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EQUITABLE DOMINATOR COLORING OF GRAPHS

P.S. GEORGE 1,∗, S. MADHUMITHA2, S. NADUVATH3, §

Abstract. This paper introduces a variant of domination-related coloring of graphs,
called the equitable dominator coloring of graphs, which is a combination of equitable
coloring and dominator coloring of graphs. The minimum number of colors used in an
equitable dominator coloring of a graph is its equitable dominator chromatic number.
The equitable dominator coloring and the equitable dominator chromatic number of some
standard graph classes are investigated in this paper.

Keywords: Graph coloring, dominator coloring, equitable coloring, equitable dominator
coloring.
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1. Introduction

For basic terminology in graph theory, we refer to [7,8], and for topics in graph coloring,
refer to [9,10]. Unless mentioned otherwise, all graphs discussed in this paper are simple,
undirected, finite, and connected.
Graph coloring is the assignment of colors to the graph’s vertices, edges, or faces. A
vertex coloring of a graph G is a mapping c : V (G) → C, where C = {c1, c2, . . . , ck}, is a
set of colors. A proper vertex coloring of G is when no two adjacent vertices are assigned
the same color and the minimum number of colors required in this coloring of G is the
chromatic number of G, denoted by χ(G). The set of all vertices assigned the color ci in
a coloring c is called a color class, denoted by Vi. A set v ∈ V (G) is said to dominate a
set S ⊆ V (G), if v is adjacent to every element of S.

A proper coloring of a graph G in which the cardinalities of any two color classes differ
by at most 1 is said to be an equitable coloring of G and the minimum number of colors
used in this coloring is called the equitable chromatic number of G, denoted by χe(G)
(see [6]). An extensive study on the equitable coloring of graphs can be found in [17–23]
and some real-life applications of equitable coloring are mentioned in [6, 31].
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A vertex v in a graph G is said to dominate a set S ⊂ V (G) if S = {v} or uv ∈ E(G),
for all u ∈ S. The dominator coloring of a graph G is a proper coloring of G such
that every vertex in V (G) dominates at least one color class, possibly its own color class.
The minimum number of color classes in this coloring is called the dominator chromatic
number of G, denoted by χd(G) (see [5]). The dominator coloring of trees, bipartite
graphs, Petersen graph and various graph classes were studied in [25–29]. Some real-life
applications of dominator coloring are mentioned in [1, 2].

Motivated by the above mentioned types of graph coloring, a variant of domination-
related coloring, called equitable dominator coloring of graphs is introduced and studied
in this paper.

2. Equitable Dominator Coloring of Graphs

The notion of equitable dominator coloring of a graph is defined as follows.

Definition 2.1. An equitable dominator coloring of a graph G is a proper coloring of G
such that every vertex in V (G) dominates at least one color class, possibly its own color
class and the cardinalities of the color classes differ by at most one. The minimum number
of colors used in an equitable dominator coloring of G is the equitable dominator chromatic
number of G, and we denote it by χed(G).

An example of equitable dominator coloring of graphs is given in Figure 1, where it can
be seen that χ(G) = 2, χe(G) = 3, χd(G) = 4, and χed(G) = 7.
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of G.

Figure 1 A graph G with χ(G) < χe(G) < χd(G) < χed(G).

As the concepts of coloring and domination in graphs are used to optimise resource
allocation, or conflict-free work scheduling, in huge networks such as transportation and
communication networks, biological networks, social networks and so on, and equitablity
ensures such allocation or scheduling to be done in an equitable manner, the equitable
dominator coloring in graphs ensures the simultaneous availability of equitable resources
to all the members of a network, in an optimal manner.
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Based on the definitions of proper coloring, equitable coloring, dominator coloring and
equitable dominator coloring of graphs, it follows that

(i) χ(G) ≤ χe(G) ≤ χed(G),

(ii) χd(G) ≤ χed(G).

