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SYSTEMS BIFURCATION OF LIMIT CYCLES FOR A FAMILY OF

DISCONTINUOUS PIECEWISE ISOCHRONOUS DIFFERENTIAL

SYSTEMS SEPARATED BY IRREGULAR LINE

M. BARKAT1, R. BENTERKI1∗, L. BAYMOUT1, §

Abstract. The study of Hilbert’s 16th problem for piecewise linear differential systems
has received significant attention from many researchers. It was shown that the upper
bound for the maximum number of limit cycles can vary according to the configuration
of the discontinuous curve.

The family of discontinuous piecewise differential systems formed by linear isochronous
centers or four families of quadratic isochronous centers separated by a straight line have
been studied, and the authors have found at most two limit cycles.

In this paper, we study the same family but instead of a straight line, we consider an
irregular line separation, and we prove that there are at most five crossing limit cycles
intersecting the separation curve at two points.

Keywords: Limit cycles, quadratic isochronous centers, linear differential center, irregular
line.
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1. Introduction

In 1920s, Andronov, Vitt and Khaikin [1] started investigating the behavior of piecewise
differential systems because of their widespread usage in modeling biological processes and
certain mechanical and electrical applications (e.g., in the book [9] and the survey [23]).

The problem of cyclicity, which refers to discovering the limit cycles of piecewise dif-
ferential systems, is considered one of the most crucial and challenging topics in this field
of theory. A limit cycle refers to a periodic orbit of a differential system in R2 isolated
from all other periodic orbits of the same system. In the qualitative study, one of the
main problems of planar differential systems is determining the existence and the maxi-
mum number of limit cycles. The importance of this issue comes from the main role of
limit cycles in understanding the behavior of a given differential system, such as the limit
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cycle of Van der Pol equations [28, 29]. Poincaré introduced this concept in the late 19th
century, as documented in his works [25, 26]. Several articles, such as [4, 14, 27], have
shown the correlation between various occurrences and limit cycles.

David Hilbert [12, 13] provided a list of 23 problems. Up to now, at least three problems
are still open, including the Riemann Conjecture and the sixteenth problem.

Recently, researchers have made significant progress in solving the second part of
Hilbert’s 16th problem for certain special classes of smooth or piecewise smooth poly-
nomial differential systems. This problem seeks to determine the maximum number and
possible configurations of limit cycles within a given class of differential systems. Con-
sequently, one of the key challenges for piecewise differential systems involves controlling
the existence and maximum number of crossing limit cycles within these systems. Many
authors have focused on studying the simplest class of planar discontinuous piecewise dif-
ferential systems, which are linear and separated by a straight line. For instance, refer
to [2, 6, 7, 16, 17, 20] and the references therein. However, while these papers provide
examples with a maximum of three limit cycles, no one has yet proven that three is the
absolute maximum number for this class of systems.

In 2021, Esteban et al. [10] solved Hilbert’s 16th problem for discontinuous piecewise
isochronous centers of degree one or two separated by a straight line. In the same year,
Benterki and Llibre [5] extended the same problem to some classes of discontinuous piece-
wise isochronous centers of degree one or three.

In this paper we are interested in studying the existence and the maximum number
of limit cycles for four classes of discontinuous piecewise isochronous centers, separated
by the irregular line Σ = Σ1 ∪ Σ2 such that Σ1 = {(x, y) : x = 0 and y ≥ 0}, and
Σ2 = {(x, y) : x ≥ 0 and y = 0}. This irregular line divides the plane into two regions,
where the first one is Σ+ = {(x, y) : x > 0, y > 0} and the second one is Σ− = {(x, y) : x ≥
0, y < 0} ∪ {(x, y) : x < 0}, and we consider in one region an arbitrary linear differential
center and in the other region we consider one of the four classes of quadratic isochronous
differential systems given in Lemma 1.2.

Because of their applications, the piecewise differential systems with irregular lines
separation are frequently observed in diverse fields such as biology, mechanical engineering,
and control systems, etc, see for examples hybrid systems [15] and predator-prey model
[11].

Now, we will give the isochronous differential centers, starting with the linear differential
systems having a center given in the following lemma.

Lemma 1.1. Through a linear change of variables and a rescaling of the independent
variable, every center in R2 can be written as

ẋ = B −Ax− (A2 + ω2)y, ẏ = x+Ay + C, (C1)

with ω > 0, A, B, C ∈ R and A ̸= 0.
The first integral of this system is

H1(x, y) = (Ay + x)2 + 2(Cx−By) + y2ω2. (1)

Or we can define the linear differential center as follows

ẋ = −Ax− (A2 + ω2)y, ẏ = x+Ay, (C2)

with ω > 0, A ∈ R− {0} and its corresponding first integral is

H(x, y) = (Ay + x)2 + y2ω2. (2)
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For the proof of Lemma 1.1 see [18].

