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NORMALITY AND REGULARITY OF PYTHAGOREAN FUZZY

CELLULAR SPACES

N. B. GNANACHRISTY, G. K. REVATHI2∗, W. OBENG-DENTEH3, §

Abstract. Normality and regularity are key separation axioms that helps to classify
and understand the structure of topological spaces. This research article investigates the
properties of normality and regularity within the context of Pythagorean fuzzy cellular
spaces. Pythagorean fuzzy cellular space integrates Pythagorean fuzzy sets with cellular
spaces, provide a robust framework for modeling and analyzing complex systems charac-
terized by uncertainty and imprecision. In the the concepts of normality and regularity
is defined formally in the context of Pythagorean fuzzy cellular space and explore their
implications. This study establishes the theoretical foundations for analyzing normal-
ity and regularity in Pythagorean fuzzy cellular space, extending classical topological
concepts to the fuzzy environment. In addition to it PFcelq-normal, PFcel ultra nor-
mal, PFcel completely ultra normal, PFcel quasi normal is defined in Pythagorean fuzzy
cellular space and interrelations are explored.
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1. Introduction

Topology, the mathematical study of shapes and spaces, is a rich and fascinating
field that explores properties preserved under continuous transformations. Among the
numerous concepts in topology, normality and regularity are two significant properties of
topological spaces. These concepts are pivotal in understanding the structure and behavior
of different types of spaces and play crucial roles in various theorems and applications.
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Before delving into normality and regularity, it is essential to grasp the basics of topo-
logical spaces. A topological space is a set paired with a topology, which is a collection
of open sets that meet specific axioms. These axioms ensure that the union of open sets
and the finite intersection of open sets are also open, and that both the entire set and the
empty set are included in the topology. Topological spaces is the generalizations of more
familiar geometric objects. For instance, the plane, the real line and higher-dimensional
Euclidean spaces can all be endowed with standard topologies, making them topological
spaces.

One of the most significant changes in science and mathematics in the twenty-first
century has been the concept of uncertainty. This movement in science has been marked by
a gradual transition from the traditional position, which considers uncertainty undesirable
in research and should be avoided at all costs, to an alternative viewpoint, which is tolerant
of uncertainty and believes that science cannot avoid it. In 1965, Zadeh [17] introduced
the concept of fuzzy sets to mathematically express ambiguity and attempted to tackle
such difficulties by assigning a specified grade of membership to each member of a given
set. A fuzzy set can be mathematically defined by assigning a value denoting the grade
of membership in the fuzzy set to each potential individual in the universe of discourse.
Subsequently, Atanassov introduced the non-membership function. As an extension of the
intuitionistic fuzzy set, Yager [16] introduced Pythagorean fuzzy sets, and Olgun [9] later
established the foundation for Pythagorean fuzzy topological spaces.

Cellular spaces can be defined in any n-dimensional spaces and have multiple perspec-
tives leading to automata. In this study, cellular spaces are defined using Pythagorean
fuzzy sets, referred to as Pythagorean fuzzy cellular spaces. Normality is a stronger sep-
aration axiom than regularity. It guarantees a higher level of separation between disjoint
closed sets, facilitating more refined constructions and proofs, such as Urysohn’s Lemma
and the Tietze Extension Theorem, which are fundamental results in topology. Regular-
ity ensures a certain degree of separation between points and closed sets, which can be
instrumental in constructing continuous functions and in the analysis of convergence and
compactness within the space. Normality, one of the few separation axioms that can be
defined purely by the properties of open and closed sets without reference to points, is
examined alongside regularity within the context of Pythagorean fuzzy cellular spaces.

This study introduces PFcelq-normal, PFcel ultra normal, PFcel completely ultra nor-
mal, PFcel quasi normal in Pythagorean fuzzy cellular space and interrelations are ex-
plored. Further, Regularity of PFcel space in investigated. The interrelations among these
newly defined normality properties are systematically explored, highlighting their distinct
characteristics and mutual dependencies within Pythagorean fuzzy cellular spaces.

2. Literature Review

This section provides an in-depth review of the existing literature related to the study.
Tables 1 and 2 provide a detailed overview of previous research related to normality and
regularity in fuzzy topological spaces.

Table 1. Literature review of Normality and Regularity in Fuzzy topology

Author Year Source Findings
Hutton [6] 1975 Normality in fuzzy

topological spaces
Normality in fuzzy topological space is in-
troduced and Normality is characterised in
terms of Urysohn’s lemma in fuzzy topologi-
cal spaces.
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Table 2. Literature review of Normality and Regularity in Fuzzy topology

Author Year Source Findings
Ghareeb
[4]

2011 Normality of double
topological spaces

The concepts of double fuzzy almost nor-
mal, double fuzzy normal, and double fuzzy
mildly normal spaces are introduced within
the framework of double fuzzy topological
spaces, and their characteristic properties are
explored.

Thabit et
al [14]

2012 π-Normality in topo-
logical spcaes and its
generalizations

This study introduced p-normality called π-
normality, which lies between p-normality
and almost p-normality.

Gathigi
Stephen et
al [13]

2013 Normality and Its
Variants on Fuzzy
Isotone Spaces

In this study, variants of normality are inves-
tigated, showing that in fuzzy isotone spaces,
perfect normality implies complete normality,
which in turn implies normality.

Balasubra
maniyan
[3]

2013 Mildly fuzzy normal
spaces and some func-
tions

Mildly normal spaces and several topological
functions—namely, almost rgf-continuous,
almost gf-continuous, rgf-open, fuzzy reg-
ular open, almost rgf-open, and almost
gf-open—are defined. Additionally, fuzzy
rc-preserving functions in fuzzy topological
spaces are introduced, and the relationships
between mildly fuzzy normal spaces and
these new fuzzy topological functions are in-
vestigated.