Figure 1 gives an example of a graph G where the inequalities are sharp. The following
propositions gives the conditions when the inequalities are strict.
Since finding equitable chromatic number of graphs and dominator chromatic number
of graphs are NP-complete problems (see [3, 4]), it can be observed that the problem of
determining the equitable dominator chromatic number of graphs is also NP-complete.
Recall that a vertex v in a graph G of order n is said to be a universal vertex of G, if
deg(v) = n− 1.

Proposition 2.1. Every equitable coloring of a graph G with at least one universal vertex
is its equitable dominator coloring, and χe(G) = χed(G).

Proof. In any proper coloring of a graph G with at least one universal vertex v, every
vertex of G dominates the color class {v}. Also, in every equitable coloring of G, as the
cardinalities of the color classes differ by at most 1, the result follows. □

The converse of Proposition 2.1 does not hold, as we identify a family of graphs without
a universal vertex for which χed(G) = χe(G), in the following result.

Proposition 2.2. χed(Ka1,a2,...,as) = χ(Ka1,a2,...,as), when |ai − aj | ≤ 1; 1 ≤ i ̸= j ≤ s.

Proof. Any minimum proper coloring of Ka1,a2,...,as with |ai − aj | ≤ 1; 1 ≤ i ̸= j ≤ s, is its
minimum equitable coloring. Furthermore, as every vertex of the graph dominates s − 1
color classes, the result follows. □

The converse of Proposition 2.2 does not hold as we can see that χed(C5) = χ(C5) = 3.
For a graph G of order n, χed(G) = n if and only if G is either a Kn or Kn. In the
following proposition, we characterise the graphs for which χed(G) = 2.

Proposition 2.3. For a graph G, χed(G) = 2 if and only if G = Ka,b such that |a−b| ≤ 1.

Proof. In the case when G = Ka,b, it follows that χed(G) = 2 from Proposition 2.2.
To prove the converse, let χed(G) = 2 for some graph G. Since χed(G) = 2, there is an
independent set of vertices assigned the color c1, say V1, and an independent set of vertices
assigned color c2, say V2. Also, every vertex of V1 is adjacent to every vertex of V2 and
vice-versa. In order to satisfy the condition of equitability b = a − 1, a, a + 1 and this
concludes the result. □

Theorem 2.1. For any integer j ≥ 0, there exists at least one graph G such that χed(G)−
χd(G) = j.

Proof. Consider the graph G = K2,2. We know that the dominator chromatic number for
any complete bipartite graph is 2 and by Proposition 2.3, χed(G) = 2.

Now consider the graph K2,4. Here, |V1| = 2 and hence the partite set V2 can be
partitioned into equitable parts with respect to |V1|. As χed(K2,4) = 3, on adding three
vertices to V2 in each iteration and making them adjacent to all the vertices of V1, we get
a complete bipartite graph K2,4+3i, with equitable dominator chromatic number 3+ i; 1 ≤
i ≤ n− 3. This proves the result. □

A graph realisation mentioned in Theorem 2.1 is illustrated in Figure 3, in which the
dotted vertices and edges represent the added vertices and edges based on given value of
j.
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Figure 2 Construction of graph G such that χed(G)− χd(G) = 2.
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Figure 3 Construction of graph G such that χed(G)− χd(G) = 7.

3. Equitable Dominator Chromatic Number for Certain Graph Classes

Theorem 3.1. For n ≥ 4,

χed(Pn) =


3⌊n5 ⌋+ 1, n ≡ 0, 1 (mod 5);

3⌈n5 ⌉ − 1, n ≡ 2, 3 (mod 5);

3⌈n5 ⌉, n ≡ 4 (mod 5).

Proof. For Pn := v1 − v2 − . . .− vn, consider the following coloring patterns.

Case 1:- When n ≡ 1 (mod 5), let c : V (Pn) → {c1, c2, . . .} be a coloring such that

c(vj) =

{
c3⌊ j

5
⌋+k1

, j = 5k + k1, k1 = 1, 2, 3;

c(vj−2), j ≡ 0, 4 (mod 5).

