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PAIRED DOMINATION INTEGRITY OF DERIVED GRAPHS OF

CYCLES

A. C. ANTONY1∗, V. SANGEETHA1, §

Abstract. The study of the vulnerability of real-life networks helps network designers
construct networks such that their stability is maintained even under the disruption of
a few nodes or links connecting the nodes. In this paper, we study the vulnerability
of larger networks through a vulnerability parameter called paired domination integrity.
The paired domination integrity of a graph G is defined as the minimum value of the
sum of the cardinality of a paired dominating set S of G and the order of the largest
component in < V (G)−S >. The minimum is taken over all possible paired dominating
sets. The above-mentioned large networks are modelled by some derived graphs of Cn,
such as the Middle, Total, Central, and Mycielskian graphs.

Keywords: Domination integrity, Middle graph, Total graph, Central graph, Mycielskian
graph.
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1. Introduction

Let G = (V,E) represent an undirected, simple, and finite graph with vertex set V
and edge set E. Any extensive network can be modeled into a graph, and various graph
parameters can be used to investigate distinct properties of the network. Here, we study
the vulnerability of a network through the graph vulnerability parameter called paired
domination integrity. A paired dominating set is a total dominating set S of G such that
the subgraph induced by S contains a perfect matching. The minimum cardinality of a
paired dominating set in G is the paired domination number denoted by γpd [10]. Any
paired dominating set in G of cardinality equal to γpd is said to be a γpd-set of G. The
concept of paired domination in graphs was introduced by T. W. Haynes and P. J. Slater
[8]. Later, in the year 2010, R. Sundareswaran and V. Swaminathan [13] initiated the
study of the domination integrity of graphs. The paired domination integrity [1] of G with
no isolated vertices, denoted by PDI(G), is defined as PDI(G) = min{|S|+m(G− S) :
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S ⊆ V (G)}, where S is a paired dominating set (PDS) of G and m(G − S) is the total
number of vertices in the largest connected component in the induced subgraph of G−S.
A paired dominating set S ⊆ V (G) with PDI(G) = |S|+m(G−S) is said to be a PDI−set
of G. The minimum paired dominating set need not be a paired domination integrity set.
Terminologies related to graph theory that are not covered here can be found in [7, 15].
Several variations of domination integrity have been introduced in [2, 3, 5]

A detailed study of this parameter helps improve the paired domination integrity of a
graph, thereby enhancing the network’s resilience to disruptions and failures. This can be
done by identifying and eliminating unnecessary nodes that do not impact the connectivity
or dominance relationships within the network.

The concept of vulnerability of a network can be used in several real-life networks [11, 12].
One such network is the supply chain network, where the nodes represent the distinct
individuals or companies involved in creating the product and delivering it to the customer.
Studying the vulnerability parameter helps in identifying critical nodes that are essential
in maintaining the flow of products. By focusing on these nodes, supply chain managers
can ensure that disruptions at these points are minimized. The larger the value of paired
domination integrity, the greater the resilience of the network to disruptions. Therefore,
the idea of vulnerability of a network helps in analyzing the network. The analysis of the
vulnerability of any network helps network designers construct a more stable and efficient
network.

In this paper, the authors study the paired domination integrity for larger graphs such
as the Middle, Total, Central and Mycielskian graphs of cycles. The following results are
used to prove some of the results in our study.

Proposition 1.1. [10] Let Cn be a cycle having n vertices, then γpd(Cn) = 2
⌈n
4

⌉
for

n ≥ 3.

Proposition 1.2. [1] If Cn is a cycle of order n ≥ 10, then PDI(Cn) = 2
⌈n+ 4

4

⌉
.

2. PDI of Middle graph of Cn

Definition 2.1. [6] The middle graph of a graph G = (V,E), denoted by M(G), is the
graph with vertex set V ∪ E and two vertices in M(G) are adjacent if they are adjacent
edges of G or one is a vertex of G and the other is an edge incident on it.

Theorem 2.1. If M(Cn) is the middle graph of Cn, then γpd(M(Cn)) = 2
⌈n
3

⌉
for n ≥ 3.

