
TWMS J. App. and Eng. Math. V.15, N.10, 2025, pp. 2505-2518

THE HYBRID FORM OF THE HYPERBOLIC HORADAM MATRIX

FUNCTIONS

E. Ö. MERSIN1,∗, §

Abstract. In the present paper, a special type of hybrid number is introduced whose
components are the hyperbolic Horadam sine and cosine matrix functions. These hybrid
numbers and their symmetrical forms are explored in detail, and their recursive relations
as well as hyperbolic properties are investigated. The paper also includes the Cassini,
Catalan, and De Moivre identities, along with the Pythagorean Theorem, all for the hy-
brid form of the hyperbolic Horadam sine and cosine matrix functions. Furthermore, the
hybrid forms of the quasi-sine Horadam matrix function and three-dimensional Horadam
matrix spiral related to these matrix functions are presented, offering new insights into
their mathematical properties.
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Matrix exponential, Trigonometric matrix functions.
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1. Introduction

Matrix functions play an important role in solutions of systems of differential equations
in many areas of science and engineering [26, 29, 30, 31, 42]. For instance, the solution

of the differential equation system
dx

dt
= (lnψ)Qx, x (0) = x0 is x (t) = ψQtx0, where

Q ∈ Cn×n, x ∈ Cn and ψ =
1 +

√
5

2
. Especially, the matrix exponentials and trigonometric

matrix functions play a fundamental role in the solution of the second order differential
equations [1, 7, 8, 12, 27]. Sastre et al. [28] presented an algorithm based on the Taylor
series to compute matrix cosine functions. The matrix exponentials to be computed by
expanding in the Chebyshev, Legendre or Laguerre orthogonal polynomials are suggested
by Moore [24], instead of the exact formulas or algorithms based on the Taylor series or
Padé approximations. Defez and Jodar [9] gave some new methods for computing the
matrix exponential, sine and cosine functions based on the Hermite matrix polynomial
series. Defez et al [6] improved the method proposed by Defez and Jodar [9], for compute
the hyperbolic sine and cosine matrix functions based on the Hermite matrix polynomial
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expansions. The method using a matrix separation of variables for the construction of
exact series solutions of mixed problems for strongly coupled hyperbolic partial differential
systems are given by Jodar et al [16]. Hargreaves and Higham [12] studied on an efficient
algorithm for the sine and cosine matrix functions.

Integer sequences are a powerful tool that makes important contributions to science
and continues to attract the attention of researchers due to this feature [10, 11, 13, 21, 22,
40]. For instance, in [13], an elementary approach was introduced to derive the explicit
formula for number sequences defined by second-order linear recurrence relations, along
with related identities. Furthermore, various applications of these approaches to well-
known integer sequences, particularly in solving algebraic and differential equations, as
well as their extensions to higher-dimensional cases, were explored. One of the most
famous integer sequences is the Horadam number sequence Wn (a, b;u, v), defined by the
recursive relation

Wn+1 = uWn + vWn−1 (n ≥ 0) ,

where a = W0, b = W1, and u and v are nonzero real numbers [15]. The characteristic
polynomial of the Horadam number sequence Wn is [15]

t2 − ut− v = 0, (1)

and the roots of equation (1) are

ψ =
u+

√
u2 + 4v

2
and ζ =

u−
√
u2 + 4v

2
. (2)

Horadam number sequence has the following Binet formula

Wn =
Aψn −Bζn

ψ − ζ
,

where A = b− aζ and B = b− aψ [15]. The Horadam number sequence Wn is reduced to
some famous number sequences, such as the Fibonacci and Lucas number sequences [3]

Fn =Wn (0, 1; 1, 1) =


ψn + ψ−n

√
5

, n is odd

ψn − ψ−n

√
5

, n is even

(3)

and

Ln =Wn (2, 1; 1, 1) =


ψn + ψ−n, n is odd

ψn − ψ−n, n is even.