With respect to this coloring c of Pn, the vertices vj ; j ≡ 2 (mod 5), dominate the color
class {vj−1} and the vertices vj ; j ≡ 0 (mod 5), dominate the color class {vj+1}. Also, the
vertices vj ; j ≡ 1 (mod 5), dominate their own color classes and the vertices vj ; j ≡ 3, 4
(mod 5), dominate the color classes {vj−1, vj+1}. As the cardinality of the color classes of
the colors used in c is at most 2, it is an equitable dominator coloring of Pn with 3(n−1

5 )+1
colors.

Assume that there exists a coloring c∗ of Pn;n = 5k+1, using 3(n−1
5 ) colors. Therefore,

with respect to c∗, there are k color classes of cardinality 1 and 2(n−1
5 ) color classes of

cardinality 2, because a pendant vertex of Pn can either dominate its own color class or
the color class of its adjacent vertex. Hence, there exists no color class having cardinality
greater than 2 in any equitable dominator coloring of Pn. Two vertices in the same color
class are at least at a distance 2, because if the vertices are at distance greater than 2, then
at least two vertices adjacent to them need to have unique colors such that they dominate
their own color classes; yielding a contradiction.



P.S. GEORGE et al.: EQUITABLE DOMINATOR COLORING OF GRAPHS 2523

Case 2:- Consider a coloring c′ of Pn;n ̸≡ 1 (mod 5), such that c′(v1) = c′(vn) = c1,
c′(v2) = c2, c

′(vn−1) = c3, and for 3 ≤ j ≤ n− 2,

c′(vj) =

{
c3⌊ j

5
⌋+k1+1, j = 5k + k1, k1 = 2, 3, 4;

c′(vj−2), j ≡ 0, 1 (mod 5).

With respect to the coloring c′ of Pn, the vertices v1, v2 dominate the color class {v2} and
the vertices vn−1, vn dominate the color class {vn−1}. Also, the vertices vj ; j ≡ 3 (mod 5),
dominate the color class {vj−1}, the vertices vj ; j ≡ 2 (mod 5), dominate their own color
classes, the vertices vj ; j ≡ 0, 4 (mod 5), dominate the color class {vj−1, vj+1} and the
vertices vj ; j ≡ 1 (mod 5), dominate the color class {vj+1}. As the cardinality of the color
classes of the colors used in c′ is at most 2, it is an equitable dominator coloring of Pn, in
this case. Also, owing to the arguments mentioned in Case 1, it can be established that
c′ is a minimum equitable dominator coloring of Pn. Figure 4 illustrates the equitable
dominator coloring protocol of Pn given in Case 1 and Case 2.

□
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c3 c2 c3 c4 c5 c6 c5
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c7

(a) Minimum equitable dominator coloring
of P11.
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c1

(b) Minimum equitable dominator coloring
of P12.

Figure 4 Minimum equitable dominator coloring of paths.

Theorem 3.2. For n ≥ 3,

χed(Cn) =

{
3⌊n5 ⌋+ 3, n ≡ 4 (mod 5);

3⌊n5 ⌋+ r, n ≡ r (mod 5), 0 ≤ r ≤ 3.

Proof. Consider a cycle Cn := v1 − v2 − . . .− vn − v1 whose vertices are assigned colors as
follows. Note that vn+j = vj .

Case 1:- Let n ≡ 0, 1, 2 (mod 5), and c be a coloring of Cn such that

c(vj) =

{
c3⌊ j

5
⌋+r, j = 5k1 + r, r = 0, 1, 2;

c(vj−2), j ≡ 3, 4 (mod 5).

Based on the coloring protocol given, the vertices vj ; j ≡ 1 (mod 5), dominate the color
class of the color assigned to the vertex vj−1. The vertices vj ; j ≡ 0 (mod 5), dominate
their own color classes. The vertices vj ; j ≡ 2, 3 (mod 5), dominate the color class of
the color assigned to the vertex vj−1 and the vertices vj ; j ≡ 4 (mod 5), dominate the
color class {vj+1}. The cardinality of every color class in this coloring is at most 2; thus
satisfying the condition of equitability. Hence, the coloring is an equitable dominator
coloring and the result follows in this case.

