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EXISTENCE, UNIQUENESS, AND STABILITY OF SOLUTIONS

FOR NONLINEAR FRACTIONAL INTEGRO-DIFFERENTIAL

EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS

AND FRACTIONAL DERIVATIVES

M. ABOU OMAR1, Y. AWAD1∗, R. MGHAMES1,2, K. AMIN1, §

Abstract. This study investigates a nonlinear fractional integro-differential equation
defined by Riemann-Liouville fractional derivatives, focusing on the existence, unique-
ness, and stability of its solutions. Using advanced fixed-point theorems, specifically the
Banach and Krasnoselskii’s fixed-point theorems, we derive precise conditions for the
existence and uniqueness of solutions. We also conduct a stability analysis, establishing
criteria to ensure the robustness of solutions under minor perturbations. The theoret-
ical results extend existing frameworks in fractional differential equations and provide
novel insights into fractional dynamic systems. To validate our theoretical findings and
demonstrate their practical applicability, we present a numerical example that illustrates
the solution behavior under varying fractional orders, nonlinearities, and boundary con-
ditions. This example highlights the effectiveness of the proposed methods and lays the
foundation for future research on fractional integro-differential equations in real-world
applications.
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1. Introduction

Fractional calculus extends the traditional framework of calculus by allowing differen-
tiation and integration to be performed at non-integer orders. This generalization has
significantly impacted various fields by enabling the modeling of complex phenomena that
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cannot be captured by classical integer-order differential equations [26], [27]. The abil-
ity of fractional calculus to incorporate memory and hereditary effects into mathematical
models makes it particularly useful in domains such as viscoelasticity [3], fluid mechanics
[14], and control theory [25], among others.

The fractional derivatives, including the Riemann-Liouville, Caputo, and Grunwald-
Letnikov derivatives, offer a versatile framework for describing systems with intricate
dynamics. The Riemann-Liouville derivative, in particular, has gained prominence in
practical applications due to its compatibility with initial conditions expressed in integer-
order terms [6], [18]. This compatibility is crucial in scenarios where the initial state of
a system is known, allowing for accurate modeling of physical and engineering processes
where initial conditions significantly influence future behavior [7], [32].

In recent years, the study of nonlinear fractional integro-differential equations (NLFDEs),
particularly those characterized by Riemann fractional derivatives, has emerged as a signif-
icant area of research. These equations extend classical models by incorporating fractional
orders, thereby providing a robust framework for describing processes with long-range de-
pendencies and non-local interactions [3], [4], [10]. The inclusion of nonlinearities further
enhances the model’s capability to capture complex, often chaotic behaviors observed in
natural systems [34], [31]. Notably, such equations have become indispensable in explain-
ing phenomena in various scientific and engineering fields, such as anomalous diffusion
[25], complex fluid flows [14], and control systems [8], [9].

Recent advancements have led to the development of new techniques for addressing
the existence, uniqueness, and stability of solutions for nonlinear fractional differential
equations with nonlocal boundary conditions. These studies have expanded our under-
standing of fractional systems and their behavior under different conditions. Notably, the
work on boundary value problems for fractional differential equations has seen significant
progress [1], [15], [28], highlighting the importance of fractional derivatives in modeling
systems with memory effects. Stability and well-posedness studies in fractional calculus
have also gained traction, providing a foundation for ensuring the stability of solutions in
the presence of perturbations [11], [23].

However, while much research has been devoted to these topics, the study of nonlin-
ear fractional integro-differential equations (NLFDEs) with nonlocal boundary conditions,
particularly those involving the Riemann-Liouville fractional derivative, remains an area
that requires further exploration. In particular, solutions to such equations, which in-
volve both fractional differentiation and integral terms, are essential for understanding
the complex dynamics of real-world systems. The majority of existing work focuses on
integer-order or standard fractional models without fully exploiting the potential of more
generalized fractional systems, including nonlocal boundary conditions [31], [12], [13].

In this context, our focus is on analyzing a specific class of nonlinear fractional integro-
differential equations characterized by Riemann-Liouville fractional derivatives. We aim
to investigate the existence, uniqueness, and stability of solutions, providing insights into
the practical applications and implications of these theoretical results. The equation under
consideration is given by:

Dα
0+ (χ(ξ)− g(ξ, χ(ξ))) = f(ξ, χ(ξ), Dα−1

0+
χ(ξ),

∫ ξ

0+
φ(ξ, τ)Dα−1

0+
χ(τ), dτ), (1)

subject to the nonlocal boundary conditions:

χ(0) +Dα−1
0+

χ(0) = σ1χ(η1), 0 < η1 < 1, (2)
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χ(1) +Dα−1
0+

χ(1) = σ2χ(η2), 0 < η2 < 1. (3)

Here, α ∈ (1, 2] is a real number, Dα
0+ denotes the Riemann-Liouville fractional deriv-

ative of order α, f : [0, 1] × R3 → R and the kernel φ : [0, 1] × R → R are continuous
functions, and for i = 1, 2, we have ηi ∈ (0, 1) and σi ∈ R. The equation captures
the interplay between fractional differentiation and nonlinear dynamics, with the nonlo-
cal boundary conditions reflecting the global influence of boundary values on the entire
solution domain.

The main aim of this study is to examine the existence, uniqueness, and stability of
solutions for the nonlinear fractional integro-differential equation presented. Our contribu-
tions are threefold: First, we provide a rigorous proof of existence by applying fixed-point
theorems specifically designed for fractional calculus. Second, we investigate the unique-
ness of solutions through an analysis of the relevant functional spaces and the properties
of the nonlinear components. Third, we address the stability of solutions, outlining the
conditions that ensure stability in the presence of small perturbations. Our findings ex-
pand upon and generalize current theories in fractional differential equations, offering
fresh insights into the dynamics of systems described by fractional models. Additionally,
to validate our theoretical results and demonstrate their practical application, we present
a numerical example. This example is strategically chosen to illustrate the solution behav-
ior under various conditions, including different fractional orders, types of nonlinearities,
and boundary conditions. By juxtaposing analytical results with numerical simulations,
we affirm the accuracy and robustness of our methods. This example not only underscores
the practical importance of our theoretical contributions but also provides a foundation for
future research in applying fractional integro-differential equations to real-world scenarios.

By addressing these aspects, we contribute to the growing body of literature on frac-
tional integro-differential equations, particularly those involving Riemann derivatives and
nonlocal boundary conditions. Our findings not only advance the theoretical understand-
ing of such equations but also have potential applications in various fields where fractional
dynamics play a critical role.

2. Main Results

In the following, we present essential notations, definitions, lemmas, and theorems that
serve as foundational elements for our research.

Definition 2.1. [26] Let α > 0, and consider an interval [a, b] where −∞ < a < ξ < b <
+∞, with χ ∈ L1([a, b],R). Then,

(1) The Riemann-Liouville fractional integral of a function χ(ξ) of order α is given
by:

Iαa+χ(ξ) =
1

Γ(α)

∫ ξ

a
(ξ − τ)α−1χ(τ) ds, (4)

where Γ(α) denotes the Euler gamma function, defined by Γ(α) =
∫ +∞
0 ξα−1e−ξ dt.

(2) The Riemann-Liouville fractional derivative of order α, with n = [α] + 1 where [α]
is the integer part of α, is defined as:

Dα
a+χ(ξ) =

1

Γ(n− α)

(
d

dt

)n ∫ ξ

a
(ξ − τ)n−α−1χ(τ) ds. (5)

To examine the existence of solutions for a fractional differential equation, it is crucial
to transform it into an equivalent integral equation, leveraging the key properties of Iαa+
and Dα

a+ .
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Lemma 2.1. [3] Let α, β ∈ R+, and f(ξ) ∈ L1 [a, b]. Then, for all ξ ∈ [a, b]:

(1) The fractional integral Iαa+χ(ξ) exists almost everywhere.