Proof. Let V (Cn) = {v1, v2, . . . , vn} and E(Cn) = {e1, e2, . . . , en}. Then V ∪E is the vertex
set of M(Cn). The order and size of M(Cn) are 2n and 3n respectively. In M(Cn), each vi,
where 1 ≤ i ≤ n, has neighbors in {e1, e2, . . . , en} only whereas each ej , where 1 ≤ j ≤ n,
has neighbors in both {v1, v2, . . . , vn} and {e1, e2, . . . , en}. Let e1, e2, . . . , en−1, en be the
vertices that subdivide v1v2, v2v3, . . . , vn−1vn, vnv1 respectively in M(Cn) (see Fig.1). The
degree of vi and ej in M(Cn) are two and four respectively. Let S be any PDS of M(Cn).
Clearly, S = {v1, v2, . . . , vn} is not a PDS since it is an independent set and hence does
not induce a perfect matching. Therefore, if vi belongs to any paired dominating set, it
must be paired with an ej ∈ N(vi), where 1 ≤ i, j ≤ n.

Now, we consider distinct paired dominating sets. Let S = {e1, e2, . . . , en}. For even order
n, S = {e1, e2, . . . , en} is a paired dominating set since every vertex in M(Cn) is adjacent
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to a vertex in S and < S > contains a perfect matching. However, for odd order n, one
vertex in S is left without a pair. The unpaired vertex can be paired with any one of its
neighbors vi /∈ S. Therefore, S = {e1, e2, . . . , en, vi} is a paired dominating set for an odd
order of M(Cn). Here, |S| = n when n is even and |S| = n+ 1 when n is odd.

Let S contain vertices such that the end vertices of every edge in the matching induced by S
are vi and ej . We choose the least possible number of vertices in S such that its paired ver-
tices are of the form vi, ej . Let us consider S = {v1+2t, e1+2t} and S = {v1+2t, e1+2t, vn, en}
for even and odd orders of M(Cn) respectively, where 0 ≤ t ≤

⌊n− 1

2

⌋
. This is a paired

dominating set with each v1+2t paired with e1+2t in S such that every vertex in M(Cn)
is adjacent to a vertex in S and < S > contains a perfect matching. We observe that

|S| = 2
⌈n
2

⌉
. In a similar way, S = {v2+2t, e2+2t} and S = {v2+2t, e2+2t, vn, en} for even

and odd orders respectively, where 0 ≤ t ≤
⌊n− 2

2

⌋
, is also a paired dominating set with

|S| = 2
⌈n
2

⌉
.

In the above-mentioned paired dominating set, we can also pair each e1+2t with v2+2t to get
another paired dominating set. That is, S = {e1+2t, v2+2t}. Here, S is a paired dominating
set since every vertex in M(Cn) has a neighbor in S, and the < S > is a disjoint union
of paths of order two, which clearly contains a perfect matching. The cardinality of S is

found to be 2
⌈n
2

⌉
.
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(b) M(Cn), where n ̸= 4 + 3t

Figure 1. PDI-set and γpd-set of Middle graph of cycles.

Now, we choose S = {e1+3t, e2+3t}, where 0 ≤ t ≤
⌊n− 1

3

⌋
(see Fig. 1(B)). Here, S is

a paired dominating set as each e1+3t is paired with e2+3t in S, thereby dominating the
entire vertex set of M(Cn) and < S > is a disjoint union of paths of order two which
contains a perfect matching. However, this is not true for all M(Cn). We observe that

for M(C4+3t), the paired dominating set S = {e1+3t, e2+3t, en−1, en}, where 0 ≤ t ≤ n− 4

3
(see Fig. 1(A)) and each e1+3t is paired with e2+3t and en−1 is paired with en in S.

Therefore, |S| = 2
⌈n
3

⌉
.
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When the minimum is taken over all S, we can conclude that the γpd-set is S = 2
⌈n
3

⌉
.