Al-Qubati
[1]

2017 On b-regularity and
Normality in in-
tuitionistic fuzzy
topological spaces

Some new types of intuitionistic fuzzy bsepa-
ration axioms, which is intuitionistic fuzzy b-
Tispace (for i = 3,4) and (intuitionistic Fuzzy
b-Regular and Fuzzy b-normal spaces is de-
fined and studied

Karthika
[7]

2020 Fuzzy Ggp normal
and regular spaces

this study introduces Ggp sets and studied
normal and regular spaces

Ray et al
[10]

2021 Separation axioms in
mixed fuzzy topologi-
cal spaces

Definitions for fuzzy-T0, fuzzy-T1, fuzzy-T2

(or Hausdorff), fuzzy regular, and fuzzy nor-
mal spaces within mixed fuzzy topological
spaces are provided. Additionally, the rela-
tionships among these various types of fuzzy
spaces—fuzzy-T0, fuzzy-T1, fuzzy-T2, fuzzy
regular, and fuzzy normal—are explored.

Sivasangari
[12]

2021 On e-Regularity and
e-Normality in Intu-
itionistic fuzzy topo-
logical spaces

This study explores the separation axioms of
e-open sets in intuitionistic fuzzy topological
spaces.

Liang [8] 2022 Regularity and Nor-
mality of (L, M)-fuzzy
topological spaces us-
ing residual implica-
tion

Along with the separation axiom this study
extended to residual implication.
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Table 3. Literature review of Normality and Regularity in Fuzzy topology

Author Year Source Findings
Vivek et al
[15]

2022 Regularity of the ex-
tensions of a dou-
ble fuzzy topological
space

Regularity and extensions in regular double
fuzzy topological spaces are examined, and
certain families of closed sets within these
spaces and their extensions are investigated.

Saleh et al
[11]

2023 On g-regularity and
g-normality in Fuzzy
soft topological spaces

The notions of generalized regularity, normal-
ity, and symmetric in fuzzy soft topological
spaces via fuzzy soft generalized closed is in-
troduced and studied.

Al-Qubati
et al [2]

2022 On intuitionistic fuzzy
β generalised α nor-
mal spaces

A new class of spaces called an intuitionis-
tic fuzzy β generalised α normal spaces and
investigate some of their properties. Some in-
teresting characterizations such as intuition-
istic fuzzy β generalised α-normality is hered-
itary property with respect to an open and in-
tuitionistic fuzzy β generalised α- closed sub-
space.

3. Motivation and Contribution of the Study

This study introduces a novel approach to normality and regularity by defining it within
Pythagorean fuzzy cellular space. Normality and regularity helps to classify topological
spaces based on their structural properties. This classification aids in understanding the
inherent differences and similarities between various types of spaces. The normality prop-
erty ensures the ability to separate disjoint closed sets using Pythagorean fuzzy cellular
open sets. Similarly, regularity facilitates the separation of points and closed sets, which
is vital for creating well-defined boundaries and classifications in applications. These
concepts allows to analyze the behavior of spaces, especially interactions of the subsets
and behaviour of functions within these spaces. In this study, normality is studied with
Pythagorean fuzzy cellular spaces to study the interactions of the Pythagorean fuzzy cel-
lular open sets and the Pythagorean fuzzy cellular functions like Pythagorean fuzzy cellu-
lar open function, Pythagorean fuzzy cellular closed function, Pythagorean fuzzy cellular
clopen function behave in the Pythagorean fuzzy cellular spaces. The main contributions
are as follows:

(i) Pythagorean fuzzy cellular is defined. Then Pythagorean fuzzy cellular space PFcel

space is established.
(ii) Normality in PFcel space is introduced and q-normal, ultra normal, completely

normal, quasi normal is defined in PFcel space and interrelations are investigated.
(iii) Regularity in PFcel space is defined. Then various properties of regularity is ex-

plored.

4. Preliminaries

Throughout this paper collection of Pythagorean fuzzy sets are denoted as PF (X ).
This section includes the fundamental definitions needed for the study.

Definition 4.1. [16] A Pythagorean fuzzy set (PFS) R of a non-empty set X is a pair
(µR, νR) where µR and νR are fuzzy sets of X in which µR

2 (x)+ νR
2 (x) ≤ 1 for any x ϵ X

the fuzzy set µR, νR is the degree of belongingness and non-belongingness respectively.
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Definition 4.2. [9]
Let X ̸= ∅ and τ be a family of PFS. If

(i) 0X , 1X ϵ τ
(ii) Ri ⊂ τ , we have

⋃
Rj ϵ τ where j ∈ I and I is an index set .

(iii) R1, R2 ϵ τ , we have R1
⋂

R2 ϵ τ , where 0X = (0, 1) and 1X = (1, 0), then τ is
called a Pythagorean fuzzy topology(PFT) on X . Then (X , τ) is the Pythagorean
fuzzy topological space (PFTS). Each member in the PFTS is the Pythagorean
fuzzy open set (PFOS). The complement of PFOS is called Pythagorean fuzzy
closed set (PFCS).

Definition 4.3. [9] Let (X , τ) be the PFTS. Let S = (µS , νS) and R = (µR, νR) be any
two PFS of a set X . Then,

(i) R
⋃

S = (max(µR, µS),min(νR, νS))
(ii) R

⋂
S = (min(µR, µS),max(νR, νS))

(iii) Rc = (νR, µR)
(iv) S ⊃ R or R ⊂ S if µR ≤ µS and νR ≥ νS .