(2) Iαa+I
β
a+

f(ξ) = Iβ
a+

Iαa+f(ξ) = Iα+β
a+

f(ξ).
(3) (Iαa+)

nf(ξ) = Inαa+ f(ξ), where n ∈ N.
(4) Dα

a+I
α
a+χ(ξ) = χ(ξ) for all ξ.

(5) Dβ
0+
Iα0+χ(ξ) = Iα−β

0+
χ(ξ) for β ∈ [0, α).

(6) Dα
0+χ(ξ) = I−α

0+
χ(ξ) for α < 0 and ξ ≥ 0.

Lemma 2.2. For β > −1, β ̸= α− 1, α− 2, . . . , α1 − n, then for ξ ≥ 0:

Dα
0+ξ

β =
Γ(β + 1)

Γ(β − α+ 1)
ξβ−α, (6)

and Dα
0+ξ

α−i = 0 for all i = 1, 2, 3, . . . , n.

Lemma 2.3. [26] If α > 0, then the general solution to the homogeneous equation
Dα

0+u(ξ) = 0 in C(I,R) ∩ L1(I,R) is given by:

u(ξ) = c1ξ
α−1 + c2ξ

α−2 + c3ξ
α−3 + · · ·+ cnξ

α−n, ξ ∈ I. (7)

Definition 2.2. A function x ∈ C ([0, 1],R) is said to be a solution to the fractional
differential equation (1) if it satisfies the following condition:

Dα
0+ (χ(ξ)− g(ξ, χ(ξ))) = f(ξ, χ(ξ), Dα−1

0+
χ(ξ),

∫ ξ

0+
φ(ξ, τ)Dα−1

0+
χ(τ) dτ),

along with the associated nonlocal boundary conditions:

χ(0) +Dα−1
0+

χ(0) = σ1χ(η1), 0 < η1 < 1,

and

χ(1) +Dα−1
0+

χ(1) = σ2χ(η2), 0 < η2 < 1.

Now, to facilitate the understanding of the solution to the nonlinear implicit fractional
differential equation (NLFDE), we present the following lemma. It provides an equivalent
fractional integral form of the solution, which will be essential for further analysis of
existence and uniqueness.

Lemma 2.4. Let 1 < α ≤ 2, and suppose f : [0, 1] × R3 → R is a continuous function.
A function χ(ξ), defined on the interval [0, 1], is said to be a solution of the nonlinear
implicit fractional differential equation NLFDE (1-3) if and only if it satisfies the following
fractional integral equation:

χ(ξ) = g(ξ, χ(ξ)) +
1

Γ(α)

ξ∫
0

(ξ − τ)α−1u(τ)dτ (8)

+ξα−1


− p

∆g(0, χ(0)) + pσ1

∆ g(η1, χ(η1)) +
pσ1

Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+ n
∆

 σ2g(η2, χ(η2))− g(1, χ(1)) + σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ




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+ξα−2


z
∆g(0, χ(0))− zσ1

∆ g(η1, χ(η1))− zσ1
Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+m
∆

 σ2g(η2, χ(η2))− g(1, χ(1)) + σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ



 .

Proof. Let χ(ξ) be a solution to the nonlinear fractional integro-differential equation
(NLFDE) (1): We define the continuous function u(ξ) as follows:

u(ξ) = f(ξ, χ(ξ), Dα−1
0+

χ(ξ),

∫ ξ

0+
φ(ξ, τ)Dα−1

0+
χ(τ) dτ). (9)

Consequently, the NLFDE (1)-(3) can be rewritten in the equivalent form:

Dα
0+ [χ(ξ)− g(ξ, χ(ξ))] = u(ξ). (10)

By employing Lemma 2.3 and applying the Riemann-Liouville fractional integral, the
solution can be expressed as:

χ(ξ) = g(ξ, χ(ξ)) + c0ξ
α−1 + c1ξ

α−2 + Iα0+u(ξ). (11)

Incorporating the boundary conditions (2)-(3), the following equations are obtained:

c0(Γ(α)− σ1η
α−1
1 )− c1 σ1η

α−2
1 = σ1g(η1, χ(η1)) + σ1I

αu(η1)− g(0, χ(0)) (12)

and

c0(1 + Γ(α)− σ2η
α−1
2 ) + c1(1− σ2η

α−2
2 ) (13)

= σ2g(η2, χ(η2))− g(1, χ(1)) +
σ2

Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1

Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1

Γ(1− α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫

0

u(τ)dτ

For the sake of simplicity, let us consider

m = Γ(α)− σ1η
α−1
1 , n = σ1η

α−2
1 , z = 1 + Γ(α)− σ2η

α−1
2 , and p = 1− σ2η

α−2
2 .

By setting nz + pm = ∆ and solving equations (12) and (13), we derive the following:

c0 = − p
∆g(0, χ(0)) + pσ1

∆ g(η1, χ(η1)) +
pσ1

Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+ n
∆

 σ2g(η2, χ(η2))− g(1, χ(1)) + σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ

 (14)

and

c1 =
z
∆g(0, χ(0))− zσ1

∆ g(η1, χ(η1))− zσ1
Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+m
∆


σ2g(η2, χ(η2))− g(1, χ(1))

+ σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ − 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ

− 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ


(15)
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Substituting c0 and c1 in these into (11), we obtain that:

χ(ξ) = g(ξ, χ(ξ)) +
1

Γ(α)

ξ∫
0

(ξ − τ)α−1u(τ)dτ (16)

+ξα−1


− p

∆g(0, χ(0)) + pσ1

∆ g(η1, χ(η1)) +
pσ1

Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+ n
∆

 σ2g(η2, χ(η2))− g(1, χ(1)) + σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ





+ξα−2


z
∆g(0, χ(0))− zσ1

∆ g(η1, χ(η1))− zσ1
Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+m
∆

 σ2g(η2, χ(η2))− g(1, χ(1)) + σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ



 .

□

To establish the necessary conditions for the nonlinear fractional differential equation
(NLFDE), we present the following lemma, which outlines key assumptions regarding the
continuity and boundedness of the functions involved.

Lemma 2.5. Consider the nonlinear fractional differential equation (NLFDE) given by
(1), subject to the following assumptions:

(H1) : The nonlinear function f : [0, 1]×R3 → R is continuous. Additionally, there exists
a continuous function λ ∈ C([0, 1],R+) with a norm ∥λ∥, such that for all ξ ∈ [0, 1]
and for any ui, vi ∈ R (i = 1, 2, 3), the following inequality holds:

|f(ξ, u1, u2, u3)− f(ξ, v1, v2, v3)| ≤ λ(ξ) (|u1 − v1|+ |u2 − v2|+ |u3 − v3|) .
(H2) : The kernel function φ : [0, 1]× [0, 1] → R is continuous for all (τ, v) ∈ [0, 1]× [0, 1].

Moreover, there exists a constant Φ > 0 such that

max
τ,v∈[0,1]

|φ(τ, v)| = Φ.

(H3) : The function g : [0, 1]×R → R is continuous, and there exists a continuous function
ω ∈ C([0, 1],R+) satisfying the inequality:

|g(ξ, u)− g(ξ, v)| ≤ ω(ξ)|u− v|,
for all ξ ∈ [0, 1] and for any u, v ∈ R. Additionally, there exists a constant G > 0
such that

G = max
ξ∈[0,1]

g(ξ, u(ξ)).

Remark 2.1. From the assumption (H1), we deduce that

|f(τ, u1, u2, u3)| − |f(τ, 0, 0, 0)| ≤ |f(τ, u1, u2, u3)− f(τ, 0, 0, 0)| ≤ ∥λ∥ (|u1|+ |u2|+ |u3|),
and

|f(τ, u1, u2, u3)| ≤ ∥λ∥ (|u1|+ |u2|+ |u3|) + F,

where F = maxτ∈[0,1] |f(τ, 0, 0, 0)| .
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Definition 2.3. Define the operator Θ : C([0, 1],R+) → C([0, 1],R+) as follows:

Θ(ξ) = g(ξ, χ(ξ)) +
1

Γ(α)

ξ∫
0

(ξ − τ)α−1u(τ)dτ

+ξα−1


− p

∆g(0, χ(0)) + pσ1

∆ g(η1, χ(η1)) +
pσ1

Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+ n
∆

 σ2g(η2, χ(η2))− g(1, χ(1)) + σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ





+ξα−2


z
∆g(0, χ(0))− zσ1

∆ g(η1, χ(η1))− zσ1
Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+m
∆

 σ2g(η2, χ(η2))− g(1, χ(1)) + σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ



 .