(4)

For some generalizations of the Horadam numbers we refer [5, 18, 32, 41].
The classical hyperbolic functions are defined as

sinh (x) =
ex − e−x

2
and cosh (x) =

ex + e−x

2

for variable x ∈ R. Bahşi and Solak [3] introduced hyperbolic Horadam sine and cosine
functions

sW (x) =
Aψ2x −Bv2xψ−2x

√
u2 + 4v

and cW (x) =
Aψ2x+1 +Bv2x+1ψ−2x−1

√
u2 + 4v
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and their symmetrical forms

sWs (x) =
Aψx −Bvxψ−x

√
u2 + 4v

and cWs (x) =
Aψx +Bvxψ−x

√
u2 + 4v

,

where ψ is as in equation (2) and u, v are nonzero real numbers such that u2+4v > 0. The
authors gave the relationship between the Horadam numbers and symmetrical hyperbolic
Horadam functions

Wn =

{
cWs (x) n is odd

sWs (x) , n is even

and investigated some recursive and hyperbolic properties of symmetrical hyperbolic Ho-
radam functions. The matrix forms of some of these functions have been derived as follows:
The classical hyperbolic matrix functions are defined by Jodar et al. [16] as

sinh (Q) =
eQ − e−Q

2
and cosh (Q) =

eQ + e−Q

2

for Q ∈ Cn×n. Using the Binet formulas in equation (3) and (4), Bahşi and Solak [4]
defined the symmetrical hyperbolic Fibonacci sine and cosine matrix functions

sFs (Q) =
ψQ − ψ−Q

√
5

, cFs (Q) =
ψQ + ψ−Q

√
5

,

and the symmetrical hyperbolic Lucas sine and cosine matrix function

sLs (Q) = ψQ − ψ−Q, cLs (Q) = ψQ + ψ−Q,

where ψ =
1 +

√
5

2
and Q ∈ Cn×n. Bahşi and Mersin [2] introduced hyperbolic Horadam

sine and cosine matrix functions

sW (Q) =
Aψ2Q −Bv2Qψ−2Q

√
u2 + 4v

, cW (Q) =
Aψ2Q+I +Bv2Q+Iψ−2Q−I

√
u2 + 4v

,

and their symmetrical forms

sWs (Q) =
AψQ −BvQψ−Q

√
u2 + 4v

, cWs (Q) =
AψQ +BvQψ−Q

√
u2 + 4v

, (5)

where ψ is as in equation (2), u and v are non-zero real numbers such that u2 + 4v > 0,
Q ∈ Cn×n and I is the identity matrix of order n.

There are some identities for u, v ∈ R+, Q ∈ Cn×n and the identity matrix I of order n
[4]:

(1) v0 = I, for 0 ∈ Cn×n,

(2) vI = vI, vmI = (vm) I and vmIvnI = v(m+n)I , for m,n ∈ Z,
(3)

(
vQ
)m

= vmQ, for m ∈ Z,
(4) v(Q

T ) =
(
vQ
)T

, where QT is the transpose matrix of Q,

(5)
(
vQ
)−1

= v−Q, where
(
vQ
)−1

is the inverse of the matrix vQ,

(6)
dvQt

dt
= ln (v)QvQt, where

dvQt

dt
is the derivative of the matrix vQt,

(7) vQ1+Q2 = vQ1vQ2 , where Q1 and Q2 are commutable matrices of order n,
(8) uQ1vQ2 = vQ2uQ1 , where Q1 and Q2 are commutable matrices of order n.

Furthermore, Bahşi and Mersin [2] obtained the equalities

(1) ψ2I = uψI + vI,
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(2) vIψ−2I = I − uψ−I ,
(3) ψI − vψ−I = uI,
(4) 2vI + ψ2I + v2Iψ−2I =

(
u2 + 4v

)
I,

where ψ is as in equation (2), u and v are non-zero real numbers such that u2 + 4v > 0
and I is the identity matrix of order n. The series expansions

eQ = I +Q+
Q2

2!
+
Q3

3!
+ . . .

and

ψQ = I + ln (ψ)Q+
(ln (ψ))2

2!
Q2 +

(ln (ψ))3

3!
Q3 + . . .