That is, γpd(M(Cn)) = 2
⌈n
3

⌉
. □

Theorem 2.2. If M(Cn) is the middle graph of Cn, then

PDI(M(Cn)) =


5 ; n = 3, 4

2
⌈n
3

⌉
+ 3; n ≥ 5

Proof. Let S ⊂ V (M(Cn)) be any PDS of M(Cn). In Theorem 2.1, we have mentioned
the possible paired dominating sets of M(Cn). We find the sum |S|+m(M(Cn)− S) for
all possible S and identify the set that gives the minimum sum.

If S = {e1, e2, . . . , en} (for even n) and S = {e1, e2, . . . , en, vi} (for odd n), where vi /∈ S
is paired with the unpaired vertex in S, then |S| + m(M(Cn) − S) is n + 1 and n + 2
respectively.

Let S contain the least possible number of vertices such that its paired vertices are of the
form vi, ej , where 1 ≤ i, j ≤ n and vi ∈ N(ej). We consider the set found in Theorem
2.1. In this case, we observe that < M(Cn) − S > is the disjoint union of paths of order
two. As a result, the order of the largest component in < M(Cn) − S > is at least two.

Therefore, |S|+m(M(Cn)− S) ≥ 2
⌈n
2

⌉
+ 2.

Now, let S be the γpd-set found in the previous theorem. We consider the following two
cases.

Case(i): n = 3, 4
When n = 3, we choose S = {e1, e2} and hence m(M(Cn) − S) = 3. The sum |S| +
m(M(Cn) − S) is the same when S = {e1, e3} or S = {e2, e3}. We can also have S =
{e1, e2, e3} ∪ vi, which would give the same sum since m(M(Cn) − S) = 1. When n = 4,
S = {e1, e2, e3, e4} is the only PDS that results in a minimum sum. Here, m(M(Cn)−S) =
1. Therefore, |S|+m(M(Cn)− S) = 5 when n = 3 and n = 4.

Case(ii): n ≥ 5
For all n ̸≡ 1 (mod 3), we have S = {e1+3t, e2+3t}, where t is any integer such that

0 ≤ t ≤
⌊n− 1

3

⌋
. For n ≡ 1 (mod 3), S = {e1+3t, e2+3t, en−1, en}, where 0 ≤ t ≤ n− 4

3
.

The cardinality of S is found to be 2
⌈n
3

⌉
as mentioned in Theorem 2.1. Since ej ∈

V (M(Cn)) − S is adjacent to only vj and vj+1, the components of < M(Cn) − S > are
either isolated vertices or paths of order three resulting in < M(Cn) − S > being three.

Therefore, |S|+m(M(Cn)− S) = 2
⌈n
3

⌉
+ 3.

Hence, the paired domination integrity is given by

PDI(M(Cn)) = min{|S|+m(M(Cn)− S) : S is a paired dominating set of M(Cn)}

= 2
⌈n
3

⌉
+ 3.

□
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3. PDI of Total graph of Cn

Definition 3.1. [4] The total graph of G = (V,E), denoted by T (G), is the graph with
vertex set V ∪ E and two vertices in T (G) are adjacent if they are either adjacent or
incident in G.

Theorem 3.1. If T (Cn) is the total graph of Cn, then γpd(T (Cn)) = 2
⌈n
3

⌉
for n ≥ 3.

Proof. Let V (Cn) = {v1, v2, . . . , vn} and E(Cn) = {e1, e2, . . . , en}. Then, V ∪ E is the
vertex set of T (Cn). Since Cn is a 2-regular graph , T (Cn) is a 4-regular graph. Let S
be any PDS of T (Cn). We observe that N(vi) = {vi−1, vi+1, ei−1, ei} for 2 ≤ i ≤ n − 1.
However, N(v1) = {vn, v2, e1, en} and N(vn) = {vn−1, v1, en−1, en}.

We examine all possible paired dominating sets to find the minimum among them. The
sets {e1, e2, . . . , en} and {v1, v2, . . . , vn} are paired dominating sets of T (Cn) for even n
since every vertex in T (Cn) has a neighbor in S and < S > is a path graph of order n that
contains a perfect matching. We can either remove one vertex from, or add one vertex to,
the above sets for odd orders to yield new paired dominating sets.
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Figure 2. γpd-set of T (Cn).