3. Existence of solutions

In this section, we establish the existence of solutions to the nonlinear fractional dif-
ferential equation (NLFDE) as defined by equations (1)-(3). To achieve this, we apply
Krasnoselskii’s fixed point theorem. The following theorem outlines the conditions under
which a solution to the NLFDE exists.

Theorem 3.1. Assume that the conditions (H1) through (H3) are satisfied. If the following
inequalities hold:

r ≥ a0
1− b0d0

, (17)

and 

| p∆ | ∥ω∥+ |pσ1

∆ | ∥ω∥+ b0η
α
1 |

pσ1

Γ(α+1)(∆) |

+| n∆ |

(
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2ηα2

Γ(α+1)b0

)
+ | z∆ | ∥ω∥+ | zσ1

∆ | ∥ω∥

+b0η
α
1 | zσ1

Γ(α+1)(∆) |+ |m∆ |

(
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2ηα2

Γ(α+1)b0

)


< 1, (18)

then the NLFDE (1) has at least one solution in C[0, 1].

Proof. Consider the operator Θ(χ(ξ)) = Θ1(χ(ξ)) + Θ2(χ(ξ)); ξ ∈ [0, 1], where

Θ1(χ(ξ)) = ξα−1



− p
∆g(0, χ(0)) + pσ1

∆ g(η1, χ(η1)) +
pσ1

Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+ n
∆



σ2g(η2, χ(η2))− g(1, χ(1))

+ σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ

− 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ




(19)
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+ξα−2



z
∆g(0, χ(0))− zσ1

∆ g(η1, χ(η1))− zσ1
Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+m
∆



σ2g(η2, χ(η2))− g(1, χ(1))

+ σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ

− 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ




,

and

Θ2(χ(ξ)) = g(ξ, χ(ξ)) +
1

Γ(α)

ξ∫
0

(ξ − τ)α−1u(τ)dτ.

Consider the closed and convex subset Br = {χ ∈ C([0, 1],R); ∥ χ ∥≤ r} of C([0, 1], where
r is a positive real number such that:

r ≥ a0
1− b0d0

,

where

a0 =


| p∆ |G (1 + σ1) + Fηα1 |

pσ1

Γ(α+1)(∆) |+ | n∆ |
[
G+ F

Γ(α+1) +
G

Γ(2−α) + F + σ2G+
σ2Fηα2
Γ(α+1)

]
+| z∆ |G (1 + σ1) + Fηα1 | zσ1

Γ(α+1)(∆) |+G+ F
Γ(α+1)

+|m∆ |
[
G+ F

Γ(α+1) +
G

Γ(2−α) + F + σ2G+
σ2Fηα2
Γ(α+1)

]


(20)
and

b0 = ∥λ∥
(
1 +

1

Γ(2− α)
+

Φ

Γ(2− α)

)
(21)

and

d0 = ηα1

∣∣∣∣ pσ1
Γ(α+ 1)∆

∣∣∣∣+ ∣∣∣ n∆ ∣∣∣
[

1

Γ(α+ 1)
+ 1 +

σ2η
α
2

Γ(α+ 1)

]
(22)

+ ηα1

∣∣∣∣ zσ1
Γ(α1 + 1)∆

∣∣∣∣+ ∣∣∣m∆ ∣∣∣
[

1

Γ(α+ 1)
+ 1 +

σ2η
α
2

Γ(α+ 1)

]
+

1

Γ(α+ 1)
.

The proof will be decomposed into three steps:
Step 1: In this step, we have to prove that for every χ1, χ2 ∈ Br, the operator Θ1χ1 +
Θ2χ2 ∈ Br .

|Θ1χ1 +Θ2χ2| ≤ |Θ1χ1|+ |Θ2χ2|

≤
∣∣∣ p
∆

∣∣∣G+
∣∣∣pσ1
∆

∣∣∣G+ | pσ1
Γ(α)∆

| ×
η1∫
0

|η1 − τ |α−1|u(τ)|dτ

+| n
∆
|


G+ 1

Γ(α)

1∫
0

|1− τ |α−1 |u(τ)|dτ+

1
Γ(1−α)G.

1∫
0

|1− τ |−αdτ +
1∫
0

|u(τ)|dτ

+σ2G+ σ2
Γ(α)

η2∫
0

|η2 − τ |α−1 |u(τ)|dτ


(23)
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+
(∣∣∣ z

∆

∣∣∣+ ∣∣∣zσ1
∆

∣∣∣)G+

∣∣∣∣ zσ1
Γ(α)(∆)

∣∣∣∣
η1∫
0

|η1 − τ |α−1|u(τ)|dτ

+|m
∆
|

 G+ 1
Γ(α)

1∫
0

|1− τ |α−1 |u(τ)|dτ + 1
Γ(1−α)G

1∫
0

|1− τ |−αdτ+

1∫
0

|u(τ)|dτ + σ2G+ σ2
Γ(α)

η2∫
0

|η2 − τ |α−1 |u(τ)|dτ ]



+ G+
1

Γ(α)

ξ∫
0

|ξ − τ |α1−1 |u(τ)|dτ,

where

|u(τ)| = |f(τ, χ(τ), Dα−1
0+

χ(τ),

τ∫
0+

φ(τ, v)Dα1−1
0+

χ(v)dv)|

≤ F + ∥λ∥
[
|χ(τ)|+ 1

Γ(2− α)
|χ(τ)|+ Φ

Γ(2− α)
|χ(τ)|

]
≤ F + ∥λ∥

[
1 +

1

Γ(2− α)
+

Φ

Γ(2− α)

]
∥χ∥

≤ θ,

where θ = F + ∥λ∥ [1 + 1
Γ(2−α) +

Φ
Γ(2−α) ] ∥χ∥. Thus, we have

|Θ1χ1 +Θ2χ2| ≤ | p
∆
|G+ |pσ1

∆
|G+ θηα1 |

pσ1
Γ(α+ 1)∆

| (24)

+ | n
∆
|
[
G+ θ

Γ(α+1) +
G

Γ(2−α) + θ + σ2G+
σ2θηα2
Γ(α+1)

]
+ | z

∆
|G+ |zσ1

∆
|G+ θηα1 | zσ1

Γ(α+1)∆ |

+ |m
∆
|
[
G+ θ

Γ(α+1) +
G

Γ(2−α) + θ + σ2G+
σ2θηα2
Γ(α+1)

]
+G+ θ

Γ(α+1)

≤ | p
∆
|G+ |pσ1

∆
|G+ Fηα1 |

pσ1
Γ(α+ 1)(∆)

|

+ | n
∆
|
[
G+ F

Γ(α+1) +
G

Γ(2−α) + σ2G+ F +
σ2Fη

α1
2

Γ(α+1)

]
+ ∥χ1∥

[
b0η

α
1 |

pσ1

Γ(α+1)∆ |+ | n
∆
|
(

b0
Γ(α+1) + b0 +

σ2b0ηα2
Γ(α+1)

)]
+G

(
| z
∆
|+ |zσ1

∆
|
)
+ Fηα1 | zσ1

Γ(α+1)∆ |

+ |m
∆
|
[
G+ F

Γ(α+1) +
G

Γ(2−α) + F + σ2G+
σ2Fη

α1
2

Γ(α+1)

]
+G+ F

Γ(α+1) + ∥χ1∥
[
b0η

α
1 | zσ1

Γ(α+1)(∆) |+ |m
∆
|
(

b0
Γ(α+1) + b0 +

σ2b0ηα2
Γ(α+1)