Case 2:- Let n ≡ 3, 4 (mod 5). The vertices vi; 1 ≤ i ≤ n − 1, are assigned colors as
mentioned in Case 1 and follows the property of equitable dominator coloring as justified
in Case 1. However, in this case, the vertex vn needs to be assigned an unique color since
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the vertex v1 cannot dominate the color class assigned to the vertex v2 or its own color
class and hence the result follows.

Since the vertices vi : 1 ≤ i ≤ n − 1 form a path Pn−1 in Cn, the minimality of the
coloring follows from the Proof of Theorem 3.1. The optimality condition follows in Cn as
v1 ∼ vn, vn needs to be assigned a unique color so that the vertex v1 satisfies the condition
of dominator coloring, this concludes the result. For illustration, see Figure 5. □
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(a) Minimum equitable dominator coloring
of C7.

c1
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c1c2
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(b) Minimum equitable dominator coloring
of C9.

Figure 5 Minimum equitable dominator coloring of cycles.

A bi-star Sa,b is a graph obtained by joining the central vertices of two-star graphs K1,a

and K1,b by an edge.

Theorem 3.3. For 2 ≤ a ≤ b, χed(Sa,b) = 2 + ⌈a+b
2 ⌉.

Proof. Let u, v to be the support vertices of Sa,b and ui; 1 ≤ i ≤ a, and vj ; 1 ≤ j ≤ b, to
be the pendant vertices adjacent to u and v, respectively. Define a coloring c : V (Sa,b) →
{c1, c2, . . . , c2+⌈a+b

2
⌉} as follows. For a vertex w ∈ V (Sa,b),

c(w) =


c1, w = u;

c2, w = v;

ci+2, w ∈ {ui, vi; 1 ≤ i ≤ a};
ca+2+⌈ i

2
⌉, w = va+i; 1 ≤ i ≤ b− a.

We observe that, with respect to c, the vertices in {u} ∪ {ui : 1 ≤ i ≤ a}, dominate the
color class {u} and the vertices in {v} ∪ {vi : 1 ≤ i ≤ b} dominate the color class {v}.
Here, the cardinality of all the color classes is at most 2 and hence, χed(Sa,b) ≤ 2+ ⌈a+b

2 ⌉.
Assume there exists an equitable dominator coloring of Sa,b, say c′, with fewer colors. In

this case, either three pendant vertices are assigned the same color or one of the support
vertex is assigned the same color as that of a pendant vertex, leading to a contradiction
as a pendant vertex can dominate only its own color class or the color class of its adjacent
vertex. □

For t ≥ 3, a wheel graph W1,t is obtained by making a vertex, say v, adjacent to all
the vertices of a cycle Ct. As a consequence of Proposition 2.1, the following result is
immediate.

Corollary 3.1. For t ≥ 3, χed(W1,t) = 1 + ⌈ t
2⌉.
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Figure 6 Equitable dominator coloring of some bi-stars.

4. Equitable Dominator Coloring of Complete Bipartite Graphs

Note that any proper coloring of Ka,b with two colors is its dominator coloring; whereas,
the property of equitability is not satisfied unless |a−b| ≤ 1. Therefore, we use the concept
of equitable partition of an integer, introduced in [30], as follows, to find the equitable
dominator coloring of Ka.b. An equitable partition of an integer n is such that the integer
n is expressed as the sum of one or more positive integers such that the integers differ by
at most 1 (see [30]).

Finding the equitable partition of an integer b with respect to the equitable partition
of an integer a is complex. Hence, a Python program is developed in order to find the
equitable dominator chromatic number of a complete bipartite graph Ka,b .