are valid for Q ∈ Cn×n and the identity matrix I of order n [4].
Recently, many researchers have studied a new type of number, hybrid numbers [17,

19, 33, 34, 35, 37, 39]. Özdemir [25] introduced the hybrid number system, which extends
the concepts of complex, hyperbolic, and dual numbers. It sets by

K = {a+ bi+ cϵ+ dh : a, b, c, d ∈ R, i2 = −1, ϵ2 = 0, h2 = 1, ih = hi = ϵ+ i}.
Szynal-Liana [33] defined the n-th Horadam hybrid number Hn, by the formula

Hn =Wn + iWn+1 + ϵWn+2 + hWn+3

and obtained the Binet formula for Hn as

Hn =
Aψψn −Bζζn

ψ − ζ
,

where ψ = 1 + iψ + ϵψ2 + hψ3 and ζ = 1 + iζ + ϵζ2 + hζ3. Şentürk et al. [38] studied
on Horadam hybrid numbers and obtained the exponential generating function, Pois-
son generating function, generating matrix, Vajda’s, Catalan’s, Cassini’s, and d’Ocagne’s
identities for these numbers. Szynal-Liana and Wloch [36] introduced Fibonacci hybrid
numbers and derived some of their properties using classical Fibonacci identities. In [20],
the Fibonacci divisor hybrid numbers are defined with the help of the Fibonacci divi-
sor numbers, generalizing the Fibonacci hybrid numbers introduced in [36]. Mersin [23]
defined a class of hybrid numbers characterized by components derived from hyperbolic
Horadam functions and explored several properties. The author introduced hybrid sine
and cosine functions based on hyperbolic Horadam numbers and their symmetrical forms
and investigated their recurrence relations, derivatives, the Pythagorean theorem, and
identities such as the Cassini and De Moivre.

Inspired by the previous papers, we present the hybrid versions of hyperbolic Horadam
sine and cosine matrix functions, together with their symmetrical counterparts, and clas-
sical analogues. Furthermore, we examine the various properties associated with these
functions.

2. Main Results

Definition 2.1. The hybrid forms of the hyperbolic Horadam sine and cosine matrix
functions are defined as

sHW (Q) =
Aψψ2Q −Bζv2Qψ−2Q

√
u2 + 4v

and

cHW (Q) =
Aψψ2Q+I +Bζv2Q+Iψ−2Q−I

√
u2 + 4v

,
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respectively, where Q ∈ Cn×n, I is the identity matrix of order n, ψ = I+iψI+ϵψ2I+hψ3I ,

ζ = I + iζI + ϵζ2I + hζ3I , ψ and ζ are as in equation (2).

Note that we use ψ, ζ, ψ and ζ as in Definition 2.1 throughout the paper. Also, through-
out the paper, we occasionally resort to the abbreviations RHS and LHS, representing
the right-hand side and left-hand side of the corresponding equation, respectively.

Now, we define the symmetrical versions of the hybrid forms of the hyperbolic Horadam
sine and cosine matrix functions.

Definition 2.2. The hybrid forms of the symmetrical hyperbolic Horadam sine and cosine
matrix functions are defined by

sHWs (Q) =
AψψQ −BζvQψ−Q

√
u2 + 4v

and

cHWs (Q) =
AψψQ +BζvQψ−Q

√
u2 + 4v

,

respectively, where Q ∈ Cn×n and I is the identity matrix of order n.

For 0 ∈ Cn×n and the identity matrix I of order n, we have

sHWs (0) =
Aψ −Bζ
√
u2 + 4v

I, cHWs (0) =
Aψ +Bζ
√
u2 + 4v

I,

sHWs (I) =
Aψψ −Bζvψ−1

√
u2 + 4v

I and cHWs (I) =
Aψψ +Bζvψ−1

√
u2 + 4v

I.