)]
+

b0
Γ(α+ 1)

∥χ2∥
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≤


| p∆ |G (1 + σ1) + Fηα1 |

pσ1

Γ(α+1)(∆) |+ | n∆ |
(
G+ F

Γ(α+1) +
G

Γ(2−α) + F + σ2G+
σ2Fηα2
Γ(α+1)

)
+| z∆ |G (1 + σ1) + Fηα1 | zσ1

Γ(α+1)(∆) |+G+ F
Γ(α+1)

+|m∆ |
(
G+ F

Γ(α+1) +
G

Γ(2−α) + F + σ2G+
σ2Fηα2
Γ(α+1)

)


+ b0r

 | pσ1

Γ(α+1)(∆) |η
α
1 + | n∆ |[ 1

Γ(α+1) + 1 +
σ2ηα2

Γ(α+1) ] + | zσ1
Γ(α+1)(∆) |η

α
1

+|m∆ |
[

1
Γ(α+1) + 1 +

σ2ηα2
Γ(α+1)

]
+ 1

Γ(α+1)


Taking supremum over all τ ∈ [0, 1] and solving the inequality ∥Θ1χ1 +Θ2χ2∥ ≤ r for r,
we obtain that:

r ≥ a0
1− b0d0

,

where a0, b0, and d0 are given in the equations (20), (21), and (22) respectively.
Step 2: In the following step, we have to prove that the operator Θ1 is a contraction with
coefficient

c =



| p∆ | ∥ω∥+ |pσ1

∆ | ∥ω∥+ b0η
α
1 |

pσ1

Γ(α+1)(∆) |

+| n∆ |

(
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2η

α11
2

Γ(α+1)b0

)
+ | z∆ | ∥ω∥+ | zσ1

∆ | ∥ω∥

+b0η
α
1 | zσ1

Γ(α+1)(∆) |+ |m∆ |

(
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2ηα2

Γ(α+1)b0

)


< 1.

Consider the following inequality:

|Θ1(χ)−Θ1(ϑ)| ≤ | p
∆
| ∥ω∥ ∥χ− ϑ∥+ |pσ1

∆
| ∥ω∥ ∥χ− ϑ∥+ b0η

α
1 |

pσ1

Γ(α+1)(∆) | ∥χ− ϑ∥

+ | n
∆
|

 ∥ω∥ ∥χ− ϑ∥+ b0
Γ(α+1) ∥χ− ϑ∥+ ∥ω∥

Γ(2−α) ∥χ− ϑ∥
+b0 ∥χ− ϑ∥+ σ2 ∥ω∥ ∥χ− ϑ∥

+
σ2ηα2

Γ(α+1)b0 ∥χ− ϑ∥


+ | z

∆
| ∥ω∥ ∥χ− ϑ∥+ |zσ1

∆
| ∥ω∥ ∥χ− ϑ∥+ b0η

α
1 | zσ1

Γ(α+1)(∆) | ∥χ− ϑ∥

+ |m
∆
|

 ∥ω∥ ∥χ− ϑ∥+ b0
Γ(α+1) ∥χ− ϑ∥+ ∥ω∥

Γ(2−α) ∥χ− ϑ∥
+b0 ∥χ− ϑ∥+ σ2 ∥ω∥ ∥χ− ϑ∥

+
σ2ηα2

Γ(α+1)b0 ∥χ− ϑ∥



≤



| p∆ | ∥ω∥+ |pσ1

∆ | ∥ω∥+ b0η
α
1 |

pσ1

Γ(α+1)(∆) |

+| n∆ |

(
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2ηα2

Γ(α+1)b0

)
+ | z∆ | ∥ω∥+ | zσ1

∆ | ∥ω∥

+b0η
α
1 | zσ1

Γ(α+1)(∆) |+ |m∆ |

(
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2ηα2

Γ(α+1)b0

)


∥χ− ϑ∥ .
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Utilizing the Banach fixed-point theorem, we establish that the operator Θ1 is a contraction
mapping with a contraction coefficient given by

c =



| p∆ | ∥ω∥+ |pσ1

∆ | ∥ω∥+ b0η
α
1 |

pσ1

Γ(α+1)(∆) |

+| n∆ |

(
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2ηα2

Γ(α+1)b0

)
+ | z∆ | ∥ω∥+ | zσ1

∆ | ∥ω∥

+b0η
α
1 | zσ1

Γ(α+1)(∆) |+ |m∆ |

(
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2ηα2

Γ(α+1)b0

)


. (25)

Step 3: In this stage, our task is to demonstrate that Θ2 is both compact and continuous.
Consider a sequence {χn}n∈N within the ball Br, where χn converges to χ ∈ Br as n → ∞.
We need to establish that ∥Θ2(χn)−Θ2(χ)∥ approaches zero as n approaches infinity. To
show this, observe that for every τ ∈ [0, 1], it holds that

|Θ2(χn)−Θ2(χ)| ≤ |g(ξ, χn(ξ))− g(ξ, χ(ξ))|+ 1

Γ(α)

ξ∫
0

|ξ − τ |α−1|un(τ)− u(τ)|dτ, (26)

where

un(τ) = f(τ, χn(τ), D
α−1
0+

χn(τ),

τ∫
0+

φ(τ, v)Dα−1
0+

χn(v)dv), (27)

and

u(τ) = f(τ, χ(τ), Dα−1
0+

χ(τ),

τ∫
0+

φ(τ, v)Dα−1
0+

χ(v)dv). (28)

Thus,

|un(τ)− u(τ)| = |f(τ, χn(τ), D
α−1
0+

χn(τ),

τ∫
0+

φ(τ, v)Dα1−1
0+

χn(v)dv)

− f(τ, χ(τ), Dα−1
0+

χ(τ),

τ∫
0+

φ(τ, v)Dα−1
0+

χ(v)dv)|

≤ ∥λ∥
[
1 +

1

Γ(2− α)
+

Φ

Γ(2− α)

]
∥χn − χ∥

≤ ∥λ∥
[
1 +

1

Γ(2− α)
+

Φ

Γ(2− α)

]
∥χn − χ∥

≤ b0 ∥χn − χ∥ ,

with b0 = ∥λ∥ [1 + 1
Γ(2−α) + Φ

Γ(2−α) ]. Let χn → χ as n → ∞. We then have that

un(τ) → u(τ) for each τ ∈ [0, 1]. Assume there exists a positive constant ε > 0 such that
for every τ ∈ [0, 1], the inequalities |un(τ)| ≤ ε

2 and |u(τ)| ≤ ε
2 hold. Consequently, we

obtain

|un(τ)− u(τ)| ≤ |un(τ)|+ |u(τ)| ≤ ε. (29)

By employing the Lebesgue Dominated Convergence Theorem, it follows that

∥Θ2(χn)−Θ2(χ)∥ → 0 as n → ∞, (30)
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demonstrating that Θ2 is continuous. Furthermore, Θ2 is also bounded since

|Θ2(χ)| = |g(ξ, χ(ξ)) + 1

Γ(α)

ξ∫
0

(ξ − τ)α−1u(τ)dτ |

≤ |g(ξ, χ(ξ))|+ 1

Γ(α)

ξ∫
0

|ξ − τ |α−1u(τ)|dτ

≤ G+
1

Γ(α+ 1)
ξα (F + b0 ∥χ∥)

≤ G+
1

Γ(α+ 1)
(F + b0r) .