Quadratic polynomial differential systems with an isochronous center have been classi-
fied into four types by Loud [22].

Lemma 1.2. Any Quadratic polynomial differential system with an isochronous center
can be classified by one of the four classes

(I) The first class is given by

ẋ =
(
x2 − y2

)
− y, ẏ = x(2y + 1) has the first integral H2(x, y) =

x2+y2

2y+1 .

(II) The second class is written as

ẋ = x2 − y, ẏ = x(1 + y) exhibits the first integral H3(x, y) =
x2+y2

(y+1)2
.

(III) The third class is

ẋ = x2

4 − y, ẏ = x(y + 1) has the first integral H4(x, y) =
(x2+4y+8)

2

y+1 .

(IV) The fourth class is

ẋ = 2x2 − y2

2 − y, ẏ = x(y+ 1) has the first integral H5(x, y) =
4x2−2(y+1)2+1

(y+1)4
.

In this work, we will study the limit cycles intersect the separation line Σ at two points,
where we examine two possible configurations of limit cycles. We will denote by Conf 1
the limit cycles that intersect Σ1 at two points, i.e., intersecting Σ1 at (0, y1) and (0, y2)
such that y1 ̸= y2. The case when the limit cycles intersect Σ at two points, where the
first point on Σ1 and the second one on Σ2, i.e., the first point (x1, 0) ∈ Σ2 and the second
point (0, y2) ∈ Σ1, we called it the second configuration and we denote it by Conf 2. We
notice that the combination of the two configurations Conf 1 and Conf 2 gives a third
configuration witch is denoted by Conf 3.

In the following theorems, we will give our main results concerning the three possible
configurations of limit cycles mentioned previously.

Theorem 1.1. The maximum number of crossing limit cycles with Conf 1 of the discon-
tinuous piecewise differential system separated by Σ and formed by

(i) the quadratic isochronous system (I) after an arbitrary affine change of variables
and the linear differential center (C1) is at most one. There are systems of this
type with exactly one limit cycle; see Fig 1(a);

(ii) the quadratic isochronous system (II) after an arbitrary affine change of variables
and the linear differential center (C1) is at most one. There are systems of this
type with exactly one limit cycle; see Fig 1(b);

(iii) the quadratic isochronous system (III) after an arbitrary affine change of variables
and the linear differential center (C1) is at most two. There are systems of this
type with exactly two limit cycles, see Fig 2(a);

(iv) the quadratic isochronous system (IV) after an arbitrary affine change of variables
and the linear differential center (C1) is at most two. There are systems of this
type with exactly two limit cycles; see Fig 2(b).

Theorem 1.1 is proved in Section 3.

Theorem 1.2. The maximum number of crossing limit cycles with Conf 2 of the discon-
tinuous piecewise differential system separated by Σ and formed by

(i) the quadratic isochronous system (I) after an arbitrary affine change of variables
and the linear differential center (C2) is at most one. There are systems of this
type with one limit cycle; see Fig 3(a);
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(ii) the quadratic isochronous system (II) after an arbitrary affine change of variables
and the linear differential center (C2) is at most two. There are systems of this
type with two limit cycles; see Fig 3(b);

(iii) the quadratic isochronous system (III) after an arbitrary affine change of variables
and the linear differential center (C2) is at most two. There are systems of this
type with two limit cycles, see Fig 4(a);

(iv) the quadratic isochronous system (IV) after an arbitrary affine change of variables
and the linear differential center (C2) is at most three. There are systems of this
type with three limit cycles; see Fig 4(b).

Theorem 1.2 is proved in Section 4.

Theorem 1.3. The maximum number of crossing limit cycles with Conf 3 of the dis-
continuous piecewise differential system separated by the non-regular line Σ and formed
by

(i) the quadratic isochronous system (I) after an arbitrary affine change of variables
and the linear differential center (C1) is two, see Fig 5(a);

(ii) the quadratic isochronous system (II) after an arbitrary affine change of variables
and the linear differential center (C1) is three, see Fig 5(b);

(iii) the quadratic isochronous system (III) after an arbitrary affine change of variables
and the linear differential center (C1) is four, see Fig 6(a);

(iv) the quadratic isochronous system (IV) after an arbitrary affine change of variables
and the linear differential center (C1) is five, see Fig 6(b).

Theorem 1.3 is proved in Section 5.