The series expansions for sHWs (Q) and cHWs (Q) are

sHWs(Q) = (
√
u2 + 4v)−1

{
A(I + ln(ψ)Q+

(ln(ψ))2Q2

2!
+

(ln(ψ))3Q3

3!
+ . . .)ψ

−B(I + ln(
v

ψ
)Q+

(ln(
v

ψ
))2Q2

2!
+

(ln(
q

ψ
))3Q3

3!
+ . . .)ζ


and

cHWs(Q) = (
√
u2 + 4v)−1

{
A(I + ln(ψ)Q+

(ln(ψ))2Q2

2!
+

(ln(ψ))3Q3

3!
+ . . .)ψ

+B(I + ln(
v

ψ
)Q+

(ln(
v

ψ
))2Q2

2!
+

(ln(
q

ψ
))3Q3

3!
+ . . .)ζ

 ,

respectively, where Q ∈ Cn×n and I is the identity matrix of order n.

Theorem 2.1. The relations between the symmetrical hyperbolic Horadam sine and cosine
matrix functions and their hybrid forms are as follows

(i) sHWs(Q) = sWs(Q) + isWs(Q+ I) + ϵsWs(Q+ 2I) + hsWs(Q+ 3I),
(ii) cHWs(Q) = cWs(Q) + icWs(Q+ I) + ϵcWs(Q+ 2I) + hcWs(Q+ 3I).

Proof. Considering the equalities in (5), we have
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(i)

RHS =
AψQ −BvQψ−Q

√
u2 + 4v

+ i
AψQ+I −BvQ+Iψ−Q−I

√
u2 + 4v

+ϵ
AψQ+2I −BvQ+2Iψ−Q−2I

√
u2 + 4v

+ h
AψQ+3I −BvQ+3Iψ−Q−3I

√
u2 + 4v

=
AψψQ −BζvQψ−Q

√
u2 + 4v

= sHWs (Q) .

(ii) The proof is similar to that in (i).

□

Theorem 2.2. The hybrid forms of the symmetrical hyperbolic Horadam sine and cosine
matrix functions satisfy the following recursive relations

(i) sHWs (Q+ 2I) = ucHWs (Q+ I) + vsHWs (Q),
(ii) cHWs (Q+ 2I) = usHWs (Q+ I) + vcHWs (Q).

Proof. (i)

RHS = u

(
AψψQ+I +BζvQ+Iψ−Q−I

√
u2 + 4v

)
+ v

(
AψψQ −BζvQψ−Q

√
u2 + 4v

)

=
AψψQ

(
uψI + vI

)
+BζvQ+Iψ−Q

(
uψ−I − I

)
√
u2 + 4v

=
AψψQ+2I −BζvQ+2Iψ−Q−2I

√
u2 + 4v

= sHWs (Q+ 2I) .

(ii) The proof is similar to that in (i).
□

Theorem 2.3. The Cassini identities for the hybrid forms of the symmetrical hyperbolic
Horadam sine and cosine matrix functions are

(i) (sHWs (Q))2 − cHWs (Q+ I) cHWs (Q− I) = −ABψζvQ−I ,

(ii) (cHWs (Q))2 − sHWs (Q+ I) sHWs (Q− I) = ABψζvQ−I .

Proof. (i)

LHS =

(
AψψQ −BζvQψ−Q

)2
u2 + 4v

−
(
AψψQ+I +BζvQ+Iψ−Q−I

) (
AψψQ−I +BζvQ−Iψ−Q+I

)
u2 + 4v

=
−ABψζvQ−I

(
2vI + ψ2I + v2Iψ−2I

)
u2 + 4v

= −ABψζvQ−I .
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(ii) The proof is similar to that in (i).
□

Theorem 2.4. The Pythagorean theorem holds true for the hybrid forms of the symmet-
rical hyperbolic Horadam sine and cosine matrix functions, as

(cHWs (Q))2 − (sHWs (Q))2 =
4ABψζvQ

u2 + 4v
.