By taking supremum over [0, 1], we obtain due to the definition of r that

∥Θ2∥ ≤ G+
1

Γ(α+ 1)
(F + b0r) ≤ r. (31)

Thus, it was prove that Θ2 is uniformly bounded. To demonstrate that Θ2 is equicontin-
uous, we proceed as follows. Consider any ε > 0. We aim to find a δ > 0 such that for
any τ1, τ2 ∈ [0, 1] with τ1 < τ2 and |τ2 − τ1| < δ, the following condition holds. Utilizing
the assumption (H3), we can derive that:

|Θ2χ(τ2)−Θ2χ(τ1)| ≤ |g(τ2, χ(τ2) +
1

Γ(α)

τ2∫
0

(τ2 − v)α−1u(v)dv − g(τ1, χ(τ1))

− 1

Γ(α)

τ1∫
0

(τ1 − v)α−1u(v)dv|

≤ |g(τ2, χ(τ2)− g(τ2, χ(τ1) + g(τ2, χ(τ1)− g(τ1, χ(τ1))|

+ | 1

Γ(α)

τ2∫
0

(τ2 − v)α−1u(v)dv − 1

Γ(α)

τ1∫
0

(τ1 − v)α−1u(v)dv|

≤ |g(τ2, χ(τ2)− g(τ2, χ(τ1)|+ |g(τ2, χ(τ1)− g(τ1, χ(τ1))|

+ | 1

Γ(α)

τ1∫
0

(τ2 − v)α−1u(v)dv +
1

Γ(α)

τ2∫
τ1

(τ2 − v)α−1u(v)dv

− 1

Γ(α)

τ1∫
0

(τ1 − v)α−1u(v)dv|

≤ ∥ω∥ |χ (τ2)− χ (τ1)|+ |g(τ2, χ(τ1))− g(τ1, χ(τ1))|

+ | 1

Γ(α)

τ1∫
0

∣∣(τ2 − v)α−1 − (τ1 − v)α−1
∣∣ |u(v)| dv + 1

Γ(α)

τ2∫
τ1

(τ2 − v)α−1 |u(v)| dv



M. ABOU OMAR et al.: EXISTENCE, UNIQUENESS, ... 2477

≤ ∥ω∥ |χ (τ2)− χ (τ1)|+ |g(τ2, χ(τ1))− g(τ1, χ(τ1))|

+ | 1

Γ(α)

τ1∫
0

∣∣τ2α−1 − τ1
α−1
∣∣ |u(v)| dv + 1

Γ(α)

τ2∫
τ1

(τ2 − v)α−1 |u(v)| dv

≤ ∥ω∥ |χ (τ2)− χ (τ1)|+ |g(τ2, χ(τ1))− g(τ1, χ(τ1))|

+ | 1

Γ(α)

τ1∫
0

∣∣τ2α−1 − τ1
α−1
∣∣ |u(v)| dv + 1

Γ(α+ 1)
|τ2 − τ1|α |u(v)| .

Thus,

|Θ2χ(τ2)−Θ2χ(τ1)| ≤ ∥ω∥ |χ (τ2)− χ (τ1)|+ |g(τ2, χ(τ1))− g(τ1, χ(τ1))|

+
θ

Γ(α)

∣∣τ2α−1 − τ1
α−1
∣∣ τ1 + θ

Γ(α1 + 1)
|τ2 − τ1|α .

As τ1 approaches τ2, the right-hand side of the inequality becomes independent of χ and
converges to zero. Consequently, we have

|Θ2χ(τ2)−Θ2χ(τ1)| → 0, for all |τ2 − τ1| → 0.

This implies that the family {Θ2χ} is equicontinuous on Br. By invoking the Arzela-Ascoli
Theorem, it follows that Θ2 is a compact operator. Consequently, Θ2 : C([0, 1],R) →
C([0, 1],R) is both continuous and compact. Thus, all the conditions of Krasnoselskii’s
fixed point theorem are fulfilled, ensuring that the operator Θ = Θ1 + Θ2 has a fixed
point χ(τ) ∈ C([0, 1]) within Br. This fixed point χ(τ) satisfies the nonlocal boundary
conditions

χ(0) +Dα−1
0+

χ(0) = σ1χ(η1), for η1 ∈ (0, 1),

and

χ(1) +Dα−1
0+

χ(1) = σ2χ(η2), for η2 ∈ (0, 1).

Therefore, χ(τ) is considered a solution to the equation (1) with the specified nonlocal
boundary conditions (2) and (3). □

4. Uniqueness of Solutions

To establish the uniqueness of the solution to the nonlinear fractional differential equa-
tion NLFDE (1) , we present the following theorem:

Theorem 4.1. If the conditions (H1)− (H3) hold and if

c+ ∥ω∥+ ∥λ∥
Γ(α+ 1)

(
1 +

1

Γ(2− α)
+

Φ

Γ(2− α)

)
< 1, (32)

where

c =



| p∆ | ∥ω∥+ |pσ1

∆ | ∥ω∥+ b0η
α
1 |

pσ1

Γ(α+1)(∆) |

+| n∆ |

(
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2ηα2

Γ(α+1)b0

)
+ | z∆ | ∥ω∥+ | zσ1

∆ | ∥ω∥

+b0η
α
1 | zσ1

Γ(α+1)(∆) |+ |m∆ |

(
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2ηα2

Γ(α+1)b0

)


,

then the NLFDE (1) has a unique solution.
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Proof. We have

|Θ(χ)−Θ(ϑ)| = |Θ1(χ) + Θ2(χ)−Θ1(ϑ)−Θ2(ϑ)|
≤ |Θ1(χ)−Θ1(ϑ)|+ |Θ2(χ)−Θ2(ϑ)|
≤ c ∥χ− ϑ∥+ |g(ξ, χ(ξ)− g(ξ, ϑ(ξ)|

+ | 1

Γ(α)

ξ∫
0

(ξ − τ)α−1u(τ)dτ − 1

Γ(α)

ξ∫
0

(ξ − τ)α−1v(τ)dτ |

≤ c ∥χ− ϑ∥+ ∥ω∥ ∥χ− ϑ∥+ 1

Γ(α)

ξ∫
0

(ξ − τ)α−1|u(τ)− v(τ)|dτ

But,
|u(τ)− v(τ)| ≤ b0 ∥χ− ϑ∥ ,

where Then, b0 = ∥λ∥
(
1 + 1

Γ(2−α) +
Φ

Γ(2−α)

)
. Thus,

|Θ(χ)−Θ(ϑ)| ≤ c ∥χ− ϑ∥+ ∥ω∥ ∥χ− ϑ∥+ b0
Γ(α+ 1)

∥χ− ϑ∥

≤
(
c+ ∥ω∥+ b0

Γ(α+ 1)

)
∥χ− ϑ∥

Hence, if we take
(
c+ ∥ω∥+ b0

Γ(α+1)

)
< 1, then by the contarction thereom (Banach fixed

point thorem), we obtain that the NLFDE (1) has a unique solution. □

5. Stability results via Ulam-Hyers type

In the following, we consider the Ulam stability for NLFDE (1). Consider the real
numbers 1 < α ≤ 2; ε > 0, and let Θ : [0, 1] → R+ be a continuous function, and consider
the following inequalities:

|Dα
0+ (χ(ξ)− g(ξ, χ(ξ))− f(ξ, χ(ξ), Dα−1

0+
χ(ξ),

ξ∫
0+

φ(ξ, τ)Dα−1
0+

χ(τ)dτ)| ≤ ε(ξ), ξ ∈ [0, 1],

(33)

|Dα
0+ (χ(ξ)− g(ξ, χ(ξ))− f(ξ, χ(ξ), Dα−1

0+
χ(ξ),

ξ∫
0+

φ(ξ, τ)Dα−1
0+

χ(τ)dτ)| ≤ Θ(ξ), ξ ∈ [0, 1],

(34)
and

|Dα
0+ (χ(ξ)− g(ξ, χ(ξ))− f(ξ, χ(ξ), Dα−1

0+
χ(ξ),

ξ∫
0+

φ(ξ, τ)Dα−1
0+

χ(τ)dτ)| ≤ εΦ(ξ), ξ ∈ [0, 1].