Example 4.1. Let (X , τ) be the PFTS. R = {(0.4, 0.5), (0.2, 0.5))} and
S = {(0.6, 0.3), (0.3, 0.4)} be the two Pythagorean fuzzy set on X = {a, b}, then
R
⋃
S = max{(0.4, 0.5), (0.2, 0.5)}

⋃
{(0.6, 0.3), (0.3, 0.4)} = {(0.6, 0.4), (0.3, 0.4)}

R
⋂
S = min{(0.4, 0.5), (0.2, 0.5)}

⋂
{(0.6, 0.3), (0.3, 0.4)} = {(0.4, 0.5), (0.2, 0.5)}

Rc = {(0.5, 0.4), (0.5, 0.2)}
R ⊂ S = {(0.4, 0.5), (0.2, 0.5))} ⊂ {(0.6, 0.3), (0.3, 0.4)}
µR ≤ µS = 0.4 ≤ 0.6, 0.2 ≤ 0.3
νR ≥ νS = 0.5 ≥ 0.3, 0.5 ≥ 0.4.

Definition 4.4. [9] Let (X , τ) be a PFTS and R = (µR, νR) be a PFS in X . Then the
Pythagorean fuzzy closure and Pythagorean fuzzy interior are defined by,

(i) cl(R)=
⋂
{K|K is a PFCS in X and R ⊆ K}

(ii) int(R)=
⋃
{G|G is a PFOS in X and G ⊆ R}

Definition 4.5. [5] If for every family Υ = {Ki|Ki ∈ PF (X ); i ∈ I } there exists a
countable family Ψ = {Li|Li ∈ PF (X ); i ∈ I } such that Υ ⊆ Ψ and cl(

⋃
Ki) =

⋃
Li for

every i ∈ I where I is an index set, then Υ is said to be Pythagorean fuzzy cellular (in
short PFcel).

Definition 4.6. [5] A Pythagorean fuzzy topology τp on X is said to be Pythagorean
fuzzy cellular space if for every family Υ = {Ki|Ki ∈ τp; i ∈ I } there exists a countable
family Ψ = {Li|Li ∈ τp; i ∈ I } such that Υ ⊆ Ψ and cl(

⋃
Ki) =

⋃
Li for every i ∈ I

where I is an index set. Then (X , τpcel) is called PFcel space. Every member of PFcel

space is called PFcel open set and its complement is PFcel closed set.

Example 4.2. Let X = {m,n} Kj ∈ PF (X ) where j = 1, 2, 3, ...8,
K1(m) = (0.2, 0.8),K1(n) = (0.3, 0.7)
K2(m) = (0.3, 0.7), K2(n) = (0.4, 0.7)
K3(m) = (0.4, 0.7), K3(n) = (0.4, 0.5)
K4(m) = (0.4, 0.8), K4(n) = (0.3, 0.5)
K5(m) = (0.8, 0.2), K5(n) = (0.7, 0.3)
K6(m) = (0.7, 0.3), K6(n) = (0.7, 0.4)
K7(m) = (0.7, 0.4), K7(n) = (0.5, 0.4)
K8(m) = (0.8, 0.4), K8(n) = (0.5, 0.3)
τ = {0X , 1X ,K1,K2,K3, ...,K8} is a Pythagorean fuzzy topology on X . Hence (X , τ) is
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a Pythagorean fuzzy topological space. Υ = {K1,K2} ⊆ Ψ = {K1,K2,K3,K4}, Here for
every family Υ there exists a countable family Ψ satisfies the Pythagorean fuzzy cellular
condition. τpcel = {0X , 1X ,K1,K2,K3, ...,K8} is a Pythagorean fuzzy cellular topology
on X . Hence (X , τpcel) is the Pythagorean fuzzy cellular space.

Definition 4.7. [5] Let (X , τpcel) be a PFcel space and Y ⊂ X and XY be the char-
acteristic function of Y . Then τpcel(Y ) = {K

⋂
XY ,K ∈ τpcel} is a PFcel subspace.

(Y , τpcel(Y )) is called the PFcel subspace of (X , τpcel). If XY is PFcel open set then
(Y , τpcel(Y )) is called the PFcel open subspace of (X , τpcel).

Definition 4.8. [5] Let (X , τpcel) be a PFcel space. the Pythagorean fuzzy cellular closure
(PFcel cl) and Pythagorean fuzzy cellular interior (PFcel int) of a PFS is defined by,
PFcel cl(K) =

⋂
{N : K ≤ N ;N is PFcel closed in (X , τpcel)}

PFcel int(K) =
⋃
{M : M ≤ K;M is PFcel open in (X , τpcel)}

Definition 4.9. [5] Let (X , τpcel) and (Y , σpcel) be any two PFcel spaces. A function
ϕpcel : (X , τpcel) → (Y , σpcel)PFcel is said to be PFcel continuous if for every PFcel open

set K in (Y , σpcel), ϕ
−1
pcel(K) ∈ (X , τpcel) is PFcel open set in (X , τpcel).

5. Normality of Pythagorean fuzzy cellular spaces

This section provides the detailed study of normality of Pythagorean fuzzy cellular
spaces. q normal, PFcel completely ultra normal, PFcel Ultra normal and PFcel Quasi
normal are defined in Pythagorean fuzzy cellular spaces and the properties are discussed.

Definition 5.1. IfK = (µK(x), νK(x)) and L = (µL(x), νL(x)) be two PFcel in (X , τpcel).
Let K and L is called quasi coincident (for short KqL) if only if there exists an element
x ∈ X such that µK(x) > νK(x) or νK(x) < µL(x).

Proposition 5.1. Let K and L be two PFcel in (X , τpcel) then

(i) K q̃ L if and only if K ⊆ Lc

(ii) K q L if and only if K ⊈ Lc

Proof. The proof is straightforward. □

Definition 5.2. A PFcel space (X , τpcel) is said to be PFcel q-normal if for any PFcel

closed sets K1 and K2 with K1 q̃ K2, there exists PFcel open sets L1 and L2 such that
K1 ⊆ L1, K2 ⊆ L2 and L1 q̃ L2.

Definition 5.3. Let (X , τpcel) be a PFcel space. Then (X, τpcel) is said to be PFcel ultra
normal if for any PFcel closed set R and PFcel open set N in (X, τpcel) with R ⊆ N , there
exists a PFcel clopen set S such that R ⊆ S ⊆ N .