Proof. The proof is clear from Definition 2.2. □

Theorem 2.5. The De Moivre identities for the hybrid forms of the symmetrical hyperbolic
Horadam sine and cosine matrix functions are as follows

(i) (cHWs (Q) + sHWs (Q))n =

(
2Aψ

√
u2 + 4v

)n−1

(cHWs (nQ) + sHWs (nQ)),

(ii) (cHWs (Q)− sHWs (Q))n =

(
2Bζ

√
u2 + 4v

)n−1

(cHWs (nQ)− sHWs (nQ)).

Proof. (i)

LHS =

(
AψψQ +BζvQψ−Q

√
u2 + 4v

+
AψψQ −BζvQψ−Q

√
u2 + 4v

)n

=

(
2AψψQ

√
u2 + 4v

)n

=

(
2Aψ

√
u2 + 4v

)n−1
(

2AψψnQ

√
u2 + 4v

)

=

(
2Aψ

√
u2 + 4v

)n−1
(
AψψnQ +BζvnQψ−nQ

√
u2 + 4v

+
AψψnQ −BζvnQψ−nQ

√
u2 + 4v

)

=

(
2Aψ

√
u2 + 4v

)n−1

(cHWs (nQ) + sHWs (nQ)) .

(ii) The proof is similar to that in (i).
□

Theorem 2.6. The nth derivatives of the hybrid forms of the symmetrical hyperbolic
Horadam sine and cosine matrix functions have the following expressions

(i) (sHWs (Q))
(n)

=



(ln (ψ))
n
cHWs (Q)−

(
ln

(
v

ψ

))n

+ (ln (ψ))
n

√
u2 + 4v

BζvQψ−Q, n is odd

(ln (ψ))
n
sHWs (Q)−

(
ln

(
v

ψ

))n

− (ln (ψ))
n

√
u2 + 4v

BζvQψ−Q, n is even,
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(ii) (cHWs(Q))
(n)

=


(ln(ψ))nsHWs(Q) +

(ln(
v

ψ
))n + (ln(ψ))n

√
u2 + 4v

BζvQψ−Q, n is odd

(ln(ψ))ncHWs(Q) +

(ln(
v

ψ
))n − (ln(ψ))n

√
u2 + 4v

BζvQψ−Q, n is even.

Proof. (i) We apply the induction method to n. Since

(sHWs(Q))′ =

(
AψψQ −BζvQψ−Q

√
u2 + 4v

)′

=
AψψQ ln (ψ)−BζvQψ−Q (ln (v)− ln (ψ))

√
u2 + 4v

= ln (ψ)

(
AψψQ +BζvQψ−Q

√
u2 + 4v

)
−
BζvQψ−Q

√
u2 + 4v

ln (v)

= ln (ψ) cHWs(Q)−
ln

(
v

ψ

)
+ ln (ψ)

√
u2 + 4v

BζvQψ−Q

and

(sHWs(x))′′ =

ln (ψ)
AψψQ +BζvQψ−Q

√
u2 + 4v

−
ln

(
v

ψ

)
+ ln (ψ)

√
u2 + 4v

BζvQψ−Q


′

= ln (ψ)
AψψQ ln (ψ) +BζvQψ−Q (ln (v)− ln (ψ))

√
u2 + 4v

−
ln

(
v

ψ

)
+ ln (ψ)

√
u2 + 4v

BζvQψ−Q (ln (v)− ln (ψ))

= (ln (ψ))2
(
AψψQ −BζvQψ−Q

√
u2 + 4v

)
+
BζvQψ−Q (ln (v) ln (ψ))

√
u2 + 4v

−
BζvQψ−Q

√
u2 + 4v

(
ln

(
v

ψ

)2

+ ln (v) ln (ψ)− (ln (ψ))2
)

= (ln (ψ))2 sHWs (Q)−

(
ln

(
v

ψ

))2

− (ln (ψ))2

√
u2 + 4v

BζvQψ−Q,
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the result is true for n = 1 and n = 2. Let k is an odd number and the result is
true for n = k. For the even number n = k + 1:

(
(sHWs(Q))