(35)

Definition 5.1. [35] The nonlinear integro-differential equation (NLFDE) (1) is said to
exhibit Ulam-Hyers stability if there exists a positive real constant κf > 0 such that for
any solution z ∈ C([0, 1],R) of the inequality (33), there is a solution χ ∈ C([0, 1],R) to
the NIFDE (1) satisfying

|z(ξ)− χ(ξ)| ≤ εκf ∀ ξ ∈ [0, 1].
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Definition 5.2. [35] The NLFDE (1) is generalized Ulam-Hyers stable if there exists
a function κf ∈ C(R+,R+) with κf (0) = 0 such that for any ε > 0 and any solution
z ∈ C([0, 1],R) of the inequality (34), there is a solution χ ∈ C([0, 1],R) of the NIFDE
(1) satisfying

|z(ξ)− χ(ξ)| ≤ κf (ε) ∀ ξ ∈ [0, 1].

Definition 5.3. [33] The NLFDE (1) is Ulam-Hyers-Rassias stable with respect to a
function Θ if there exists a positive real constant κf Θ > 0 such that for any ε > 0 and
any solution z ∈ C([0, 1],R) of the inequality (35), there is a solution χ ∈ C([0, 1],R) of
the NIFDE (1) satisfying

|z(ξ)− χ(ξ)| ≤ εκf ΘΘ(ξ) ∀ ξ ∈ [0, 1].

Definition 5.4. [33] The NLFDE (1) is generalized Ulam-Hyers-Rassias stable with re-
spect to a function Θ if there exists a positive real constant κf Θ > 0 such that for each
solution z ∈ C([0, 1],R) of the inequality (35), there is a solution χ ∈ C([0, 1],R) of the
NIFDE (1) satisfying

|z(ξ)− χ(ξ)| ≤ κf ΘΘ(ξ) ∀ ξ ∈ [0, 1].

5.1. Ulam-Hyers stability. To establish the stability of the solution to the nonlinear
implicit fractional differential equation NLFDE (1), we present the following theorem,
which demonstrates the Ulam-Hyers stability under the conditions outlined in Theorem
(4.1).

Theorem 5.1. Suppose that the assumptions of Theorem (4.1) are satisfied. Then, the
NIFDE (1) is Ulam-Hyers stable.

Proof. Assume that χ(ξ) is a solution of of the NIFDE (1), then

|z(ξ)− χ(ξ)| = |z(ξ)− g(ξ, χ(ξ))− 1

Γ(α)

ξ∫
0

(ξ − τ)α−1u(τ)dτ (36)

−ξα−1


− p

∆g(0, χ(0)) + pσ1

∆ g(η1, χ(η1)) +
pσ1

Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+ n
∆

 σ2g(η2, χ(η2))− g(1, χ(1)) + σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ





−ξα−2


z
∆g(0, χ(0))− zσ1

∆ g(η1, χ(η1))− zσ1
Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+m
∆

 σ2g(η2, χ(η2))− g(1, χ(1)) + σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ





= |z(ξ) + g(ξ, z(ξ))− g(ξ, χ(ξ))− g(ξ, z(ξ)) + 1
Γ(α)

ξ∫
0

(ξ − τ)α−1v(τ)dτ

− 1
Γ(α)

ξ∫
0

(ξ − τ)α−1u(τ)dτ − 1
Γ(α)

ξ∫
0

(ξ − τ)α−1v(τ)dτ
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−ξα−1

(
− p

∆ [g(0, χ(0))− g(0, z(0)) + g(0, z(0))]
+pσ1

∆ [g(η1, χ(η1))− g(η1, z(η1)) + g(η1, z(η1))]

)

−ξα−1 pσ1
Γ(α)∆

 η1∫
0

(η1−τ)α−1u(τ)dτ−
η1∫
0

(η1−τ)α−1v(τ)dτ+

η1∫
0

(η1−τ)α−1v(τ)dτ



−ξα−1 n

∆



(σ2g(η2, χ(η2))− σ2g(η2, z(η2)) + σ2g(η2, z(η2)))
− (g(1, χ(1))− g(1, z(1)) + g(1, z(1)))

+ σ2
Γ(α)

(η2∫
0

(η2−τ)α−1u(τ)dτ−
η2∫
0

(η2−τ)α−1v(τ)dτ+
η2∫
0

(η2−τ)α−1v(τ)dτ

)
− 1

Γ(α)

(
1∫
0

(1− τ)α−1u(τ)dτ −
1∫
0

(1− τ)α−1v(τ)dτ +
1∫
0

(1− τ)α−1v(τ)dτ

)

− 1
Γ(1−α)


1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

(1− τ)−αg(τ, z(τ))dτ

+
1∫
0

(1− τ)−αg(τ, z(τ))dτ


−
(

1∫
0

u(τ)dτ −
1∫
0

v(τ)dτ +
1∫
0

v(τ)dτ

)


−ξα−2

(
z
∆ [g(0, χ(0))− g(0, z(0)) + g(0, z(0))]

− zσ1
∆ [g(η1, χ(η1))− g(η1, z(η1)) + g(η1, z(η1))]

)

+ξα−2 zσ1
Γ(α)∆


η1∫
0

(η1 − τ)α−1u(τ)dτ −
η1∫
0

(η1 − τ)α−1v(τ)dτ

+
η1∫
0

(η1 − τ)α−1v(τ)dτ



−ξα−2.
m

∆



(
[σ2g(η2, χ(η2))− g(η2, z(η2)) + g(η2, z(η2))]

− [g(1, χ(1))− g(1, z(1)) + g(1, z(1))]

)
+ σ2

Γ(α)

(η2∫
0

(η2 − τ)α−1u(τ)dτ −
η2∫
0

(η2 − τ)α−1v(τ)dτ +
η2∫
0

(η2 − τ)α−1v(τ)dτ

)
− 1

Γ(α)

(
1∫
0

(1− τ)α−1u(τ)dτ−
1∫
0

(1− τ)α−1v(τ)dτ+
1∫
0

(1− τ)α−1v(τ)dτ

)

− 1
Γ(1−α)


1∫
0

(1− τ)−αg(τ, χ(τ))dτ−
1∫
0

(1− τ)−αg(τ, z(τ))dτ

+
1∫
0

(1− τ)−αg(τ, z(τ))dτ


−

1∫
0

u(τ)dτ−
1∫
0

v(τ)dτ+
1∫
0

v(τ)dτ



.

This implies that

|z(ξ)−χ(ξ)| ≤


|z(ξ)− g(ξ, z(ξ))− Iαv(ξ)|+ |g(ξ, χ(ξ))− g(ξ, z(ξ))|

+ 1
Γ(α)

ξ∫
0

|ξ − τ |α−1|v(τ)− u(τ)|dτ + | p∆ | |g(0, χ(0))− g(0, z(0))|

+|pσ1

∆ ||g(η1, χ(η1))− g(η1, z(η1))|+ | pσ1

Γ(α)∆ |
η1∫
0

|η1 − τ |α−1|u(τ)− v(τ)|dτ


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+| n
∆
|


σ2|g(η2, χ(η2))− σ2g(η2, z(η2))|+ |g(1, χ(1))− g(1, z(1))|

+ 1
Γ(α)

1∫
0

|1− τ |α−1|u(τ)− v(τ)|dτ + 1
Γ(1−α)

1∫
0

|1− τ |−α|g(τ, χ(τ))− g(τ, z(τ))|dτ

+
1∫
0

|u(τ)− v(τ)|dτ + σ2
Γ(α)

η2∫
0

|η2 − τ |α−1.|u(τ)− v(τ)|dτ



+ | z
∆
| |g(0, χ(0))− g(0, z(0))|+ |zσ1

∆
| |g(η1, χ(η1))− g(η1, z(η1))|

+ | zσ1
Γ(α)∆

|
η1∫
0

|η1 − τ |α−1|u(τ)− v(τ)|dτ

+|m
∆
|


|g(1, χ(1))− g(1, z(1))|+ σ2

Γ(α) |g(η2, χ(η2))− g(η2, z(η2))|

+ 1
Γ(α)

1∫
0

|1− τ |α−1|u(τ)− v(τ)|dτ + 1
Γ(1−α)

1∫
0

|1− τ |−α|g(τ, χ(τ))− g(τ, z(τ))|dτ

+
1∫
0

|u(τ)− v(τ)|dτ + σ2
Γ(α)

η2∫
0

|η2 − τ |α−1|u(τ)− v(τ)|dτ


But

|u(τ)− v(τ)| = |f(ξ, χ(ξ), Dα−1
0+

χ(ξ),

ξ∫
o+

φ(ξ, τ)Dα−1
0+

χ(τ)dτ)

− f(ξ, z(ξ), Dα−1
0+

z(ξ),

ξ∫
o+

φ(ξ, τ)Dα−1
0+

z(τ)dτ)|

≤ |λ(τ)|

 |χ(τ)− z(τ)|+ |Dα−1
0+

χ(τ)−Dα−1
0+

z(τ)|

+|
τ∫

0+
φ(τ, v)Dα−1

0+
χ(v)dv)−

τ∫
0+

φ(τ, v)Dα−1
0+

z(v)dv)|


≤ ∥λ∥

[
∥χ− z∥+ ∥χ− z∥

Γ(2− α)
+ Φ

∥χ− z∥
Γ(2− α)

]
.