Definition 5.4. Let (X , τpcel) be a PFcel space. Then (X , τpcel) is said to be PFcel

completely ultra normal if for any two PFcel R and N with PFcel cl(R) ⊆ R, R ⊆
PFcel int(R), then there exists a PFcel clopen set S such that R ⊆ S ⊆ N .

Proposition 5.2. Let (X , τpcel) be a PFcel space. Then the following statements are
equivalent:

(i) (X , τpcel) is a PFcel q-normal space.
(ii) For each PFcel closed set K and for each PFcel open set R with K ⊆ R, there

exists a PFcel open set L where K ⊆ L such that PFcel cl(L) ⊆ R.
(iii) For each PFcel closed sets K1 and K2 with K1 q̃ K2 there exists a PFcel open set

L with K1 ⊆ L such that PFcel cl(L) q̃ K2.
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(iv) For each PFcel closed sets K1 and K2 with K1 q̃ K2, there exists PFcel open sets
L and M where K1 ⊆ L and K2 ⊆ M such that PFcel cl(L) q̃ PFcel cl(M).

Proof. (i) ⇒ (ii) Let (X , τpcel) be a PFcel q-normal space. Let K be a PFcel closed set,
R be a PFcel open set with K ⊆ R, K q̃ Rc. Also K and Rc are PFcel closed sets. Since
(X , τpcel) is PFcel q-normal space, there exists PFcel open sets L and M with K ⊆ L and
Rc ⊆ M such that L q̃ M This implies that L ⊆ M c. Hence PFcel cl(L) ⊆ PFcel cl(M

c) =
M c, since Rc ⊆ M,M c ⊆ R. Hence PFcel cl(L) ⊆ M c ⊆ R. Therefore PFcel cl(L) ⊆ R.
(ii) ⇒ (iii) LetK1 andK2 be a PFcel closed sets withK1 ⊆ K2 whereK

c
2 is PFcel open set

. Therefore by ii), there exists a PFcel open set L withK1 ⊆ L such that PFcel cl(L) ⊆ Kc.
This implies PFcel cl(L) q̃ K2.
(iii) ⇒ (iv) Let K1 and K2 be a PFcel closed sets with K1 q̃ K2. By (iii) there exists a
PFcel open set L with K1 ⊆ L such that PFcel cl(L) q̃ K2. Again by (iii), there exists a
PFcel open set M with K2 ⊆ M such that PFcel cl(M) q̃ PFcel cl(L).
(iv) ⇒ (i) Suppose thatK1 andK2 are PFcel closed sets withK1 q̃ K2. By (iv) there exists
PFcel open sets L and M with K1 ⊆ L and K2 ⊆ M such that PFcel cl(L) q̃ PFcel cl(M)
which implies L q̃ M . Therefore, (X , τpcel) is a PFcel q-normal space. □

Definition 5.5. Let (X , τpcel) and (Y , σpcel) be any two PFcel spaces. A function ϕpcel :
(X , τpcel) → (Y , σpcel)PFcel is said to be PFcel clopen function if ϕpcel(R) ∈ (Y , σpcel) is
PFcel clopen set in (Y , σpcel) for each PFcel clopen set R ∈ (X , τpcel).

Definition 5.6. Let (X , τpcel), (Y , σpcel) be any two PFcel spaces. A function ϕpcel :
(X , τpcel) → (Y , σpcel) is said to be PFcel injective(one-to-one) function, if for every
Pythagorean fuzzy cellular K in (X , τpcel) there exists a Pythagorean fuzzy cellular L in
(Y , σpcel) such that ϕpcel(K) = L then K = L.

Definition 5.7. Let (X , τpcel), (Y , σpcel) be any two PFcel spaces. A function ϕpcel :
(X , τpcel) → (Y , σpcel) is said to be PFcel surjective(onto) function, if for every L in
(Y , σpcel) there exists atleast one K in (X , τpcel)such that ϕpcel(L) = M .

Definition 5.8. Let (X , τpcel), (Y , σpcel) be any two PFcel spaces. A function ϕpcel :
(X , τpcel) → (Y , σpcel) is said to be PFcel injective(one-to-one) function, if for every
Pythagorean fuzzy cellular K in (X , τpcel) there exists a Pythagorean fuzzy cellular L in
(Y , σpcel) such that ϕpcel(K) = L then K = L.

Definition 5.9. Let (X , τpcel), (Y , σpcel) be any two PFcel spaces. A function ϕpcel :
(X , τpcel) → (Y , σpcel) is said to be PFcel surjective(onto) function, if for every L in
(Y , σpcel) there exists atleast one K in (X , τpcel)such that ϕpcel(L) = M .

Definition 5.10. Let (X , τpcel), (Y , σpcel) be any two PFcel spaces. A function ϕpcel :
(X , τpcel) → (Y , σpcel) is said to be PFcel bijective function, if it is both PFcel injective
function and PFcel surjective function.

Proposition 5.3. Let (X , τpcel), (Y , σpcel) be any two PFcel spaces, ϕpcel : (X , τpcel) →
(Y , σpcel)PFcel continuous, PFcel surjective and PFcel clopen function. If (X , τpcel) is
PFcel ultra normal (Y , σpcel) is also PFcel ultra normal.

Proof. Let (X , τpcel) be a PFcel ultra normal. Let R be a PFcel closed set and N be

a PFcel open set and R ⊆ N . Since ϕpcel is PFcel continuous. ϕ−1
pcel(R) and ϕ−1

pcel(N)

are PFcel closed set and PFcel open set respectively. Thus ϕ−1
pcel(R) ⊆ ϕ−1

pcel(N). Since

(X , τpcel) is PFcel ultra normal, there exists a S ∈ PFcel clopen set in (X , τpcel) such that

ϕ−1
pcel(R) ⊆ S ⊆ ϕ−1

pcel(N). Since ϕpcel is PFcel surjective,
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R = ϕpcel[ϕ
−1
pcel](R) ⊆ ϕpcel(S) ⊆ ϕpcel[ϕ

−1
pcel(N)] = N .