(k)
)′

=

(ln (ψ))
k
cHWs (Q)−

(
ln

(
v

ψ

))k

+ (ln (ψ))
k

√
u2 + 4v

BζvQψ−Q


′

= (ln (ψ))
k Aψψ

Q ln (ψ) +BζvQψ−Q (ln (v)− ln (ψ))
√
u2 + 4v

−

(
ln

(
v

ψ

))k

+ (ln (ψ))
k

√
u2 + 4v

BζvQψ−Q (ln (v)− ln (ψ))

= (ln (ψ))
k+1 Aψψ

Q −BζvQψ−Q

√
u2 + 4v

−

(
ln

(
v

ψ

))k+1

− (ln (ψ))
k+1

√
u2 + 4v

BζvQψ−Q.

Assume that k is an even number and the result holds true for n = k. Finally, we show
that the result also holds true for the odd number n = k + 1:

(
(sHWs(Q))

(k)
)′

=

(ln (ψ))
k
sHWs (Q)−

(
ln

(
v

ψ

))k

− (ln (ψ))
k

√
u2 + 4v

BζvQψ−Q


′

= (ln (ψ))
k Aψψ

Q ln (ψ)−BζvQψ−Q (ln (v)− ln (ψ))
√
u2 + 4v

−

(
ln

(
v

ψ

))k

− (ln (ψ))
k

√
u2 + 4v

BζvQψ−Q (ln (v)− ln (ψ))

= (ln (ψ))
k+1 Aψψ

Q +BζvQψ−Q

√
u2 + 4v

−

(
ln

(
v

ψ

))k+1

+ (ln (ψ))
k+1

√
u2 + 4v

BζvQψ−Q.

(ii) The proof is similar to that in (i).
□

3. The Hybrid Form of the Quasi-Sine Horadam Matrix Functions

Bahşi and Mersin [2] have defined quasi-sine Horadam matrix function as follows

WW (Q) =
AψQ − cos (πQ)BvQψ−Q

√
u2 + 4v

,
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where Q ∈ Cn×n.
Next, we provide the definition of the hybrid form of the quasi-sine Horadam matrix

function.

Definition 3.1. The function

HWW (Q) =
AψψQ − cos (πQ)BζvQψ−Q

√
u2 + 4v

is called the hybrid form of the quasi-sine Horadam matrix function, where Q ∈ Cn×n.

The hybrid form of the quasi-sine hyperbolic Horadam matrix function satisfies the
following relations.

Theorem 3.1.

HWW (Q+ 2I) = uHWW (Q+ I) + vHWW (Q) .

Proof. Considering the equalities

cos(πQ+ 2πI) = cos(πQ) = − cos(πQ+ πI),

we have

RHS = u(
AψψQ+I − cos(π(Q+ I))BζvQ+Iψ−Q−I

√
u2 + 4v

)

+v(
AψψQ − cos(πQ)BζvQψ−Q

√
u2 + 4v

)

=
AψψQ(uψI + vI)− cos(πQ+ 2πI)BζvQ+Iψ−Q−I(vIv−IψI − uI)

√
u2 + 4v

=
AψψQ+2I − cos(π(Q+ 2I))BζvQ+2Iψ−Q−2I

√
u2 + 4v

= HWW (Q+ 2I).

□

Theorem 3.2.

(HWW (Q))2 −HWW (Q+ I)HWW (Q− I) = −ABψζvQ−I cos (πQ) .

Proof. By using
cos(π(Q+ I)) = cos(π(Q− I)) = − cos(πQ),

we have

LHS = (
AψψQ − cos(πQ)BζvQψ−Q

√
u2 + 4v

)2

−[(
AψψQ+I − cos(π(Q+ I))BζvQ+Iψ−Q−I

√
u2 + 4v

)