Let us consider S = {v1+2t, e1+2t}. Here, S is a PDS since every vertex of T (Cn) is
adjacent to a vertex in S and < S > is the disjoint union of paths of order two, which
forms a perfect matching. The cardinality of S is n and n+ 1 for even and odd orders of
T (Cn), respectively.

The set S = {e1+3t, e2+3t} also forms a paired dominating set since every vertex of T (Cn)
has a neighbor in S and < S > is a connected graph containing vertices ei /∈ S that is
adjacent to vi and vi+1 and a cycle of order n formed by the vertices {v1, v2, . . . , vn}. The
cardinality of S is found to be 2

⌈n
3

⌉
. However, for T (C4+3t), S = {e1+3t, e2+3t, en, en−1}.

It is observed that T (Cn) contains two cycles of order n as a subgraph, the outer and the
inner cycle, as can be seen in Fig. 2. We consider S = {v1+3t, e1+3t} for n ≥ 5, where

0 ≤ t ≤
⌊n− 1

3

⌋
. The set S is a PDS since each v1+3t is paired with e1+3t in S, and

< S > is either the disjoint union of diamond graphs or consists of all diamond graphs
and one P2 as components. Either way, < S > contains a perfect matching. That is, at
least one out of every three vertices of each Cn belongs to S. The vertices e1+3t may be
paired with any one of its neighbors such that every e1+3t is paired with the same kind of
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neighbor. For example, each e1+3t can also be paired with v2+3t which also yields a PDS.

Here, |S| is found to be the same as the previous PDS. That is, |S| = 2
⌈n
3

⌉
. On taking the

minimum over all the paired dominating sets discussed above, we get γpd(T (Cn)) = 2
⌈n
3

⌉
for n ≥ 3. □

Theorem 3.2. If T (Cn) is the total graph of Cn, then

PDI(T (Cn)) =

{
n+ 2 ; n = 3, 4

2
⌈n+ 6

3

⌉
; n ≥ 5

Proof. Let V (T (Cn)) = {v1, v2, . . . , vn, e1, e2, . . . , en}. The adjacencies of T (Cn) are dis-

cussed in Theorem 3.1 which states that γpd(T (Cn)) = 2
⌈n
3

⌉
for n ≥ 3. Let S be any PDS

of T (Cn). We consider all the paired dominating sets discussed in the previous theorem
and find the one that gives the minimum value for the sum |S|+m(T (Cn)− S).

If S contains vertices from either {vi} only or {ei} only, then < S > need not be connected
but < V − S > is always connected. In this case, |S|+m(T (Cn)− S) = 2n = V (T (Cn)).
When S = {v1+2t, e1+2t}, |S|+m(T (Cn)− S) is n+ 2 and n+ 3 for even and odd orders
respectively. Let us consider S = {e1+3t, e2+3t} for T (Cn) except for n = 4 + 3t and
S = {e1+3t, e2+3t, en, en−1} for T (C4+3t). Here, we observe that < V −S > is a connected
graph and hence |S|+m(T (Cn)− S) = 2n = V (T (Cn)).

If S = {v1+3t, e1+3t} for 0 ≤ t ≤
⌊n− 1

3

⌋
, where n ≥ 5, such that each v1+3t is paired

with e1+3t in S, then the order of any component in < V − S > is atmost four since the
components in< V−S > are either diamond graphs or P2. Therefore, |S|+m(T (Cn)−S) =

2
⌈n
3

⌉
+ 4 = 2

⌈n+ 6

3

⌉
.

Since PDI(T (Cn)) = min{|S|+m(T (Cn)− S) : S is a paired dominating set of T (Cn)},
we choose S = {v1+3t, e1+3t} for 0 ≤ t ≤

⌊n− 1

3

⌋
, where n ≥ 5. However, S is not the

same when n = 3 or n = 4. We consider the following cases.

