feedback control mechanism can be applied to harvesting or other biological control
strategies. For further literature on feedback control problems, we refer the reader to
[10, 11, 12].

In this work, we have established the existence and asymptotic stability of solutions
for a nonlinear cubic functional integral inclusion with feedback control on the real half-
line, using a measure of noncompactness technique. Our study is situated in the space
of bounded continuous functions, BC(R ). Furthermore, by selecting a suitable noncom-
pactness measure, we have shown that these solutions are asymptotically stable in the
Banach space BC(R4).

The example presented illustrates the stability and existence results derived in our
study.
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