1 def integerpart(integer):

2 partites = set()

3 partites.add((integer , ))

4 for x in range(1, integer):

5 for y in integerpart(integer - x):

6 partites.add(tuple(sorted ((x, ) + y)))

7 return partites

8

9

10 def equitable(partites):

11 listed=list(partites)

12 length=len(partites)

13 L1=[]

14 for i in range (length):

15 element=listed[i]

16 element1=list(element)

17 result=all(elements -element1 [0]==1 or

18 elements -element1 [0]== -1 or elements -element1 [0]==0
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19 for elements in element1)

20 if (result):

21 L1.append(element)

22 else:

23 None

24 return (L1)

25

26 a=int(input("Enter first integer:"))

27 A=integerpart(a)

28

29 B=equitable(A)

30 B1= sorted(B, key=lambda x: len(x))

31 print(B1)

32

33

34 c=int(input("Enter the second integer:"))

35 C=integerpart(c)

36

37

38 D=equitable(C)

39 D1= sorted(D, key=lambda x: len(x))

40 print(D1)

41

42

43 def bipartite(B1 ,D1):

44 listed1=list(B1)

45 listed2=list(D1)

46 length1=len(B1)

47 length2=len(D1)

48 if length1 >length2:

49 length3=length2

50 else:

51 length3=length1

52

53 Pairs =[]

54 for i in range (length1):

55 for j in range (length2):

56 element1=listed1[i]

57 element2=listed2[j]

58 element11=list(element1)

59 element22=list(element2)

60 result=all(elements -element11 [0]==1 or

61 elements -element11 [0]== -1 or elements -element11 [0]==0

62 for elements in element22)

63 if (result):

64 Pairs.append ((element1 ,element2))

65 else:

66 None

67 return (Pairs)

68

69 L=bipartite(B1 ,D1)

70

71 num=L[0]
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72

73 x=[j for i in num for j in i]

74 x1=len(x)

75 print(x1)

76

77 print(’The equitable dominator chromatic

78 integer for K_{a,b} where a is %s and j is %s is %s.’%

79 (a,c,x1))

In the algorithm above, the function integerpart() is defined to find all possible integer
partitions of an integer n, which is saved as a set and returned. Next, the equitable()

returns only those partitions from the output of integerpart() that are equitable by
comparing each i-th element of the set with all the other j-th elements of the set and is
appended and returned in a list L1, whose elements are tuples and the elements of each
tuple are the equitable parts of the given integer n. When the user inputs the value of
a, all the partitions of a are returned, further the equitable partitions of a are generated.
Similarly, the user inputs the value of b, from which only the equitable partitions of b
are obtained. The equitable partitions of a, b is then sorted and saved in lists B1, D1. A
function bipartite() is then defined in which a list Pairs generated by comparing each
element of each tuple from the list generated for a with each element of each tuple from
the list generated for b. The Pairs list which is sorted, and the tuple with the minimum
number elements in the list L is saved in the variable num and finally, x1 gives us the most
optimal way of partitioning a and b in an equitable manner.

5. Equitable Dominator Chromatic Number of Graph Complements

We begin by discussing the equitable dominator chromatic number of the complement
of paths and cycles. Note that P 2 = 2K1, P 3 = K1∪K2, P 4 = P4 and hence, χed(P 2) = 2,
χed(P 3) = 3, χed(P 4) = 2. Also, we observe that C3 = 3K1 and C4 is 2K2, for which,
χed(C3) = 3 and χed(C4) = 4. Therefore, we consider the following result for n ≥ 5.

Theorem 5.1. For n ≥ 5, χed(Pn) = χed(Cn) = ⌈n2 ⌉.

Proof. For V (Pn) = {vi : 1 ≤ i ≤ n}, consider a coloring c : V (Pn) → C such that
c(vi) = c(vi+1) = c⌈ i

2
⌉, where i ≡ 1 (mod 2). This coloring is an equitable dominator

coloring, since Pn is a ⌈n2 ⌉-partite graph with cardinality of each part at most 2. Hence,

the equitable dominator chromatic number of Pn is ⌈n2 ⌉. The above argument holds for

the graphs Cn, as Cn = Pn − v1vn. □

Note that W 1,t = Ct ∪K1 and hence the following result is immediate.

Corollary 5.1. For t ≥ 5, χed(W1,t) = 1 + χed(Ct).

Theorem 5.2. For a, b ≥ 2, χed(Sa,b) = a+ b.