Case(i): n = 3, 4
For n = 3, if |S| = γpd = 2, then |S| + m(T (Cn) − S) = 2 − (2n − 2) = 2n since
m(T (Cn − S)) is connected. However, if S contains four vertices such that < V − S >
contains two isolated vertices, then |S| + m(T (Cn) − S) = 4 + 1 = 5. When n = 4, we
choose S = {v1+2t, e1+2t} and S = {v2+2t, e2+2t}, where 0 ≤ t ≤ 1. Here, < V − S >
contains two components, each of which is a P2. Then |S| +m(T (Cn) − S) = 4 + 2 = 6.
Therefore, PDI(T (Cn) = n+ 2 when n = 3 or n = 4.

Case(ii): n ≥ 5

For n ≥ 5, we choose S = {v1+3t, e1+3t} for 0 ≤ t ≤
⌊n− 1

3

⌋
such that every v1+3t is paired

with e1+3t in S so that < S > contains a perfect matching. The set S = {v1, en, v1+3t, e3t}
for 1 ≤ t ≤

⌈n
4

⌉
also gives a minimum value of |S| +m(T (Cn) − S). The cardinality of

both the paired dominating sets equals the paired domination number, which is found in

Theorem 3.1. Then, |V−S| = 2n−2
⌈n
3

⌉
. The number of components in< V−S > is found
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to be
⌈n− 1

3

⌉
. Therefore, the cardinality of any component in < V −S > is at most four.

For example, for T (C9) (see Fig. 2), |V − S| = 2n− 2
⌈n
3

⌉
= 12. Then, m(T (C9)− S) =

|V − S|⌈n− 1

3

⌉ =
12

3
= 4. Therefore, |S|+m(T (Cn)− S) = 2

⌈n
3

⌉
+ 4 = 2

⌈n+ 6

3

⌉
. □

4. PDI of Central graph of Cn

Definition 4.1. [14] The central graph of G, denoted by C(G), is the graph obtained by
subdividing each edge of G exactly once and joining all the non-adjacent vertices in G.

Theorem 4.1. If C(Cn) is the central graph of Cn, then

γpd(C(Cn)) =


4 ; n = 3, 4, 5

2
⌈n
4

⌉
; n ≥ 6

Proof. Let V (Cn) = {v1, v2, . . . , vn−1, vn}. Then V (C(Cn)) = {v1, v2, . . . , vn−1, vn, u1, u2,
. . . , un−1, un}, where u1, u2, u3, . . . , un−1, un be the vertices of C(Cn) that subdivide the
edges vnv1, v1v2, v2v3, . . . , vn−2vn−1, vn−1vn respectively. Let S be any PDS of C(Cn).
Further, we note that {u1, u2, . . . , un} is an independent set in C(Cn). The following two
cases are considered.

Case(i): n = 3, 4, 5
When n = 3, no vi has a neighbor in {v1, v2, v3}. We observe that C(C3) is the cycle C6

with vertices labelled as u1, v1, u2, v2, u3, v3 in order. Therefore, the end vertices of every
edge in the matching induced by a PDS are vi and uj , where 1 ≤ i, j ≤ n. Consequently,

γpd(C(C3)) = γpd(C6) = 2
⌈n
4

⌉
= 4.

For C(C4), every vi ∈ C(C4) has only one neighbor in V (Cn). That is, each vi ∈ C(Cn)
is adjacent to a vj ∈ C(Cn) such that vj /∈ N(vi) in Cn. We observe that at least four
vertices must belong to a PDS of C(C4). Therefore, γpd(C(C4)) = 4.

When n = 5, any n − 1 vertices from V (C5) is enough to dominate the entire vertex set
of C(C5). This is because C5 is an induced subgraph of C(C5) with vertices {vi}, where
1 ≤ i ≤ 5. Therefore, γpd(C(C5)) = 4.