2. The quadratic isochronous differential centers after an affine change
of variables

In this section, we present the expressions of the whole classes of the quadratic isochronous
centers (I), (II), (III) and (IV) after the change of variables (x, y) → (ax + by + d, αx +
βy+ γ), with bα− aβ ̸= 0. This affine transformation is used to generalize all the classes,
enabling a broader analysis. Thus, after this affine change of variables, system (I) becomes

ẋ = 1
αb−aβ (β(−a2x2 − 2adx− d2 + (γ + αx+ βy)(γ + αx+ βy + 1))

+b(ax+ d)(2γ + 2αx+ 1) + b2y(2γ + 2αx+ βy + 1)),

ẏ = − 1
αb−aβ (a

2x(2γ + αx+ 2βy + 1) + a(by + d)(2γ + 2βy + 1)

+α(−b2y2 − 2bdy − d2 + (γ + αx+ βy)(γ + αx+ βy + 1))),

(3)

with its first integral

H2(x, y) =
(ax+by+d)2+(γ+αx+βy)2

2(γ+αx+βy)+1 . (4)

The differential system (II) is given by

ẋ = 1
αb−aβ (b(ax+ d)(γ + αx− βy + 1) + β(−(ax+ d)2 + γ + αx+ βy)

+b2y(γ + αx+ 1)),

ẏ = 1
αb−aβ (a

2(−x)(γ + βy + 1)− a(by + d)(γ + α(−x) + βy + 1)

+α((by + d)2 − γ − αx− βy)),

(5)

where its first integral is

H3(x, y) =
(ax+by+d)2+(γ+αx+βy)2

(γ+αx+βy+1)2
. (6)
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The differential system (III) written as

ẋ = 1
4αb−4aβ (2b(ax+ d)(2γ + 2αx+ βy + 2) + β(−(ax+ d)2 + 4αx

+4(γ + βy)) + b2y(4γ + 4αx+ 3βy + 4)),

ẏ = 1
4αb−4aβ (a

2(−x)(3αx+ 4(γ + βy + 1))− 2a(by + d)(αx+ 2(γ + βy

+1)) + α((by + d)2 − 4(γ + αx)− 4βy)),

(7)

and its corresponding first integral is

H4(x, y) =
((ax+by+d)2+4(γ+αx+βy)+8)

2

γ+αx+βy+1 . (8)

Finally, the differential system (IV) becomes

ẋ = 1
2αb−2aβ (β(−4a2x2 − 8adx− 4d2 + (γ + αx+ βy)(γ + αx+ βy

+2)) + 2b(ax+ d)(γ + α− 3βy + 1) + 2b2y(γ + αx− βy + 1)),

ẏ = 1
2αb−2aβ (2a

2x(−γ + αx− βy − 1)− 2a(by + d)(γ − 3αx+ βy + 1)

−α(−4b2y2 − 8bdy − 4d2 + (γ + αx+ βy)(γ + αx+ βy + 2))),

(9)

where its first integral is

H5(x, y) =
4(ax+by+d)2−2(γ+αx+βy+1)2+1

(γ+αx+βy+1)4
. (10)
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Figure 1. The unique limit cycle of the discontinuous piecewise differen-
tial system with Conf 1, (a) for (12)–(13), (b) for (14)–(15).

3. Proof of Theorem 1.1

In the region Σ+ we consider the linear differential center (C1) with its first integral
H1(x, y) given by (1). In the region Σ−, we consider one of the four quadratic isochronous
systems with their first integrals Hk(x, y) with k = 2, . . . , 5, after an affine change of
variable.

The crossing limit cycles of the discontinuous piecewise differential system (C1)–(3),
(C1)–(5), (C1)–(7) and (C1)–(9) intersect Σ1 at two different points (0, y1) and (0, y2),
such that these two points must satisfy the system of equations

e1 = H1(0, y1)−H1(0, y2) = (y1 − y2)(−2B + (y1 + y2)(A
2 + ω2)) = 0

e2 = Hk(0, y1)−Hk(0, y2) = Pk(y1, y2) = 0,
(11)
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Figure 2. The two limit cycles of the discontinuous piecewise differential
system with Conf 1, (a) for (16)–(17), (b) for (18)–(19).

whereHk(x, y) for k = 2 . . . 5 are the first integrals given by (4), (6), (8), (10). Since y1 ̸= y2
we consider 0 < y1 < y2, and by solving e1 = 0, we get y1 = f(y2) = −y2 + D where
D = 2B

A2+ω2 . Substituting y1 into Pk(y1, y2) = 0 we obtain an equation in the variable y2.