Since ϕpcel is a PFcel clopen function, ϕpcel(S) is a PFcel clopen set in (Y , σpcel). Hence
(Y , σpcel) is a PFcel ultra normal space. □

Proposition 5.4. Let (X , τpcel), (Y , σpcel) be any two PFcel spaces, ϕpcel : (X , τpcel) →
(Y , σpcel) PFcel continuous, PFcel surjective and PFcel clopen function. If (X , τpcel) is
PFcel completely ultra normal (Y , σpcel) is also PFcel completely ultra normal.

Proof. Let (X , τpcel) be a PFcel completely ultra normal. Let R and N ∈ (Y , σpcel) be

such that PFcel cl(R) ⊆ N and R ⊆ PFcel int(N) and ϕ−1
pcelPFcel cl(R) ⊆ ϕ−1

pcel(N),

ϕ−1
pcel(R) ⊆ ϕ−1

pcelPFcel int(N). Since ϕ−1
pcel is PFcel continuous, ϕ

−1
pcelPFcel cl(R) is PFcel

open set in (X , τpcel). Now ϕ−1
pcelcl(R) is PFcel closed set such that ϕ−1

pcel(R) ⊆
ϕ−1
pcelPFcel cl(R). Therefore by (iii) of Proposition 5.3 PFcel cl[ϕ

−1
pcel(R)] ⊆ ϕ−1

pcelPFcel cl(R)

⊆ ϕ−1
pcel(N). Similarly, ϕ−1

pcel(R) ⊆ ϕ−1
pcel(PFcelint(N)).

Therefore, ϕ−1
pcel(R) ⊆ ϕ−1

pcel(PFcel int(N)⊆PFcel int[ϕ−1
pcel(N)]. Since(X , τpcel) is PFcel

completely ultra normal, there exists a PFcel clopen set S such that ϕ−1
pcel(δ) ⊆ S ⊆

ϕ−1
pcel(N). Since ϕpcel is PFcel surjective,

R = ϕpcel(ϕ
−1
pcel(R)) ⊆ ϕpcel(S) ⊆ ϕpcel(ϕ

−1
pcel)(N) = N

⇒ R ⊆ ϕpcel(S) ⊆ N .

Thus PFcel cl(R) = ϕpcel(ϕ
−1
pcel(PFcel cl(R))) since ϕpcel is PFcel surjective. PFcel cl(R)

⊆ ϕpcel(ϕ
−1
pcel(N)) = N and R = ϕpcel[ϕ

−1
pcel(R)], since ϕpcel is PFcel onto R ⊆

ϕpcel(ϕ
−1
pcel(PFcel int(N))) = PFcel int(N). Therefore PFcel cl(R) ⊆ N and R ⊆ PFcel

int(N). Also, since ϕpcel is a PFcel clopen function, ϕpcel(S) is a ϕpcel clopen set in
(Y , σpcel). Thus (Y , σpcel) is also PFcel completely ultra normal. □

Definition 5.11. Let (X , τpcel) be a PFcel space. Then (X , τpcel) is said to be PFcel

quasi normal if for any PFcel closed set R and PFcel open set N with R ⊆ N , there exists
a PFcel open set S such that R ⊆ PFcel int(S) ⊆ PFcel cl(S) ⊆ N .

Definition 5.12. Let (X , τpcel) and (Y , σpcel) be any two PFcel spaces. Any function
ϕpcel : (X , τpcel) → (Y , σpcel) is said to be a PFcel slight open function if PFcel ϕpcel(T )
is PFcel clopen set in (Y , σpcel) for every PFcel open set T in (X , τpcel).

Proposition 5.5. Let (X , τpcel) and (Y , σpcel) be any two PFcel spaces. Let ϕpcel :
(X , τpcel) → (Y , σpcel) be a PFcel continuous and PFcel slight open function. If (X , τpcel)
is PFcel quasi normal if and only if (Y , σpcel) is PFcel ultra normal.

Proof. Let R be a PFcel closed set and N be a PFcel open set in (Y , σpcel) be such that

R ⊆ N . Since ϕpcel is PFcel continuous ϕ−1
pcel(R) and ϕ−1

pcel(N) are PFcel closed set and

PFcel open set in (X , τpcel) respectively. Thus ϕ−1
pcel(R) ⊆ ϕ−1

pcel(N). Since (X , τpcel) is

PFcel quasi normal, there exists a PFcel open set S in (X , τpcel) such that ϕ−1
pcel(R) ⊆ S ⊆

PFcelcl(S) ⊆ ϕ−1
pcel(N). Since ϕpcel is PFcel surjective.

R = ϕpcel(ϕ
−1
pcel(R)) ⊆ ϕpcel(S) ⊆ ϕpcel(PFcelcl(S)) ⊆ ϕpcel(ϕ

−1
pcel(N)) = N

Clearly, R ⊆ ϕpcel(S) ⊆ S. Since S is a PFcel open set in (X , τpcel) and ϕpcel is a PFcel

slight open function, ϕpcel(S) is a PFcel clopen set in (Y , σpcel). Hence (Y , σpcel) is a
PFcel ultra normal space.
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Conversely, Since (Y , σpcel) is a PFcel ultra normal there exists a PFcel clopen set M
in (Y , σpcel) such that ϕ−1(R) ⊆ ϕ−1(M) ⊆ ϕ−1(N).ϕ−1(M) is clopen set in (X , τpcel).
Since ϕ is onto. ϕ(ϕ−1(R)) ⊆ ϕ(ϕ−1(M)) ⊆ ϕ(ϕ−1(N)) implies R ⊆ M ⊆ N ∈ (X, τpcel).
Clearly, M = PFcel int(M),M = PFcel cl(M). This implies that R ⊆ PFcel(int)(R) ⊆
PFcel(cl)(M) ⊆ N in (X , τpcel). Hence (X , τpcel) is PFcel quasi normal. □

Proposition 5.6. Let (X , τpcel) be a PFcel space. Then the following statements are
equivalent:

(i) (X , τpcel) is PFcel q-normal.
(ii) For each PFcel closed set K and for each PFcel open set N with K ⊆ N , there

exists a PFcel L such that K ⊆ PFcel int(L) ⊆ PFcel cl(L) ⊆ N .