Case(ii): n ≥ 6
In this case, we observe that any two vertices vi, vj , where 1 ≤ i, j ≤ n and i ̸= j, dominate
all of V (Cn) in C(Cn) such that vi and vj are adjacent in C(Cn) and must have no common
neighbor in Cn. Therefore, any PDS of C(Cn) must contain at least two such vertices of
C(Cn). Further, we choose more pairs of vertices from {v1, v2, . . . , vn} until the entire
vertex set of C(Cn) is dominated. The vertices ui are of degree two and have neighbors
from {v1, v2, . . . , vn} only. If ui ∈ S, then it can only be paired with vj such that vj is
adjacent to ui. As a result, S will contain more vertices, and hence it is not the minimum.
Therefore, the γpd-set must contain only vertices from {v1, v2, . . . , vn}. The domination

number of C(Cn) is found to be |D| = γpd(C(Cn)) = 2
⌈n
4

⌉
.

□

Theorem 4.2. The paired domination integrity for the central graph C of Cn is given by
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PDI(C(Cn)) =

 5 ; n = 3, 4
n+ 2; n ≥ 5 & n is odd
n+ 1; n ≥ 6 & n is even

Proof. Let S be any paired dominating set.
Case(i): n = 3, 4
When n = 3, the order of C(Cn) is six. In this case, both {v1, v2, v3} and {u1, u2, u3} are
independent sets. By Theorem 4.1, γpd(C(C3)) = 4 and we choose γpd-set S such that
< V − S > is a totally disconnected graph. Therefore, PDI(C(C3)) = γpd +m(C(Cn)−
S) = 4 + 1 = 5.

When n = 4, the order of C(Cn) = 8. In this case, each vi is adjacent to a vj such that vj
is a nonadjacent vertex of vi in C4. By the previous theorem, γpd(C(C4)) = 4 and hence
the possible cardinalities of S are 4, 6 and 8. When |S| is 6 or 8, the sum is clearly larger
as compared to when |S| = 4. We choose S such that m(C(C4) − S) = 1. Therefore,
PDI(C(C4)) = γpd +m(C(C4)− S) = 4 + 1 = 5.

It is observed that for n ≥ 6, no γpd-set of C(Cn) gives a minimum value of |S|+m(C(Cn)−
S) since m(C(Cn)−S) is very large. Moreover, we observe that if S contains at least one
pair of vertices of the form vi uj , then such a PDS also does not give a minimum sum.
This is because each ui dominates exactly two vertices from {v1, v2, . . . , vn}.

Case(ii): n ≥ 5 & n is odd
In this case, we choose S as all but one vertices of {v1, v2, . . . , vn}. Such a set gives
m(C(Cn)−S) = 3. Therefore, PDI(C(Cn)) = |S|+m(C(Cn)−S) = (n− 1)+3 = n+2.

Case(iii): n ≥ 6 & n is even
For even orders of C(Cn), where n ≥ 6, we choose S as {v1, v2, . . . , vn}. Such a set gives
m(C(Cn)− S) = 1. Therefore, PDI(C(Cn)) = |S|+m(C(Cn)− S) = n+ 1. □
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(a) PDI(C(Cn)) when n ≥ 6 & n is even.
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(b) PDI(C(Cn)) when n ≥ 5 & n is odd

Figure 3. PDI of Central graph of cycles

5. PDI of Mycielskian of Cn

Definition 5.1. [9] Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge
set E(G). Then the Mycielskian of G, denoted by µ(G), has the vertex set V (µ(G)) =
{v1, v2, . . . , vn, u1, u2, . . . , un, w}, where {u1, u2, . . . , un} is a copy of V called the shadow
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vertices and w is the root vertex. The edge set is E(µ(G)) = E(G) ∪ {uiw : 1 ≤ i ≤
n} ∪ {uivj : vivj ∈ E(G)}.

Theorem 5.1. Let µ(Cn) denote the Mycielskian of Cn, where n ≥ 4. Then γpd(µ(Cn)) =
PDI(Cn) = γpd(Cn) + 2 except for C5+4t, where t ≥ 0. For C5+4t, γpd(µ(Cn)) =
PDI(Cn)− 2 = γpd(Cn).