Proof of statement (i) of Theorem 1.1. For k = 2 the first integral in this case is H2(x, y)
given in (4), so the solutions y2 satisfying P2(f(y2), y2) = 0 is equivalent to the solutions
y2 of the quadratic equation F1(y2) = 0 such that

F1(y2) = b2(2γD +D) + 2βDy2(b
2 + β2)− 2β(b2 + β2)y22 + 2b(2γd+ d) + β(2γ(γ

+1)− 2d2 +D(2βγ + β)).
This equation has at most two real solutions y21 and y22. Consequently, system (11)

has at most two real solutions namely (y11, y21) and (y12, y22). The two solutions are
symmetric in the sense that (y11, y21) = (y22, y12). Then both solutions provide the unique
limit cycle for the discontinuous piecewise differential systems (C1)–(3).

Now we prove that the result of statement (i) is reached by giving an example with
exactly one limit cycle.

In the region Σ+, we consider the linear differential center

ẋ = 2− x− 2y, ∗ẏ = 3
2 + x+ y, (12)

with its first integral H1(x, y) = 2
(
3
2x− 2y

)
+ (x+ y)2 + y2.

In the region Σ−, we consider the quadratic isochronous center

ẋ = 14x2

5 + x
(106y

5 + 754373
100000

)
+ 106y2

5 − 67173y
25000 − 197827

25000 ,

ẏ = −2x2

5 + x
(

101393
1000000 − 8y

5

)
+ 17y2

5 + 845627y
100000 + 344957

100000 ,
(13)

where its first integral is H2(x, y) =

(
x+ 2y − 398733

10000

)2
+
(
x+ 7y + 4

)2
2x+ 4y − 393733

5000

.

The unique real solution of system (11) for these systems is
(

292893
1000000 ,

170711
100000

)
. Then

the discontinuous piecewise differential system (12)–(13) has one limit cycle shown in Fig
1(a). □
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Proof of statement (ii) of Theorem 1.1. For k = 3 the first integral in this case is H3(x, y)
given in (6), so to study the solutions y2 satisfying P3(f(y2), y2) = 0 we must study the
solutions y2 of the quadratic equation F2(y2) = 0 such that

F2(y2) = 2βDy2(b
2(γ + 1) + β2 − bβd)− 2βy22(b

2(γ + 1) + β2 − bβd) + b2(γ + 1)2D
+2b(γ + 1)2d+ β(2γ + d2(−(2γ + βD + 2)) + 2γ(γ + βD) + βD).

This equation has at most two real solutions again symmetric in the sense of the proof
of statement (i). Therefore, system (11) has at most one limit cycle.

Now we prove that the result of statement (ii) is reached by giving an example with
exactly one limit cycle. In the region Σ+, we consider the linear differential center

ẋ = 3
2 + 1

2x− 5
4y, ẏ = 1 + x− 1

2y, (14)

with its first integral H1(x, y) =
(
x− y

2

)2
+ 2

(
x− 3y

2

)
+ y2.

In the region Σ− we consider the quadratic isochronous center

ẋ = 3062x2

785 + x
(
366
157 − 102y

157

)
− 680y2

157 + 170y
157 + 50

157 ,

ẏ = 4827x2

15700 + x
(6436y

785 − 1609
1570

)
+ 365y2

157 + 262y
157 − 43

157 ,
(15)

and its corresponding first integral is

H3(x, y) =
(4x+ y + 2)2 +

(
3x
10 + 4y − 1)2

)
3x
5 + 8y − 1

.

The unique real solution of system (11) is
(
2
5 , 2

)
, that provides the unique crossing limit

cycle of the discontinuous piecewise differential system (14)–(15) shown in Fig 1(b). □

Proof of statement (iii) of Theorem 1.1. For k = 4 the first integral in this case isH4(x, y)
given in (8), so to study the solutions y2 satisfying P4(f(y2), y2) = 0 is equivalent to study
the solutions y2 of the quartic equation F3(y2) = 0, and due to the big expression of
this equation we omit it. By solving F3(y2) = 0, we know that it has at most four real
solutions. Due to the symmetry of these solutions, we conclude that the discontinuous
piecewise differential system (C1)–(7) has at most two limit cycles.

Now to prove that the result of statement (iii) we consider the following example.
In the region Σ+, we consider the linear differential center

ẋ = 5
2 + 1

100x− 40001
10000y, ẏ = 1

100 + x− 1
100y, (16)

with its first integral

H1(x, y) =
(
x− y

100

)2
+ 2

(
x
100 − 5y

2

)
+ 4y2.

In Σ−, we consider the quadratic isochronous center

ẋ = 2x2 + x
(3y

2 − 427081
100000

)
− 5y

2 + 78123
50000 ,

ẏ = −2x2 + x
(
566943
100000 − y

)
+ 3y2

8 + 14323y
5000 − 113507

50000 ,
(17)

with the first integral

H4(x, y) =

((
2x+ 3y

2 − 37500
40001

)2
+ 4

(
− 9x

10 + 1
2

)
+ 8

)2
−9x

10y +
3
2

.