Proof. i) ⇒ ii) Let K be a PFcel closed set, N be a PFcel open set such that K ⊆ N .
Thus K and N c are PFcel closed sets in (X , τpcel). Since (X , τpcel) is a PFcel q normal,
there exists L and R are PFcel open set such that K ⊆ L,Kc ⊆ R and L q̃ R. Since
L q̃ R,L ⊆ Rc. Thus PFcel cl(L) ⊆ PFcel cl(R

c) = Rc. Since N c ⊆ R,Rc ⊆ N . Therefore
PFcel cl(L) ⊆ N . Since L ⊆ K and L is a PFcel open set, K ⊆ PFcel int(L). Hence
K ⊆ PFcel int(L) ⊆ PFcel cl(L) ⊆ N .
ii) ⇒ i). Suppose K1 and K2 are PFcel closed sets with K1 q̃ K2. Thus K1 ⊆ K2.
By hypothesis, there exists PFcel L such that K1 ⊆ PFcel int(L) ⊆ PFcel cl(L) ⊆ K2.
Since, PFcel cl(L) ⊆ Kc

2, K2 ⊆ (cl(L))c. Also, since PFcel int(L), (PFcel cl(L))c are
PFcel open set, K1 ⊆ PFcel int(L) and K2 ⊆ (PFcel cl(L))

c. Further K1 q̃ K2 implies
PFcel int(L) q̃ (PFcel cl(L))

c. Hence (X , τpcel) is PFcel q-normal space. □

Proposition 5.7. Let (X , τpcel) and (Y , σpcel) be PFcel. Let ϕpcel : (X , τpcel) →
(Y , σpcel) PFcel continuous, PFcel injective, PFcel closed, PFcel open function. If (Y , σpcel)
is PFcel ultra normal, then (X , τpcel) is PFcel q-normal.

Proof. Let R be a PFcel closed set and N be a PFcel open set be such that R ⊆ N . Since
ϕpcel is PFcel closed and PFcel open function, then ϕpcel(R) and ϕpcel(N) are PFcel closed
set and PFcel open set respectively. Thus ϕpcel(R) ⊆ ϕpcel(N). Since (Y , σpcel) is PFcel

ultra normal, there exists a PFcel clopen set S such that ϕpcel(R) ⊆ S ⊆ ϕpcel(N).

From the PFcel injectivity, ϕpcel, ϕ
−1
pcel(ϕpcel(R)) ⊆ ϕ−1

pcel(S) ⊆ ϕ−1
pcel(ϕpcel(N)) implies that

R ⊆ ϕ−1
pcel(S) ⊆ N . Since ϕpcel is PFcel continuous, ϕ−1

pcel(S) is a PFcel clopen set in

(X , τpcel). Thus R ⊆ PFcel int(ϕ
−1
pcel(S)) ⊆ PFcel cl(ϕ

−1
pcel(S)) ⊆ N . Therefore by propo-

sition 5.6, (X , τpcel) is a PFcel q-normal. □

Remark 5.1. The converse of the Proposition 5.7 is proved through the Example 5.1

Example 5.1. Let X = [0, 1] be a non-empty set and Rn = [
n

20n+ 2
, 1 − n

20n+ 2
] be

a Pythagorean fuzzy cellular defined on X , where n = 1, 2, 3, .... Let (X , τpcel) be a
PFcel ultra-normal space and (Y , σpcel) be PFcel q-normal space. Let ϕpcel : (X , τpcel) →
(Y , σpcel) be a Pythagorean fuzzy cellular continuous mapping defined as ϕpcel(a) = b,
ϕpcel (b) = a. Here ϕpcel is a PFcel continuous function. Clearly, every PFcel q-normal
space is PFcel ultra normal.

Proposition 5.8. Let (X , τpcel), (Y , σpcel) be two PFcel spaces. Let ϕpcel : (X , τpcel) →
(Y , σpcel) PFcel continuous, PFcel surjective , PFcel closed and PFcel open function. If
(X , τpcel) is PFcel quasi normal, then (Y , σpcel) is PFcel q-normal.
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Proof. Let R be a PFcel closed set and N be a PFcel open set be such that R ⊆ N .
Since ϕpcel is PFcel continuous, ϕ

−1
cel(R) and ϕ−1

cel(N) are PFcel closed set and PFcel open

set in (X , τpcel) respectively. Thus ϕ−1
cel(R) ⊆ ϕ−1

cel(N). Since (X , τpcel) is PFcel quasi
normal. By definition of PFcel quasi normal, there exists a PFcel open set S such that
ϕ−1
pcel(R) ⊆ S ⊆ PFcelcl(S) ⊆ ϕ−1

pcel(N). From the PFcel surjectivity of ϕpcel,

R = ϕpcel[ϕ
−1
pcel(R)] ⊆ ϕpcel(S) ⊆ ϕ−1

pcel(PFcel cl(N)) ⊆ ϕpcel[ϕ
−1
pcel(N)] = N

Since ϕpcel is PFcel continuous and ϕpcel(S) is PFcel open function in (Y, σpcel),

R ⊆ PFcel int(ϕpcel(S)) ⊆ PFcelcl(ϕpcel(S)) ⊆ N

Therefore by Proposition 5.6 (Y , σpcel) is a PFcel q-normal space. □

Remark 5.2. The converse of the Proposition 5.8 is proved through the Example 5.2

Example 5.2. Let X = [0, 1] be a non-empty set and Rn = [
n

2n+ 2
, 1 − n

2n+ 2
] be a

Pythagorean fuzzy cellular defined on X , where n = 1, 2, 3, .... Let (X , τpcel) be a PFcel

quasi normal space and (Y , σpcel) be PFcel q-normal space. Let ϕpcel : (X , τpcel) −→
(Y , σpcel) be a Pythagorean fuzzy cellular continuous mapping defined as ϕpcel (a) = b,
ϕpcel (b) = a. Here ϕpcel is a PFcel continuous function. Clearly, every PFcel q-normal
space is PFcel quasi normal.

