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SIGNED SUM CORDIAL LABELING OF GRAPHS

K. JEYA DAISY!, P. PRINCY PAULSON?, P. JEYANTHI®>*, §

ABSTRACT. The notion of signed product cordial labeling was introduced in 2011 and
further studied by several researchers. Inspired by this notion, we define a new concept
namely signed sum cordial labeling as follows: A vertex labeling of a graph G, f :
V(G) — {-1,41} with induced edge labeling f* : E(G) — {—2,0,+2} defined by
[ (uwv) = f(u) + f(v) is signed sum cordial labeling if |vy(—1) — vs(+1)] < 1 and
leg=(2) — e« (5)] < 1 for 4,5 € {—2,0,+2}, where vy(—1) is the number of vertices
labeled with -1, vy (41) is the number of vertices labeled with +1, ey« (—2) is the number
of edges labeled with -2, es«(0) is the number of edges labeled with 0 and ey« (+2) is the
number of edges labeled with +2. A graph G is signed sum cordial if it admits signed
sum cordial labeling. In this paper, we investigate the signed sum cordial behaviour of
some standard graphs.

Keywords: cordial labeling, signed cordial labeling, signed product cordial labeling,
signed sum cordial labeling.

AMS Subject Classification: 05C78.

1. INTRODUCTION

All graphs G = (V(G), E(G)) considered here are simple, finite, connected and undi-
rected. Rosa [12] first proposed the idea of graph labeling in 1967 and it is one of the major
fields of graph theory. Since then, many graph labeling methods have been introduced
and studied by various researchers. A graph labeling is an assignment of integers to the
vertices or edges or both, subject to certain conditions. Gallian [5] regularly updates the
development in the field of graph labeling in his survey popularly known as a dynamic
survey on graph labeling. Cordial labeling, one of the popular labelings was introduced
by Cahit [2] and this concept has been extensively studied by several researchers, see [5].
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Harary [7] introduced the concept of signed cordinality. Devaraj et al. [3] took the ini-
tiative to prove that the complete graph, Peterson graph, flower graph, Jahangir graph
and book graph are signed cordial graphs. Jayapal Baskar Babujee et al. [8] extended the
concept of signed cordial labeling and introduced the concept of signed product cordial
labeling as follows: A vertex labeling of a graph G, f : V(G) — {—1,+1} with induced
edge labeling f* : E(G) — {—1,+1} defined by f*(uv) = f(u)f(v) is called a signed prod-
uct cordial labeling if |vs(—1) —vy(+1)] < 1 and |ep«(—1) — ep«(+1)| < 1, where ve(—1)
is the number of vertices labeled with -1, v¢(41) is the number of vertices labeled with
+1, ep«(—1) is the number of edges labeled with -1 and e (4+1) is the number of edges
labeled with +1. A graph G is signed product cordial if it admits signed product cordial
labeling. Since then new results on signed product cordial labeling have been published
by many researchers. For further information, we suggest the reader to refer [1], [4], [9],
[10], [11], [13], [14] and [15].

Motivated by the concept of signed product cordial labeling [8], we introduce a new vari-
ation of cordial labeling namely signed sum cordial labeling as follows: A vertex labeling
of a graph G, f: V(G) — {—1,+1} with induced edge labeling f* : E(G) — {—2,0,+2}
defined by f*(uv) = f(u) + f(v) is signed sum cordial labeling if [vf(—1) —vp(4+1)] < 1
and |eg« (i) —ep«(j)| < 1 for i,j € {-2,0,42}, where vy(—1) is the number of vertices
labeled with -1, v¢(+1) is the number of vertices labeled with +1, e«(—2) is the number
of edges labeled with -2, e«(0) is the number of edges labeled with 0 and ey« (+42) is the
number of edges labeled with +2. A graph G is signed sum cordial if it admits signed
sum cordial labeling. Signed sum cordial graphs have variety of applications in missile
guidance code, study of X-ray crystallography, design good radar type codes, communi-
cation network, convolution codes with optimal autocorrelation properties, to determine
ideal circuit layouts, and more. These applications demonstrate the potential of signed
sum cordial labeling in solving real-world problems and optimizing complex systems.

We follow the basic notations and terminology of graph theory as in [6] and also we use
the following graph structures to prove our main results.