The discontinuous piecewise differential system formed by the differential centers (16)–(17)
has exactly two crossing limit cycles, because the system of equations (11) has exactly two
different real solutions

(
80323
500000 ,

27233
25000

)
and

(
20001
40000 ,

93743
125000

)
. See Fig 2(a). □
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Proof of statement (iv) of Theorem 1.1. For k = 5 the corresponding isochronous qua-
dratic system is (9) with its first integral H5(x, y) given in (10). The solutions y2 satisfying
P4(f(y2), y2) = 0 are equivalent to ones of the quartic equation F4(y2) = 0, for the same
reason as in the previous case we will not give the large expression of F4(y2).

Therefor system (11) has at most four real solutions. Consequently the discontinuous
piecewise differential system (C1)–(9) has at most two limit cycles.

Now we complete the proof of this statement by giving an example of the discontinuous
piecewise differential system formed by linear and isochronous centers separated by Σ,
with exactly two limit cycles.

In the region Σ+, we consider the linear differential center

ẋ = 3 + 1
2x− 17

4 y,

ẏ = 1
10 + x− 1

2y,
(18)

with its first integral

H1(x, y) =
(
x− y

2

)2
+ 2

(
x
10 − 3y

)
+ 4y2.

In the region Σ−, we consider the quadratic isochronous differential center

ẋ = 2x2 + x
(
y − 381699

100000

)
− 38889y

25000 + 27451
25000 ,

ẏ = 719x2

200 + x
(
6y + 324693

100000

)
+ 2y2 + 143791y

500000 − 83977
50000 ,

(19)

whose first integral is

H5(x, y) =
−2

(
− 9x

10 + 7
5

)2
+ 4

(
2x+ y − 12

17

)2
+ 1(

− 9x
10 + 7

5

)4 .

The two real solutions of system (11) are
(

32083
250000 ,

128343
100000

)
and

(
162331
500000 ,

10871
10000

)
. Then the

discontinuous piecewise differential system (18)-(19) has two limit cycles shown in Fig
2(b). This completes the proof of Theorem 1.1. □
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Figure 3. (a) The unique limit cycle of the discontinuous piecewise dif-
ferential system (21)–(22) with Conf 2, (b) the two limit cycles of the
discontinuous piecewise differential system (23)–(24) with Conf 2.
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Figure 4. (a) The two limit cycles of the discontinuous piecewise dif-
ferential system (25)–(26) with Conf 2, (b) the three limit cycles of the
discontinuous piecewise differential system (27)–(28) with Conf 2.

4. Proof of Theorem 1.2

In one region we consider the linear differential center (C2) with its first integral H(x, y)
given by (2). In the other region, we consider one of the four quadratic isochronous systems
with its first integral Hk(x, y) with k = 2, . . . , 5, after an affine change of variable. If
the discontinuous piecewise differential system (C2)–(3), (C2)–(5), (C2)–(7) and (C2)–(9)
has limit cycles, intersect the separation line Σ at two distinct points (x1, 0) ∈ Σ2 and
(0, y2) ∈ Σ1 where x1y2 ̸= 0, then these points must satisfy the system of equations

e1 = H(x1, 0)−H(0, y2) = Q1(x1, y2) = 0,
e2 = Hi(x1, 0)−Hi(0, y2) = Pi(x1, y2) = 0,

(20)

with i = 2 . . . 5. Solving Q1(x1, y2) = 0, we get y2 = g(x1) = Mx1, with M = 1/
√
A2 + ω2.

Substituting y2 into Pi(x1, y2) = 0 we obtain an equation in the variable x1.

Proof of statement (i) of Theorem 1.2. For i = 2 the corresponding isochronous quadratic
system is (3) with its first integral H2(x, y) given in (4). The solutions x1 satisfying
P2(x1, g(x1)) = 0 are the ones x1 of the cubic equation G1(x1) = 0 such that

G1(x1) = −x21a
2(2γ + 1)− 4aβdM + b2(2γ + 1)M2 + 4αbdM − (2γ + 1)(α− βM)(α

+βM)) + 2Mx31(αb
2M − β(a2 + α(α− βM)))− 2x1(a(2γd+ d)− b(2γ

+1)dM − (d2 − γ(γ + 1))(α− βM).
The equation G1(x1) = 0 has at most two real solutions. Therefore, the discontinuous

piecewise differential system (C2)–(3) has at most one limit cycle because system (20) has
at most one real solution.