Proposition 5.9. Let (X , τpcel) be a PFcel space. Then the following statements hold:

(i) If (X , τpcel) is PFcel completely ultra normal, then (X , τpcel) is PFcel ultra normal.
(ii) If (X , τpcel) is PFcel quasi normal, then (X , τpcel) be PFcel q-normal.
(iii) If (X , τpcel) is PFcel ultra normal, then (X , τpcel) be a PFcel q- normal.

Proof. (i) Let R be a PFcel closed set and N be a PFcel open set in (X , τpcel) be such
that R ⊆ N . Thus PFcel cl(N) ⊆ N and R ⊆ PFcel int(N). Since (X , τpcel) is PFcel

completely ultra normal, there exists a PFcel clopen set S such that R ⊆ S ⊆ N . Hence
(X , τpcel) be a PFcel ultra normal.

(ii) Let R be a PFcel closed set and N be a PFcel open set be such that R ⊆ N . Since
(X , τpcel) is PFcel quasi normal, there exists a PFcel open set S such that PFcel int(S) ⊆
PFcel cl(S) ⊆ N . This implies that there exists PFcel S such that R ⊆ PFcel int(S) ⊆
PFcel cl(S) ⊆ N . Hence by Proposition 5.6, (X , τpcel) be a PFcel q-normal.

(iii) Let R be a PFcel closed set and N be a PFcel open set such that R ⊆ N . Since
(X , τpcel) is PFcel ultra normal, there exists a PFcel clopen set S such that R ⊆ S ⊆ N .
Since S is a PFcel clopen set S = PFcel int(S), S = PFcel cl(S). Thus there exists PFcel S
such that R ⊆ PFcel int(S) = PFcel cl(S) ⊆ N . Hence by Proposition 5.6, (X , τpcel) is
PFcel q- normal. □

Proposition 5.10. Let (X , τpcel) be a PFcel space. If (X , τpcel) is PFcel completely ultra
normal then (X , τpcel) is PFcel ultra normal.

Proof. Let K be a PFcel closed set and M be a PFcel open set in (X , τpcel) such that
K ⊆ M . Thus PFcel cl(K) ⊆ M and N ⊆ PFcel int(M). Since (X , τpcel) is Pfcel
completely ultranormal, there exists a PFcel clopen set such that K ⊆ P ⊆ N . Hence
(X , τpcel) is PFcel ultra normal. □

Remark 5.3. The converse of the Proposition 5.10 is proved through the Example 5.3
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Example 5.3. Let X = [0, 1] be a non-empty set and Rn = [
n

3n+ 2
, 1 − n

3n+ 2
] be

a Pythagorean fuzzy cellular defined on X , where n = 1, 2, 3, .... Let (X , τpcel) be a
PFcel completely ultra normal space and (Y , σpcel) be PFcel ultra normal space. Let ϕpcel

: (X , τpcel) −→ (Y , σpcel) be a Pythagorean fuzzy cellular continuous mapping defined
as ϕpcel (a) = b, ϕpcel (b) = a. Here ϕpcel is a PFcel continuous function. Clearly, every
PFcel q ultra normal is PFcel completely ultra normal.

6. Regularity of Pythagorean fuzzy cellular spaces

Definition 6.1. Let (X , τpcel) be a PFcel space. Then (X , τpcel) is said to be PFcel

regular space if for any PFcel closed set R in (X , τpcel) and a PFcel L with R q̃ L, there
exists a PFcel open set N and V such that R ⊆ N,L ⊆ V and N q̃ V .

Proposition 6.1. Let (X , τpcel) be a PFcel space. Then the following statements are
equivalent:

(i) (X , τpcel) is PFcel regular.
(ii) For each PFcel L and PFcel open set PFcel R with L q R, there exists a PFcel

open set V with L ⊆ V such that PFcel cl(V ) ⊆ R.

Proof. (i) ⇒ (ii). Let L be a PFcel and R be any PFcel open set with L q R. By hypoth-
esis, there exists PFcel open set N and PFcel V such that L ⊆ V,Rc ⊆ N and N q̃ V .
Since N q̃ V , V ⊆ N c. Thus PFcel(V ) ⊆ PFcel (N

c) = N c. Also, Rc ⊆ N implies that
N c ⊆ R. Therefore PFcel cl(V ) ⊆ R.

(ii) ⇒ (i) Let M be a PFcel closed set and L q̃ M for PFcel L. Thus M c is PFcel

open set. By hypothesis, for each PFcel L and PFcel (M
c) with L q M c, there exists a

PFcel open set V with L ⊆ V such that PFcel cl(V ) ⊆ M c. Then M ⊆ (PFcel cl(V ))c.
Also (PFcel cl(V ))c is PFcel open. Thus L ⊆ V and M ⊆ (PFcel cl(V ))c. Also,
M ∪ (PFcel cl(M))c ⊆ PFcel cl(M)∪ [PFcel cl(M)]c ⊆ 1X . Therefore M q̃ [PFcel cl(M)]c.
Hence (X, τpcel) is PFcel regular. □

Proposition 6.2. A PFcel space is PFcel regular if and only if for every PFcel closed set
M and PFcel ,V with V q̃ M there exists PFcel open sets W and L such that if V ⊆ W ,
M ⊆ L, then W q̃ PFcel cl(L).