Taking supremum over all τ ∈ [0, 1], we get

∥u− v∥ ≤ ∥λ∥
[
1 +

1

Γ(2− α)
+

Φ

Γ(2− α)

]
∥χ− z∥

≤ b0 ∥χ− z∥ with b0 = ∥λ∥ .
(
1 +

1

Γ(2− α)
+

Φ

Γ(2− α)

)
.
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Then,

|z(ξ)− χ(ξ)| ≤ Iα0+ε+ ∥χ− z∥

(
∥ω∥+ b0

Γ(α+1) +
∣∣ p
∆

∣∣ ∥ω∥
+
∣∣pσ1

∆

∣∣ ∥ω∥+ ∣∣pσ1

∆

∣∣ b0ηα1
Γ(α+1)

)

+ | n
∆
|. ∥χ− z∥

(
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2b0ηα2
Γ(α+1)

)

+ | z
∆
|. ∥χ− z∥

(
∥ω∥+ σ1 ∥ω∥+

σ1b0η
α
1

Γ(α+ 1)

)
+ |m

∆
|. ∥χ− z∥

(
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2b0ηα2
Γ(α+1)

)
Taking supremum over all τ ∈ [0, 1], we get

∥χ− z∥ ≤
[

εtα

Γ(α+ 1)

]1
0

+ ∥ω∥


1 +

∣∣ p
∆

∣∣+ ∣∣pσ1

∆

∣∣
+| n∆ |

(
1 + 1

Γ(2−α) + σ2

)
+| z∆ |+ | zσ1

∆ |+ |m∆ |
(
1 + 1

Γ(2−α) + σ2

)
 ∥χ− z∥

+ b0

 1
Γ(α+1) +

∣∣pσ1

∆

∣∣ ηα1
Γ(α+1) + | n∆ |

(
1

Γ(α+1) + 1 +
σ2ηα2

Γ(α+1)

)
+| zσ1

∆ | ηα1
Γ(α+1) + |m∆ |

(
1

Γ(α+1) + 1 +
σ2ηα2

Γ(α+1)

)  ∥χ− z∥

∥χ− z∥ ≤ ε

Γ(α+ 1)
+ ∥ω∥


1 +

∣∣ p
∆

∣∣+ ∣∣pσ1

∆

∣∣
+| n∆ |

(
1 + 1

Γ(2−α) + σ2

)
+| z∆ |+ | zσ1

∆ |+ |m∆ |
(
1 + 1

Γ(2−α) + σ2

)
 ∥χ− z∥

+ b0

 1
Γ(α+1) +

∣∣pσ1

∆

∣∣ ηα1
Γ(α+1) + | n∆ |

(
1

Γ(α+1) + 1 +
σ2ηα2

Γ(α+1)

)
+| zσ1

∆ | ηα1
Γ(α+1) + |m∆ |

(
1

Γ(α+1) + 1 +
σ2ηα2

Γ(α+1)

)  ∥χ− z∥

Simplifying for ∥χ− z∥, we get

∥χ− z∥


1− ∥ω∥


1 +

∣∣ p
∆

∣∣+ ∣∣pσ1

∆

∣∣
+| n∆ |

(
1 + 1

Γ(2−α) + σ2

)
+| z∆ |+ | zσ1

∆ |+ |m∆ |
(
1 + 1

Γ(2−α) + σ2

)


−b0

 1
Γ(α+1) +

∣∣pσ1

∆

∣∣ ηα1
Γ(α+1) + | n∆ |

(
1

Γ(α+1) + 1 +
σ2ηα2

Γ(α+1)

)
+| zσ1

∆ | ηα1
Γ(α+1) + |m∆ |

(
1

Γ(α+1) + 1 +
σ2ηα2

Γ(α+1)

) 


≤ ε

Γ(α+ 1)
.

This implies that

∥χ− z∥ ≤ ε.
1

Γ(α+ 1)


1− ∥ω∥


1 +

∣∣ p
∆

∣∣+ ∣∣pσ1

∆

∣∣
+| n∆ |

(
1 + 1

Γ(2−α) + σ2

)
+| z∆ |+ | zσ1

∆ |+ |m∆ |
(
1 + 1

Γ(2−α) + σ2

)


−b0

 1
Γ(α+1) +

∣∣pσ1

∆

∣∣ ηα1
Γ(α+1) + | n∆ |

(
1

Γ(α+1) + 1 +
σ2ηα2

Γ(α+1)

)
+| zσ1

∆ | ηα1
Γ(α+1) + |m∆ |

(
1

Γ(α+1) + 1 +
σ2ηα2

Γ(α+1)

) 



−1

≤ ε κf ,
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where

κf =
1

Γ(α+ 1)


1− ∥ω∥


1 +

∣∣ p
∆

∣∣+ ∣∣pσ1

∆

∣∣
+| n∆ |

(
1 + 1

Γ(2−α) + σ2

)
+| z∆ |+ | zσ1

∆ |+ |m∆ |
(
1 + 1

Γ(2−α) + σ2

)


−b0

 1
Γ(α+1) +

∣∣pσ1

∆

∣∣ ηα1
Γ(α+1) + | n∆ |

(
1

Γ(α+1) + 1 +
σ2ηα2

Γ(α+1)

)
+| zσ1

∆ | ηα1
Γ(α+1) + |m∆ |

(
1

Γ(α+1) + 1 +
σ2ηα2

Γ(α+1)

) 



−1

(37)
This implies that the NLFDE (1) is Ulam Hyer stable. It is revealed that the NLFDE (1)
is generalised Ulam Hyer stable by setting Θ(ε) = κf ε;Θ(0) = 0. □

5.2. Ulam-Hyers Rassias stability. To establish the stability of the nonlinear frac-
tional differential equation NLFDE (1), we present the following theorem, which ensures
the Ulam-Hyers-Rassias stability under the given assumptions.

Theorem 5.2. Assume that assumptions (H1), (H2), and (H3) hold. Then,NLFDE (1)is
Ulam-Hyers-Rassias stable with respect to Θ.

Proof. Let z ∈ C(I,R) be a solution of the inequality (35), i.e.,

|Dα
0+ (z(ξ)− g(ξ, z(ξ))− f(ξ, z(ξ), Dα−1

0+
z(ξ),

ξ∫
0+

φ(ξ, τ)Dα−1
0+

z(τ)dτ)| ≤ εΦ(ξ), ξ ∈ [0, 1].