Now we will prove that the result of statement (i) is reached.
In the region Σ+, we consider the quadratic isochronous differential center

ẋ = 98221x2

500000 + x
(
42719
20000 − 21697y

20000

)
− 542423

10000000y
2 − 488181y

50000 + 43043
12500 ,

ẏ = 355829
10000000x

2 + x
(

711658
100000000y +

160123
250000

)
− 35107y2

62500 − 26719y
20000 + 31313

20000 ,
(21)

with the first integral

H2(x, y) =

(
x
10 + y

100 + 2
5

)2
+
(

x
10 − 138017

250000y +
1
5

)2
2
(

x
10 + y

100 + 2
5

)
+ 1

.
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In the region Σ−, we consider the linear differential center

ẋ = − 1
10x− 13

50y, ẏ = x+ 1
10y, (22)

which has the first integral

H(x, y) =
(
x+ y

10

)2
+ y2

4 .

The discontinuous piecewise differential system (21)–(22) has one limit cycle because the
unique solution of system (20) is

(
223607
500000 ,

438529
500000

)
, see Fig 3(a). □

Proof of statement (ii) of Theorem 1.2. For i = 3 the isochronous quadratic system is
defined by (5), which has the first integral H3(x, y) given in (6). Hence, the solution x1
of P3(x1, g(x1)) = 0 is equivalently the ones of the quartic equation G3(x1) = 0 such that

G3(x1) = x21(−a2(γ + 1)2 − 4aβ(γ + 1)dM + b2(γ + 1)2M2 + 4αb(γ + 1)dM + (−2γ
+d2 − 1)(α+ βM)(α− βM))− 2Mx31(β(a

2(γ + 1) + aβdM + α(α− βM))
+αb2(γ + 1)(−M)− α2bd)− 2(γ + 1)x1(a(γ + 1)d− b(γ + 1)dM + (d2

−γ)(−(α− βM))) +M2x41(aβ + αb)(αb− aβ).
The discontinuous piecewise differential system (C2)–(5) has at most two limit cycles

because system (20) has at most four real solutions.

To confirm the result statement (ii) of Theorem 1.2 we consider the following example.
In the region Σ+, we define the quadratic isochronous differential center

ẋ = x
(
− 640971

10000000y −
352959
1000000

)
− 47817y

62500 − 130743
50000 ,

ẏ = 156013x
100000 − 640971

10000000y
2 − 118939y

500000 + 251513
100000 ,

(23)

with its first integral

H3(x, y) =

(
x
10 + y

100 + 1
5

)2
+
(
− 640971

10000000y −
98473
500000

)2(
x
10 + y

100 + 6
5

)2 .

In the region Σ−, we define the linear differential center

ẋ = −1
5x− 26

25y, ẏ = x+ 1
5y, (24)

and its first integral

H(x, y) =
(
x+ y

5

)2
+ y2.

The discontinuous piecewise differential system (23)–(24) has two limit cycles, because
system (20) has the two real solutions

(
21909
20000 ,

107417
100000

)
and

(
79057
125000 ,

310087
500000

)
. These limit

cycles are shown in Fig 3(b). □

Proof of statement (iii) of Theorem 1.2. For i = 4 the isochronous quadratic system is (7)
where its first integral isH4(x, y) given in (8), so the solutions x1 satisfying P4(x1, g(x1)) =
0 are the ones of the quintic equation G4(x1) = 0, and again we will not give its large
expression.

Equation G4(x1) = 0 has at most five real solutions. Therefore, the discontinuous
piecewise differential system (C2)–(7) has at most two limit cycles.

To confirm the result statement (iii) of Theorem 1.2 we consider the following example.
In the region Σ+, we consider the quadratic isochronous differential center

ẋ = − 227309
2500000x

2 + x
(
115143
100000 − 111463y

1250000

)
+ 107733

10000000y
2 + 16301y

25000 − 240997
50000 ,

ẏ = 121019x2

2000000 + x
( 39809y
1250000 − 15703

6250

)
− 185627

5000000y
2 + 910233

10000000y +
163031
25000 ,

(25)
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where its corresponding first integral is

H4(x, y) =

((
− x

10 − 27237y
250000 + 51769

62500

)2
+ 4

(
− x

5 + 3y
100 + 2

5

)
+ 8

)2
−x

5 + 3y
100 + 7

5

.

In the region Σ−, we define the linear differential center

ẋ = −1
5x− 53

100y, ẏ = x+ 1
5y, (26)

which has the first integral

H(x, y) =
(
x+ y

5

)2
+ 49

100y
2.