Proof. Let u, v to be the support vertices of Sa,b and ui; 1 ≤ i ≤ a, and vj ; 1 ≤ j ≤ b, to be
the pendant vertices adjacent to u and v, respectively. The pendant vertices in Sa,b forms

a clique Ka+b in Sa,b and hence χed(Sa,b) ≥ a + b. In Sa,b, u (resp. v) being adjacent to
all the vj ; 1 ≤ j ≤ b (resp. ui; 1 ≤ i ≤ a), u (resp. v) can be assigned any of the colors

assigned to any of the ui; 1 ≤ i ≤ a (resp. vj ; 1 ≤ j ≤ b), in any equitable coloring of Sa,b.
This coloring satisfies the condition of dominator coloring since the vertices {u} ∪ {ui :

1 ≤ i ≤ a} dominate the color class of the colors assigned to the vertices {vj : 1 ≤ j ≤ b},
the vertices {v} ∪ {vi : 1 ≤ i ≤ b}, dominate the color class of the colors assigned to the
vertices {ui : 1 ≤ i ≤ a}. Hence, χed(Sa,b) = a+ b. □
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6. Conclusions

This paper introduces the notion of equitable dominator coloring and determines the
corresponding parameter of equitable dominator chromatic number for some graph classes
and their complements. The equitable dominator chromatic number for a complete bipartite
graph is found using a Python program and characterizations of graphs having some
specific equitable dominator chromatic number have also been done.

Some further directions of studies on equitable dominator coloring are mentioned below.

• To study the parameter for various graph operations like join of graphs, strong
product, normal product, etc.

• To study the parameter for generalized Petersen graphs
• To extend the study of χed(G) to power of graphs.

Acknowledgement. The first author would like to acknowledge her gratitude to her
fellow researcher Dr. Sabitha Jose for their valuable suggestions and guidance throughout
the work.

References

[1] Shukla, M., Chandarana, F., (2023), Dominator Coloring of Total Graph of Path and Cycle,
Mathematical Models in Engineering, 9(2), pp. 72–80.

[2] Gera, R., (2007), On the dominator colorings in bipartite graphs, Fourth International Conference on
Information Technology (ITNG’07), pp. 947–952.

[3] Kostochka, A. V., Nakprasit, K., Pemmaraju, S. V., (2005), On equitable coloring of d-degenerate
graphs, SIAM J. Discrete Math., 19(1), pp. 83–95.

[4] Chellali, M., Maffray, F., (2012), Dominator colorings in some classes of graphs, Graphs Combin., 28,
pp. 97-107.

[5] Gera, R., Rasmussen, C., and Horton, S., (2006), Dominator colorings and safe clique partitions, Congr.
Numer., 181, pp. 19.

[6] Meyer, W., (1973), Equitable coloring, Amer. Math. Monthly, 80, pp. 920-922.
[7] Harary, F., (2001), Graph theory, Narosa Publ. House, New Delhi.
[8] Wilson, R. J., (1979), Introduction to graph theory, Pearson Education India.
[9] Chartrand, G., Zhang, P., (2008), Chromatic graph theory, Chapman and Hall/CRC press.
[10] Kubale, M., (2004), Graph colorings, American Mathematical Soc.
[11] Haynes, T. W., Hedetniemi, S., Slater, P., (1998), Fundamentals of domination in graphs, CRC press.
[12] Haynes, T. W., Hedetniemi, S. T., Henning, M. A., (2020), Topics in domination in graphs, Springer.
[13] Hamid, I. S., Rajeswari, M., (2018), Global Dominator Coloring of Graphs, Discuss. Math. Graph

Theory., 39(2), pp. 325-339.
[14] Diestel, R., (2006), Graph theory (graduate texts in mathematics). 3rd, Ed Springer, 173, pp. 112.
[15] Hoffman, A. J., (1964), On the line graph of the complete bipartite graph, Ann. Math. Stat., 35(2),

pp. 883–885.
[16] Behzad, M., Chartrand, G., Cooper Jr, J. K., (1967), The colour numbers of complete graphs, J.

Lond. Math. Soc., 1(1), pp. 226-228.
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