Proof. Let (X , τpcel) be a PFcel regular space. Let M be a PFcel closed set and V be a
PFcel with V q̃ M . Since (X , τpcel) is PFcel regular space, there exists PFcel open sets
L and M such that V ⊆ M , M ⊆ L and W ⊆ L. Since (X , τpcel) is a PFcel regular
space, there exists PFcel open set W such that V ⊆ M and M ⊆ L and W q̃ L. Since
W q̃ L and L ⊆ W c implies PFcel cl(L) ⊆ PFcel cl(W

c) implies PFcel cl(L) ⊆ W c implies
PFcel cl(L) ∪W ⊆ 1X . Therefore, W q̃ PFcel cl(L).

Conversely, for every PFcel closed set M and PFcel, V with V q̃ M , there exists PFcel open
sets W and L such that V ⊆ W and M ⊆ L, then W q̃ PFcel cl(L). Since Wq̃PFcel cl(L)
if follows that W ∪ PFcel cl(L) ⊆ 1X . Thus W ∪ L ⊆ W ∪ PFcel cl(L) ⊆ 1X . Therefore
W q̃ L. Hence (X , τpcel)PFcel regular space. □

Proposition 6.3. Let (X , τpcel) be a PFcel space. Then the following statements are
equivalent:

(i) (X , τpcel) is PFcel regular.
(ii) For each PFcelV and PFcel open set R with V ⊆ R, there exists a PFcel M open

such that V ⊆ W ⊆ PFcel cl(W ) ⊆ R.
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(iii) For each PFcelV and PFcel open set R with V ⊆ R, there exists a PFcel open setW
and J = PFcel int(K) where Kc ∈ PFcel open such that V ⊆ J ⊆ PFcel(J) ⊆ R.

(iv) For each PFcelV and PFcel closed set S with V q̃ S, there exists PFcel open sets
W and R such that V ⊆ W,S ⊆ R with PFcel cl(R) q̃ PFcel cl(W ).

Proof. (i) ⇒ (ii) Let R be a PFcel open set and V be a PFcel be such that V ⊆ R. Thus
Rc ∈ PFcel closed. By (i) V q̃ Rc. Since (X , τpcel) is PFcel regular there exists a PFcel

open sets W and J such that V ⊆ W,Rc ⊆ J and W q̃ J . Since W q̃ J,W ⊆ Jc. Since
J is a PFcel open set, PFcel cl(W ) ⊆ PFcel cl(J) ⊆ PFcel cl(J

c) = Jc. But Jc ⊆ R.
Therefore V ⊆ W ⊆ PFcel cl(W ) ⊆ R.

(ii) ⇒ (iii) Let R be a PFcel open set and V is PFcel such that V ⊆ R. By (ii) there exists
a PFcel open set W such that V ⊆ W ⊆ PFcel cl(W ) = W ⊆ R. Let J = PFcel int(K)
where PFcel cl(W ) = W . Since W ∈ PFcel open V ⊆ W = PFcel int(W ). Also,
W ⊆ PFcel cl(M), V ⊆ PFcel int(W ) ⊆ PFcel int(PFcel cl(W )) = J . Thus V ⊆ J . There-
fore, V ⊆ J ⊆ PFcel cl(J) = PFcel(PFcel int(W )) ⊆ PFcel cl(K). Since PFcel int(K) ⊆
K = PFcel cl(PFcel cl(W )) = PFcel cl(W ) ⊆ R. Hence V ⊆ J ⊆ PFcel cl(V ) ⊆ R.

(iii) ⇒ (iv) Let S be a PFcel closed set and V be PFcel with V q̃ V . Thus Sc ∈ PFcel open
V ⊆ Sc. By iii) there exists PFcel open set J such that V ⊆ J ⊆ PFcel cl(J) ⊆ S where
J = PFcel int(K) for some K ∈ PFcel, K

c ∈ PFcel open. Again by hypothesis, there
exists PFcel, W such that V ⊆ W ⊆ PFcel cl(W ) ⊆ J . Let R = (PFcel cl(J))

c. Then
PFcel cl(J) ⊆ Sc implies that S ⊆ (PFcel cl(J))

c = R. Thus V ⊆ W,S ⊆ R. But R =
[PFcel cl(J)]

c. Since J ⊆ PFcel cl(J), R ⊆ Jc. Therefore, PFcel cl(R) ⊆ PFcel cl(J
c) =

Jc, since Jc is PFcel closed. PFcel cl(R) ⊆ (PFcel(W ))c since PFcel(W ) ⊆ J . Thus
PFcel cl(R) ∪ PFcel cl(W ) ⊆ 1X . Hence PFcel cl(R) q̃ PFcel cl(W ).
(iv) ⇒ (i). The proof is apparent. □

7. Conclusion

Normality and regularity are fundamental properties in topology, forming the foun-
dation for a deeper understanding of topological spaces and their behavior. This study
extends the concepts of normality and regularity to the Pythagorean fuzzy domain. Specif-
ically, it provides a comprehensive framework for understanding Pythagorean fuzzy cellular
open sets within Pythagorean fuzzy cellular spaces by defining normality and regularity in
this context. The study introduces several new types of normality in Pythagorean fuzzy
cellular spaces, including q-normal, ultra-normal, completely ultra-normal, and quasi-
normal. Additionally, it examines the properties of regularity within these spaces. These
findings have potential applications in Pythagorean fuzzy cellular spaces, which are ef-
fective tools for modelling and analysing decision-making processes involving imprecise
information. To support these advancements, the study emphasizes the importance of
exploring open sets within these spaces, focusing on the separation axioms of normality
and regularity for detailed investigation.
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