In this case system (20) has the two real solutions
(
57009
50000 ,

31323
20000

)
and

(
774597
1000000 ,

106399
100000

)
,

which provide two limit cycles for the discontinuous piecewise differential system (25)–(26)
shown in Fig 4(a). □

Proof of statement (iv) of Theorem 1.2. For i = 5 the isochronous quadratic system is (9)
where its first integral is H5(x, y) given in (10). To obtain the number of real solutions
of system (20) we must solve the equation P5(x1, g(x1)) = 0 which has the same solutions
as the equation of degree six G5(x1) = 0. Consequently the discontinuous piecewise
differential system (C2)–(9) has at most three limit cycles.

To confirm the result of statement (iv) of Theorem 1.2 we consider the following exam-
ple.

In the region Σ+, we have the quadratic isochronous differential center

ẋ = −3x2

40 + x
(
− 662873

1000000y −
8
5

)
− 91y2

500 − 203961y
100000 − 11

10 ,

ẏ = 85801x2

500000 + x
(13y

20 + 49029
25000

)
+ 764853

10000000y
2 + 8y

5 + 13483
12500 ,

(27)

with the first integral

H5(x, y) =
4
(

x
10 − 5099y

50000

)2 − 2
(
3x
10 + 305941

1000000y +
6
5

)2
+ 1(

3x
10 + 305941

1000000y +
6
5

)4 .

In the region Σ−, we have the linear differential center

ẋ = −1
5x− 26

25y, ẏ = x+ 1
5y, (28)

and its first integral is

H(x, y) =
(
x+ 1

5y
)2

+ y2.

The three solutions of system (20) for these systems are
(
72457
50000 ,

1421
1000

)
,
(
21909
20000 ,

107417
100000

)
and(

547723
1000000 ,

268543
500000

)
. Then the three crossing limit cycles of system (27)–(28) are shown in

Fig 4(b). □

5. Proof of Theorem 1.3

In order to build limit cycles with Conf 1 and Conf 2 simultaneously, the limit cycles
with Conf 1 which intersect the discontinuity line Σ1 at two points must satisfy system
(11), in the other hand the intersection points of limit cycles with Conf 2 with the curve
Σ must satisfy system (20). In Theorem 1.1 and Theorem 1.2 we have already provided
the maximum number of limit cycles with Conf 1 and Conf 2, respectively. Then we
have the following results.



2500 TWMS J. APP. ENG. MATH. V.15, N.10, 2025

-4 -2 0 2 4

0

2

4

6

(a)

-4 -2 0 2

-2

0

2

4

6

(b)

Figure 5. (a) The two limit cycles with Conf 3 of system (29)–(30), (b)
the three limit cycles with Conf 3 of system (31)–(32).
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Figure 6. (a) The four limit cycles with Conf 3 of system (33)–(34), (b)
the five limit cycles with Conf 3 of system (35)–(36).

Proof of statement (i) of Theorem 1.3. In Theorem 1.1 and 1.2 we proved that the max-
imum number of limit cycles with Conf 1 and Conf 2 is at most one. Then we know
that the upper bound for the maximum number of limit cycles with configuration Conf
3 is at most two.

Example with two limit cycles for the class formed by linear and the qua-
dratic isochronous center (3) with Conf 3. In the region Σ+ we consider the quadratic
isochronous center

ẋ = 892x2

1953125 + x
(
27899
5000 − 100209y

100000

)
+ 57207y2

50000 − 59021y
10 + 85099

5 ,

ẏ = x2

5000 + x
(
29449
12500 − 1784y

1953125

)
− 498957

1000000y
2 − 25899y

5000 + 138749
20 ,

(29)

with the first integral

H2(x, y) =

(
− x

100 + 1784y
78125 − 593981

10000

)2
+
(

1
10 − y

2

)2
2
(
− x

100 + 1784y
78125 − 593981

10000

)
+ 1

.
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In the region Σ− we consider the linear differential center

ẋ = −1
5x− 26

25y + 3, ẏ = x+ 1
5y +

4
5 , (30)

which has the first integral

H1(x, y) =
(
x+ 1

5y
)2

+ 2
(
4x
5 − 3y

)
+ y2.

These systems have the unique real solution
(
103101
125000 ,

24341
4000

)
for system (11) and they have

the unique real solution
(
101023
100000 ,

4759
1000

)
for system (20). These two real solutions provide

the two limit cycles drawn in Fig 5(a). This completes the proof of statement (i). □

Proof of statement (ii) of Theorem 1.3. In Theorem 1.1 and 1.2 we proved that the maxi-
mum number of limit cycles with Conf 1 and Conf 2 is at most one and two, respectively.
We know that the upper bound for the maximum number of limit cycles with Conf 3 is
at most three.