× (
AψψQ−I − cos(π(Q− I))BζvQ−Iψ−Q+I

√
u2 + 4v

)].
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Then,

LHS =
A2ψ2ψ2Q − 2AψψQBζvQψ−Q cos(πQ) + cos2(πQ)B2ζ2v2Qψ−2Q

u2 + 4v

−
A2ψ2ψ2Q −AψψQ+IBζvQ−Iψ−Q+I cos(π(Q− I)

u2 + 4v

+
AψψQ−IBζvQ+Iψ−Q−I cos(π(Q+ I))

u2 + 4v

−
cos(π(Q+ I)) cos(π(Q− I))B2ζ2vQ+Iψ−Q−IvQ−Iψ−Q+I

u2 + 4v

=
−2ABψζvQ cos(πQ) +ABψζψ2IvQ−I cos(π(Q− I))

u2 + 4v

+
ABψζψ−2IvQ+I cos(π(Q+ I))

u2 + 4v

= −ABψζvQ−I cos(πQ)
(2vI + ψ2I + v2Iψ−2I)

u2 + 4v

= −ABψζvQ−I cos(πQ).

□

4. The Hybrid Form of the Three-Dimensional Horadam Matrix Spiral

Bahşi and Mersin [2] defined the matrix form of the three-dimensional Horadam spiral
by the rules

CWW (Q) =
AψQ − cos (πQ)BvQψ−Q

√
u2 + 4v

+ i
sin (πQ)BvQψ−Q

√
u2 + 4v

=
AψQ + ie

iπ

(
1

2
I−Q

)
BvQψ−Q

√
u2 + 4v

,

where Q ∈ Cn×n and i2 = −1.

Definition 4.1. The hybrid form of the three-dimensional Horadam matrix spiral is de-
fined by

CHWW (Q) =
AψψQ − cos (πQ)BζvQψ−Q

√
u2 + 4v

+ i
sin (πQ)BζvQψ−Q

√
u2 + 4v

=
AψψQ + ie

iπ

(
1

2
I−Q

)
BζvQψ−Q

√
u2 + 4v

,

where Q ∈ Cn×n and i2 = −1.
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Theorem 4.1. The hybrid form of the three-dimensional Horadam matrix spiral satisfies
the following recursive relation

CHWW (Q+ 2I) = uCHWW (Q+ I) + vCHWW (Q) .

Proof.

uCHWW (Q+ I) + vCHWW (Q)

= u
AψψQ+I + ie

iπ

(
1

2
I−Q−I

)
BζvQ+Iψ−Q−I

√
u2 + 4v

+ v
AψψQ + ie

iπ

(
1

2
I−Q

)
BζvQψ−Q

√
u2 + 4v

=

AψψQ
(
uψI + vI

)
+ ie−iπQBζvQ+Iψ−Q−I

ue−iπ
1

2
I
+ e

iπ
1

2
I
ψ


√
u2 + 4v

=
AψψQ

(
uψI + vI

)
+ ie−iπQBζvQ+Iψ−Q−I

(
ψI − uI

)
i

√
u2 + 4v

=
AψψQ+2I + ie

−iπQ−i
3π

2
I
BζvQ+2Iψ−Q−2I

√
u2 + 4v

=
AψψQ+2I + ie

iπ

(
1

2
I−Q−2I

)
BζvQ+2Iψ−Q−2I

√
u2 + 4v

= CHWW (Q+ 2I) .

□

5. Conclusion

This paper presented the hybrid forms of hyperbolic Horadam matrix functions and
their corresponding symmetrical structures. Various properties, such as recurrence re-
lations, derivatives, and identities like those of Cassini and De Moivre, are examined
in detail. Additionally, the hybrid forms of quasi-sine Horadam matrix functions and
the three-dimensional Horadam matrix spiral are introduced. Given the growing interest
among researchers in the hybrid number system, adapting this system to hyperbolic Ho-
radam matrix functions is expected to provide alternative approaches to studying their
properties and applications, while also contributing to the analytical and numerical so-
lutions of differential equations. This adaptation may offer more flexible and efficient
solution methods, particularly for complex and nonlinear equations, enhancing accuracy
and accelerating the solution process.
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[3] Bahşi, M., Solak, S., (2019), Hyperbolic Horadam functions, Gazi University Journal of Science, 32(3),
pp. 956-965. https://doi.org/10.35378/gujs.441422
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