In addition, let χ be a solution of NLFDE (1), and let u ∈ C(I,R) such that:

χ(ξ) = g(ξ, χ(ξ)) +
1

Γ(α)

ξ∫
0

(ξ − τ)α−1u(τ)dτ (38)

+ ξα−1


− p

∆g(0, χ(0)) + pσ1

∆ g(η1, χ(η1)) +
pσ1

Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+ n
∆

 σ2g(η2, χ(η2))− g(1, χ(1)) + σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ





+ ξα−2


z
∆g(0, χ(0))− zσ1

∆ g(η1, χ(η1))− zσ1
Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+m
∆

 σ2g(η2, χ(η2))− g(1, χ(1)) + σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ




where

u(ξ) = f(ξ, χ(ξ), Dα−1
0+

χ(ξ),

ξ∫
0+

φ(ξ, τ)Dα−1
0+

χ(τ)dτ).
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Operating Iα on both sides of inequality (35) and then integrating, we get

|z(ξ)− g(ξ, χ(ξ))− 1

Γ(α)

ξ∫
0

(ξ − τ)α−1u(τ)dsh(ξ) (39)

− ξα−1


− p

∆g(0, χ(0)) + pσ1

∆ g(η1, χ(η1)) +
pσ1

Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+ n
∆

 σ2g(η2, χ(η2))− g(1, χ(1)) + σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ





− ξα−2


z
∆g(0, χ(0))− zσ1

∆ g(η1, χ(η1))− zσ1
Γ(α)∆

η1∫
0

(η1 − τ)α−1u(τ)dτ

+m
∆

 σ2g(η2, χ(η2))− g(1, χ(1)) + σ2
Γ(α)

η2∫
0

(η2 − τ)α−1u(τ)dτ

− 1
Γ(α)

1∫
0

(1− τ)α−1u(τ)dτ − 1
Γ(1−α)

1∫
0

(1− τ)−αg(τ, χ(τ))dτ −
1∫
0

u(τ)dτ



 .

≤ ε.κf .Θ(ξ)

Hence, for each ξ∈ I, But, from proof of Theorem (4.1) , we have

∥u− v∥ ≤ b0∥χ− z∥.
where v ∈ C(I,R) such that

v(ξ) = f(ξ, z(ξ), Dα−1
0+

z(ξ),

ξ∫
0+

φ(ξ, τ)Dα−1
0+

z(τ)dτ).

Then, for each ξ ∈ I
∥χ− z∥ ≤ ε.κf . Θ(ξ)

with

κf =
1

Γ(α+ 1)


1− ∥ω∥


1 +

∣∣ p
∆

∣∣+ ∣∣pσ1

∆

∣∣
+| n∆ |

(
1 + 1

Γ(2−α) + σ2

)
+| z∆ |+ | zσ1

∆ |+ |m∆ |
(
1 + 1

Γ(2−α) + σ2

)


−b0

 1
Γ(α+1) +

∣∣pσ1

∆

∣∣ ηα1
Γ(α+1) + | n∆ |

(
1

Γ(α+1) + 1 +
σ2ηα2

Γ(α+1)

)
+| zσ1

∆ | ηα1
Γ(α+1) + |m∆ |

(
1

Γ(α+1) + 1 +
σ2ηα2

Γ(α+1)

) 



−1

(40)
Therefore, the problem NLFDE (1) is Ulam-Hyers-Rassias stable with respect to Θ. □

6. Numerical Example

In this section, we provide a numerical example to illustrate the practical significance
of our theoretical findings. By considering nonlinear fractional integro-differential equa-
tions (NLFDEs), we demonstrate how our criteria guarantee the existence, uniqueness,
and stability of solutions. This example emphasizes the applicability of our approach in
addressing complex fractional models across diverse scientific and engineering fields. Ad-
ditionally, it highlights the crucial role of solution uniqueness, particularly in advanced
control systems where consistent and predictable outcomes are essential.
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Example 6.1. Consider the following nonlinear fractional differential equation:

D
5
4

0+

[
χ(ξ)− 1

100 + ξ
.
4 + |χ(ξ)|
5 + 3|χ(ξ)|

]
(41)

=
e
√
ξ+5

500 + e5t

5 + |χ (ξ)|+D
1
4

0+
χ(ξ) +

∫ ξ
0

√
ξ
2 eτD

1
4

0+
χ (τ) dτ

1 + |χ (ξ)|+D
1
4

0+
χ(ξ) +

∫ ξ
0

√
ξ
2 eτD

1
4

0+
χ (τ) dτ

 (42)

under the conditions:

χ(0) +D
1
4

0+
χ(0) = 1

5χ
(
1
6

)
,

and

χ(1) +D
1
4

0+
χ(1) = 1

10χ
(
1
7

)
.

|f(ξ, u, v, w)| = e
√
ξ+5

500 + e5t

(
5 + |u|+ |v|+ |w|
1 + |u|+ |v|+ |w|

)
, F =

5e
√
5

501
.

Obviously, f is a mutually continuous function. Besides, for any u, v, w, u1, v1, w1 ∈
R, and ξ∈ [0, 1] we have

|f(ξ, u, v, w)− f(ξ, u1, v1, w1)| ≤
e
√
5

501
(|u− u1|+ |v − v1|+ |w − w1|) .

Hence, condition (H2) is satisfied with

λ(ξ) =
e
√
ξ+5

500 + e5t
, ∥λ∥ =

e
√
5

501
= 1.8676× 10−2, and Φ =

e

2
.

In this example we take α = 5
4 , η1 = 1

6 , η2 = 1
7 , σ1 = 1

5 , σ2 = 1
10 , Φ = e

2 , ∥ω∥ = 1
100 ,

G = 1
300 , b0 = 0.05463, p = 0.569648, m = 0.77861, n = 0.766732, z = 1.84492, and

∆ = 1.858.
It clear from Theorem 3.1 that the CIFDP has at least one mild solution on [0, 1] since

the condition

c =



| p∆ | ∥ω∥+ |pσ1

∆ | ∥ω∥+ b0η
α
1 |

pσ1

Γ(α+1)(∆) |

+| n∆ |

[
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2ηα2

Γ(α+1)b0

]
+ | z∆ | ∥ω∥+ | zσ1

∆ | ∥ω∥

+b0η
α
1 | zσ1

Γ(α+1)(∆) |+ |m∆ |

[
∥ω∥+ b0

Γ(α+1) +
∥ω∥

Γ(2−α)

+b0 + σ2 ∥ω∥+
σ2ηα2

Γ(α+1)b0

]


≈ 0.134715 < 1.

Moreover, the NLFDE (41) has unique solution since the followng condition holds

c+ ∥ω∥+ b0
Γ(α+ 1)

≈ 0.1893 < 1,

a0 = 0.26941; d0 = 1.08851;
a0

1− b0d0
= 0.2864,

and

∥Θ2∥ ≤ 0.10006 < 0.2864.

Thus, the solution is also stable.
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7. Conclusion

This study significantly advances the theoretical framework of nonlinear fractional
integro-differential equations, particularly those involving Riemann-Liouville fractional
derivatives, by addressing the existence, uniqueness, and stability of solutions through
advanced fixed-point theorems. Our work establishes novel conditions for the existence
and uniqueness of solutions, along with stability criteria under small perturbations, ex-
tending the current understanding of fractional calculus and its application to systems with
memory and long-range dependencies. By synthesizing fractional derivatives with nonlocal
boundary conditions, we offer new insights into the behavior and stability of such systems,
which is a valuable extension to existing models that primarily focus on simpler cases. The
findings not only advance theoretical knowledge but also have practical implications for
fields such as engineering, control systems, and anomalous diffusion, where memory ef-
fects and nonlocal interactions are prevalent. Our numerical example demonstrates the
applicability of the theoretical results in various scenarios with differing fractional orders,
boundary conditions, and nonlinearities. Looking ahead, future research could explore
more complex boundary conditions, higher-dimensional models, and computational tech-
niques for solving intricate fractional systems, with potential applications in biological
modeling, advanced materials science, and industrial systems. In conclusion, this study
strengthens the theoretical foundations of nonlinear fractional integro-differential equa-
tions and provides a solid basis for future research, bridging the gap between theory and
real-world applications, and offering powerful tools to tackle complex, memory-driven sys-
tems, thus advancing the field of fractional calculus and its broad range of applications.
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