Proof. Let V (µ(Cn)) = {v1, v2, . . . , vn, u1, u2, . . . , un, w}, where {v1, v2, . . . , vn} is the ver-
tex set of Cn, and u1, u2, . . . , un subdivides vnv2, v1v3, v2v4, . . . , vn−1v1 respectively (Fig.
4). The vertex w is adjacent to every vertex in {u1, u2, . . . , un}. Let S be any paired
dominating set of µ(Cn). Clearly, every paired dominating set of µ(Cn) must contain
vertices from {v1, v2, . . . , vn} as {u1, u2, . . . , un} is an independent set and w is not ad-
jacent to any vi. We observe that w is the vertex with the maximum degree that dom-
inates the whole of ui and hence may belong to S. If w ∈ S, then it is paired with
one of its neighbors ui. To dominate {v1, v2, . . . , vn}, we can either choose paired ver-
tices of the form vi, vk or ui, vk, where 1 ≤ i, k ≤ n. We consider γpd-set of Cn found
in [1], which are paired vertices of the form vi, vk. This set dominates all vi, where
1 ≤ i ≤ n. As a result, {w, ui} ∪ {γpd − set of Cn} forms the γpd-set of µ(Cn). Therefore,

γpd(µ(Cn)) = 2 + γpd(Cn) = 2 + 2
⌈n
4

⌉
= PDI(Cn). However, the γpd-set is not the same

for µ(C5+4t), where t ≥ 0. For the γpd-set of µ(C5+4t), we choose the γpd-set of Cn and
replace the last pair of vertices vn−1, vn by un−1, vn so that w is dominated. Therefore,

for n = 5 + 4t, γpd(µ(Cn)) = γpd(Cn) = 2
⌈n
4

⌉
= PDI(Cn)− 2.

As mentioned earlier, another γpd-set of µ(Cn) is the set that contains the minimum
possible number of paired vertices of the form ui, vk that dominates {v1, v2, . . . , vn} along
with w paired with one of its neighbors ui that will dominate all of {vi}. However, if S
contains only vertices of the form ui, vk, then the PDS is found to be of larger cardinality
since w /∈ S. □

Theorem 5.2. For n ≥ 3, the PDI of the Mycielskian of a cycle µ(Cn) is given by,

PDI(µ(Cn)) =



n+ 3 ; 3 ≤ n ≤ 8

2
⌈n
3

⌉
+ 5 ; 9 ≤ n ≤ 15

2
⌈n
4

⌉
+ 7 ; n ≡ 1 (mod 4)

2
⌈n− 3

3

⌉
+ 6; 19 ≤ n ≤ 27.

Further, PDI(µ(Cn)) ≤ 2
⌈n
3

⌉
+ 5 otherwise.

Proof. Let S be any paired dominating set of µ(Cn). The vertices of µ(Cn) are labeled as
seen in Fig. 4. Clearly, w is the vertex with maximum degree, as mentioned in Theorem
5.1. We observe that w need not belong to a γpd− set of µ(Cn). However, to find the
PDI(µ(Cn)), we choose a paired dominating set S such that w ∈ S. This is because
if w /∈ S, then < V − S > is either connected or will contain larger connected compo-
nents. We consider all possible paired dominating sets that contain w and identify the
one that gives the minimum value for |S| + m(µ(Cn) − S). We choose paired vertices
from {v1, v2, . . . , vn}, such that we get a minimum value for |S|+m(µ(Cn)− S). This is
obtained by choosing vi either in pairs of the form v1, v2, v4, v5, . . . , vn−1, vn or in pairs of
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the form v1, v2, v5, v6, . . . , vn−1, vn depending on the order of µ(Cn). Further, we choose
the vertex ui that is more connected in < V − S > and pair it with w that dominates the
whole of ui, where 1 ≤ i ≤ n. We consider the following cases.

Case(i): 3 ≤ n ≤ 8
In this case, we observe that the paired dominating set S of the form {w, ui, v1, v2, v4,
v5, . . . , vn−1, vn} gives the minimum sum |S|+m(µ(Cn)−S). The connected components
of < V − S > are P1, P2 or P3 which implies that m(µ(Cn) − S) is atmost 3. Hence, we
get |S| + m(µ(Cn)) = n + 3, and the obtained sum is the minimum over all the paired
dominating sets. Therefore, PDI(µ(Cn)) = n+ 3.