Example with three limit cycles for the class formed by linear and the qua-
dratic isochronous center (5) with Conf 3. In the region Σ+ we consider the
quadratic isochronous center

ẋ = −x2

10 + x
(
− 859609

10000000y −
666483
100000

)
− 18669y

3125 + 424187
100000 ,

ẏ = x
(
717167
100000 − y

10

)
− 859609

10000000y
2 + 606483y

100000 + 1278
125 ,

(31)

and its first integral is

H3(x, y) =

(
− x

100 − 416854
10000000y +

26861
20000

)2
+
(
− x

10 − 859609
10000000y −

1
5

)2
2
(
− x

100 − 416854
10000000y +

26861
20000

)
+ 1

.

In the region Σ− we consider the linear differential center

ẋ = − x
100 − 10001

10000y + 2, ẏ = x+ y
100 + 1, (32)

which has the first integral

H1(x, y) =
(
x+ y

100

)2
+ 2(x− 2y) + y2.

For the discontinuous piecewise differential system (31)–(32), system (11) has the unique
solution

(
24641
10000 ,

293627
50000

)
, and system (20) has the two solutions

(
123607
100000 ,

241401
50000

)
and

(
20001
20000 ,

59991
20000

)
. These three limit cycles are drawn in Fig 5(b). This completes the proof of

statement (ii). □

Proof of statement (iii) of Theorem 1.3. In Theorem 1.1 and 1.2 we proved that the max-
imum number of limit cycles with Conf 1 and Conf 2 is at most two for the two
configurations, then we know that the upper bound for the maximum number of limit
cycles with Conf 3 is at most four.

Example with four limit cycles for the class formed by linear and the qua-
dratic isochronous center (7) with Conf 3. In the region Σ+ we define the quadratic
isochronous center

ẋ = − 1
10x

2 + x
(
− 76721

500000y −
168473
500000

)
− 59809y

50000 + 345053
100000 ,

ẏ = 30549x2

625000 + x
( y
20 + 6669

4000

)
− 76721y2

2000000 + 12511y
12500 + 107599

100000 ,
(33)

its first integral is given by

H4(x, y) =

((
− x

10 − 76721
500000y +

442621
1000000

)2
+ 4

(
x
5 + 559133

1000000

)
+ 8

)2
x
5 + 155913

100000

.
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In the region Σ− we define the linear differential center

ẋ = −x
5 − 26

25y + 3, ẏ = x+ y
5 + 1, (34)

with the first integral

H1(x, y) =
(
x+ y

5

)2
+ 2(x− 3y) + y2.

For the discontinuous piecewise differential system (33)–(34), system (11) has the two solu-
tions

(
6583
4000 ,

663831
100000

)
,
(

732051
1000000 ,

24341
4000

)
, and system (20) has the two solutions

(
355203
1000000 ,

541403
100000

)
and

(
128719
100000 ,

112051
25000 )

¯
. The four limit cycles for this example are drawn in Fig 6(a). Then

statement (iii) holds. □

Proof of statement (iv) of Theorem 1.3. In Theorem 1.1 and 1.2 we proved that the max-
imum number of limit cycles with Conf 1 and Conf 2 is at most two and three,
respectively. Then the upper bound for the maximum number of limit cycles with both
configurations is five.

Example with five limit cycles for the class formed by linear and the qua-
dratic isochronous center (9) with Conf 3. In the region Σ+ we have the linear
differential center

ẋ = − x
10 − 101

100y + 3, ẏ = 1 + x+ 1
10y, (35)

with the first integral

H1(x, y) = 2 (x− 3y) +
(
x+ 1

10y
)2

+ y2.

In the region Σ− we have the quadratic isochronous center

ẋ = 61741x2

20000 + x
(
805467
10000 − 642523y

100000

)
+ 334311y2

100000 − 804797y
10000 + 209557

1000 ,

ẏ = 7311x2

2500 + x
(
737729
10000 − 608643y

100000

)
+ 316669y2

100000 − 183913y
2500 + 347051

5000 ,
(36)

with the first integral

H5(x, y) = −2
(

204283
10000000x− 10721y

500000 + 2
)2

+ 4
(

175341
10000000x− 22963y

1250000 + 13963
10000)

¯

2

+
1(

204283
10000000x− 10721y

500000 + 2
)4 .

For the discontinuous piecewise differential system (35)–(36), system (11) has the two
solutions

(
52111
20000 ,

150409
20000

)
,
(
182843
100000 ,

138787
20000

)
, and system (20) has the three solutions

big( 732051
1000000 ,

625707
100000

)
,
(

55113
100000 ,

269473
50000

)
and

(
202063
100000 ,

391997
100000

)
. The five limit cycles are drawn in

Fig 6(b). This completes the proof of Theorem 1.3. □
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