The pan is the graph obtained by joining a cycle C, to a pendant vertex. The sunlet
C, ® K is the graph obtained by attaching n-pendant edges to the cycle C),. The trian-
gular snake T}, is obtained from a path vy, v, ..., v, by joining v; and v;11 to a new vertex
u;, for 1 <7 < n—1. The bistar B, ,, is the graph obtained by attaching the apex vertices
of two copies of K, by an edge. The comb P, ® K is the graph obtained from a path
by attaching a pendant egde to each vertex of the path. In this paper, we prove that the
graphs such as path, cycle, pan, triangular snake, sunlet, bistar and comb are signed sum
cordial graphs.

2. MAIN RESULTS

Theorem 2.1. The path P, is a signed sum cordial graph for allmn > 1.

Proof. Let V(P,) = {v; : 1 <i < n} be the vertex set and F(F,) = {v;vi41:1 <i<n—-1}
be the edge set of P,.
Define vertex labeling f: V(P,) — {—1,+1} as

N _J +1 ;i=1,2,3 (mod 6)
flo) =9 4 :i=0,4,5 (mod 6)

[ 41 ;n=2,3(mod 6)
Fon-1) = { —1 ; otherwise,
4+1 ;n=1 (mod6

flun) = { ( )

—1 ; otherwise.

1<1<n—-2,
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The induced edge labeling f* : E(P,) — {—2,0,+42} is given by

+2 ;i=1,2 (mod 6)

Flowipr) = 0 ;i=0,3(mod 6) ;1<i<n-—3,
-2 ;i=4,5 (mod 6)
-2 ;n=0,1 (mod 6)

f*(vn—Qvn—l) = 0 ;n=2,4,5 (mOd 6)
+2 ;n =3 (mod 6),

N 0 ;n=1,2,3 (mod 6
J*(vn-1vn) :{ -2 ;otherwise.( )

We observe that,

vp(=1) = vp(+1) + 1= [§]; nis odd,

vp(—1) = vp(+1) = §; n is even,

ep(—2) +1=ep(0) =ep«(+2) +1 =% — 1, n =0 (mod 6),

)
ep(—2) = ep<(0) = ep«(+2) = [5]; n = 1,4 (mod 6),
ep(—2) =ep(0) +1=ep(+2) = [5]; n =2 (mod 6),
ep(—2) =ep(0)+1=ep:(+2) +1 =% — 1, n =3 (mod 6),
ep(—2) =ep(0) = ep(+2) + 1 = |5 ]; n =5 (mod 6).

Thus, we have |vp(+1) —vy(=1)| < 1 and |ep (i) —ep«(j)| < 1; 4,5 € {—2,0,+2}. Hence,
the path P, admits signed sum cordial labeling. O

Example 2.1. A signed sum cordial labeling of P is shown in Figure 1.

+2 +2 0 —2 —2 0
® ® @ ® o —© ®
+1 +1 +1 -1 -1 -1 +1

Figure 1: Signed sum cordial labeling of P

Theorem 2.2. The cycle C), is a signed sum cordial graph if and only if n # 3 (mod 6)
for allm > 3.

Proof. Let V(C,) = {v; : 1 < i < n} be the vertex set and E(Cy) = {viviy; 1 1 <@ <
n — 1} U{vpv1} be the edge set of C,.

For n # 3 (mod 6)

Define vertex labeling f: V(C,) — {—1,+1} as

41 si=1,2

f(’l)z)—{ -1 ;i:3,4’ 47
N J +1 ;i=1,2,3 (mod 6) = _

f(vl) - { _1 ’150’4’5 (mOd 6) 7”20, 1,5 (mod 6)7
41 oi<i<4a | _

f@ﬂ—{ _1;5§i§8,n_Z4Mmd®,

_ +1 ;i=3,4,5 (mod 6)
Fw) =9y _4 :i=0,1,2 (mod 6)
f(vp) =—=1;n=2,4 (mod 6).