Case(ii): 9 ≤ n ≤ 15
As in Case(i), the paired dominating set S of the form {w, ui, v1, v2, v4, v5, . . . , vn−1, vn}
is the PDI−set for this case. The order of the largest component of < V (µ(Cn)) − S >

is exactly three as shown in Fig. 4 and the cardinality of S is found to be 2
⌈n
3

⌉
+ 2.

Therefore, PDI(µ(Cn)) = 2
⌈n
3

⌉
+ 2 + 3 = 2

⌈n
3

⌉
+ 5.
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u3

u4
u5

u6

u7

u8

u9

u10
u11

u12

u13

v1

v2

v3

v4
v5

v6

v7

v8

v9

v10
v11

v12

w

v13

Figure 4. PDI-set of µ(C13).

Case(iii): n ≡ 1 (mod 4)
If n ≡ 1 (mod 4), then the paired dominating set of the form S = {w, un, v1, v2, v5, v6, . . . ,
vn−4, vn−3} is a PDI−set. If S = {w, ui, v1, v2, v4, v5, . . . , vn−1, vn}, then m(µ(Cn)−S) =
3. However, the cardinality of S is much larger. Hence, two out of every four vertices in
the cycle formed by {v1, v2, . . . , vn} of µ(Cn) belong to S to dominate the cycle. However,
vn−1 remains undominated. The vertex w is paired with un in order to dominate vn−1

and the vertices of {u1, u2, . . . , un} that are not dominated. Thus, the cardinality of S is

found to be 2
⌈n
4

⌉
and m(µ(Cn)− S) = 7. Therefore, PDI(µ(Cn)) = 2

⌈n
4

⌉
+ 7.

Case(iv): 19 ≤ n ≤ 27
For 19 ≤ n ≤ 27, the paired dominating set S of the form {w, ui, v1, v2, v5, v6, . . .} gives the
minimum value for |S|+m(µ(Cn)− S). Here, w paired with any ui results in m(µ(Cn)−
S) = 6 (see Fig. 5). Hence, PDI(µ(Cn)) = 2

⌈n− 3

3

⌉
+ 6.

Case(v):
In this case, we obtain an upper bound for PDI(µ(Cn)) for all values of n not considered in
the above four cases. The paired dominating set S is of the form {w, ui, v1, v2, v5, v6, . . .}.
We observe that m(µ(Cn)− S) = 6 for such a set. Therefore,
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PDI(µ(Cn)) ≤
(
2
⌈n
3

⌉
− 1

)
+ 6

≤
(
2
⌈n
3

⌉)
+ 5.

□
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v18

v19

v20

w

Figure 5. PDI-set of µ(C20).

Remark 5.1. Any PDI-set of µ(Cn) must contain the vertex of degree equal to ∆(µ(Cn)).
A paired dominating set S not containing the maximum degree vertex will result in
< V − S > being connected or < V − S > containing larger components.

The vertex of µ(Cn) with maximum degree is the root vertex w (see Definition 5.1). This
root vertex is adjacent to all the shadow vertices ui of µ(Cn) as shown in Fig. 5 and thus
has a degree equal to n. If w does not belong to the paired dominating set S then the
induced subgraph of V (µ(Cn)) − S is a connected graph of larger order formed by w, ui
and vi not in S. As a result, |S| + m(µ(Cn) − S) is a larger value and thus S is not a
PDI-set. Therefore, the root vertex must belong to any PDI-set of µ(Cn).

6. Conclusion

In this paper, the authors have studied the vulnerability parameter, namely, paired
domination integrity for larger networks modelled by a few derived graphs of cycles such as
the Middle, Total, Central and Mycielskian graphs. The paired domination integrity can be
explored for other graph classes and operations. As paired domination integrity is a graph
vulnerability parameter, it can be extended to various real-life networks. Understanding
and using the principles of the graph vulnerability parameters is essential in a world that
relies on networked systems.
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