The induced edge labeling f* : E(C,,) — {—2,0,+2} is given by
+2 ;i=1,2 (mod 6)
ff(vviz) = 0 ;i=0,3(mod 6) ;1<i<n—2n=0,1,5 (mod 6),
-2 ;i=4,5 (mod 6)
12 ;1<i<3
Flowipr) = 0 ;i=4,8 ;n=2,4(mod 6),
9 . 5<i<7T

;9<i<n-—1,n=2,4 (mod 6),
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+2 ;i=3,4 (mod 6)
Fowipr) = 0 ;¢=2,5(mod6) ;9<i<n-—2,n=24(mod 6),
-2 ;4=0,1 (mod 6)

. B 0 ’n_1,4(m0d6)
fH(op—1vn) = { —2 ; otherwise,

. B +2 ;n=1 (mod 6)
f*(vpv1) - { 0 ; otherwise.
We observe that,
vy(—1) *Uf(+1)+1 = [%]; nis odd,

vp(—=1) = vs(+1) = §; n is even,

ef-(—2) =ep(0) = ef*(+2) %;n =0 (mod 6),

ep(—=2) =ep(0) = ep(+2) + 1= [§]; n=1 (mod 6),
ep(=2)+1=ep(0) =ep(+2) + 1= [§]; n =2 (mod 6),
ef(=2) = ep(0) + 1 =ep(+2) = [ §]; n =4 (mod 6),
ep(—=2) =ep(0) + 1 =ep:(+2) + 1= [§]; n=5 (mod 6).

Thus, we have |vf(+1) —vy(—1)| < 1 and |ep (i) —ep«(j)| < 15 4,5 € {—2,0,4+2}. Hence,
the cycle C,, admits signed sum cordial labeling if n # 3 (mod 6).

For n =3 (mod 6)

In order to satisfy the vertex condition for a signed sum cordial graph, we assign label +1
to either at least |5 | or at most [§] vertices out of n vertices. Suppose, we assign label
+1 to at least | 5] vertices, which results in § - 1 edges with label -2, § 4 1 edges with
label 0 and % edges with label 4-2 out of n edges. Thus, we get |es«(0) — ef*( 2)=2>1.
Otherwise, we assign label +1 to at most [ %] vertices, which results in § edges with label
-2, 5 + 1 edges with label 0 and 3 - 1 edges with label +2 out of n edges Thus, we get
leg«(0) —ep«(4+2)| > 1. Therefore, in both cases the edge condition for a signed sum cordial
graph is not satisfied. Hence, the cycle C), does not admit signed sum cordial labeling if

n =3 (mod 6). O
Example 2.2. A signed sum cordial labeling of Cg is shown in Figure 2.
+1 +1
-1 +1
-1 +1
-1 —1

Figure 2: Signed sum cordial labeling of Cy

Theorem 2.3. The n-pan graph is a signed sum cordial graph for all n > 3.

Proof. Let G be a n-pan graph. Let V(G) = {v; : 1 <1i < n} U {v} be the vertex set and
E(G) = {viviy1 : 1 <i <n—1} U{v,v1,v,v} be the edge set of G.
Define vertex labeling f: V(G) — {—1,+1} as
' [ +1 ;i=1,2,3 (mod 6)
Flo) =9 4 . i=0,4,5 (mod 6)
| 41 ;n=3,4 (mod 6)
Fon-1) = { —1 ; otherwise,

1< <n—2,
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+1 ;n=1,2 (mod 6)

flon) = —1 ; otherwise,
flopy1) = 1.
The induced edge labeling f* : E(G) — {—2,0,+2} is given by
+2 ;i=1,2 (mod 6)
Froig) = 0 ;i=0,3 (mod 6) ;1<i<n-—3,
-2 ;i=4,5 (mod 6)
-2 ;n=0,1,2 (mod 6)
f*<vn—27}n—1) — 0 ;n = 5 ( od 6)
+2 ;n=3,4 (mod 6),
. [ =2 ;n=0,5 (mod 6)
fr(onavn) = { 0 ; otherwise,
. +2 ;n=1,2 (mod 6)
S (vpur) { 0 ; otherwise,
. 0 ;n=1,2 (mod 6)
f*(vnv) { —2 ; otherwise.

We observe that,

vp(—1) = vf(—i—l) +1=%;n=0 (mod 4),

vp(=1) =vp(+1) = [§]; n =1,3 (mod 4),

vp(=1)+1=wp(+1) = §; n =2 (mod 4),

ep(—=2) +1=ep(0) = es+(+2) = §; n =0 (mod 6),

epe(=2) =ep(0) + 1 =ep<(+2) +1=[5]; n=1,4 (mod 6)

ep(=2) =ep(0) = e+ (+2) =[3]; n=2,5 (mod 6),

e (=2) = ep(0) +1=ep(+2) = §; n =3 (mod 6).

Thus, we have |vp(+1) —vp(=1)] < 1 and |ep (1) —ep=(j)| < 154,75 € {—2,0,+2}.

Hence, the n-pan graph admits signed sum cordial labeling. O

Example 2.3. A signed sum cordial labeling of 8-pan graph is shown in Figure 3.
+1 +1

Figure 3: Signed sum cordial labeling of 8-pan graph

Theorem 2.4. A triangular snake graph T, is a signed sum cordial graph if and only if
n 1s odd and n > 3.

Proof. Let V(T,) = {v; : 1 < i < n}U{u; : 1 < i < n— 1} be the vertex set and
E(T,) = {vivit1, viui, ujvit1 : 1 < i <n —1} be the edge set of T),.

Let n be an odd integer, n > 3.

Define vertex labeling f: V(T},) — {—1,+1} as

o= = { 1} i ooy O PY
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f(vnfl) = f(unfl) = _17

B _f -1 ;n=1 (mod4)
f(on-2) = f(un—2) = { +1 ;n=3 (mod 4),
B [ 41 ;n=1 (mod 4)
flon=3) = f(vn) = { -1 ;n =3 (mod 4).
The induced edge labeling f* : E(T,,) — {—2,0,+2} is given by
+2 ;i=1 (mod 4)
[rvie) = ffuvis) = 0 ;i=0,2(mod4) ;1<i<n-—4,
-2 ;1=3 (mod 4)
. L B -2 ;n=1 (mod 4)
f*(n—2vp—1) = f*(un—2vn-1) = { 0 ;n=3(mod4),
o B 0 ;n=1 (mod4)
f (Un—lvn) = f (un—lvn) - { -2 ;n=3 (HlOd 4),
f ('Un73vn*2) =0,
§ B 0 ;n=1(mod4)
[ (un—3vn—2) = { +2 ;n =3 (mod 4),
o 42 ;i=1,2 (mod 4) . B
f*(viuy) _{ —2 ;1=0,3 (mod 4) lsisn—4,
i} [ 42 ;n=1 (mod 4)
f (’Unf?,unf?)) - { 0 :n=3 (mod 4),
. - -2 ;n=1 (mod 4)
F*(vn—2un—2) = { +2 ;n =3 (mod4),

We observe that,

vp(=1) =vp(+1)+1=n—-1,

ef«(=2) =ep(0) = ep+(+2) =n—1,if n = 1,3 (mod 4).

Thus, we have |vp(+1) —vp(—=1)| < 1 and |ef«(i) — ef«(4)| < 1 for 4,5 € {-2,0,+2}.
Hence, a triangular snake graph 7, admits signed sum cordial labeling if n is odd.

For n=3

In order to satisfy both vertex and edge conditions for a signed sum cordial graph, we
assign +1 to either at least 2 vertices or at most 3 vertices out of 5 vertices, which results
in every 2 edges are labeled with -2, 0, +2 out of 6 edges. If the vertices of any one of the
triangles is labeled with either +1 or -1, which results in 3 edges with labels +2 or -2. If
the vertices of both the triangles are labeled with +1 and -1, which results in 4 edges with
label 0. Therefore, in either case, the edge condition for signed sum cordial graph is not
satisfied. Hence, a triangular snake graph 7,, does not admit signed sum cordial labeling
if n=3.

For n is even

In order to satisfy both vertex and edge conditions for a signed sum cordial graph, we
assign +1 to either at least n-1 vertices or at most n vertices out of 2n-1 vertices, which
results in each n-1 edges, i.e., odd number of edges is labeled with -2, 0, 42 out of 3(n-1)
edges. If we assign labels +1 and -1 to the vertices of any one of the triangles, which
results in 2 edges with label 0 in the same triangle. Thus, we get even number of edges
labeled with 0 in T,. Therefore, the edge condition for signed sum cordial graph is not
satisfied. Hence, a triangular snake graph 7}, does not admit signed sum cordial labeling
if n is even.

O



2562 TWMS J. APP. ENG. MATH. V.15, N.6, 2025

Example 2.4. A signed sum cordial labeling of T+ is shown in Figure 5.

+1 +2 +1 0 -1 —2 -1 0 +1 0 -1 —2 -1
Figure 4: Signed sum cordial labeling of T%

Theorem 2.5. The sunlet graph C, ® Ky is a signed sum cordial graph if and only if
n # 3 (mod 6) for alln > 3.

Proof. Let V(Cp,® K1) = {u;,v; : 1 <i < n} be the vertex set and E(C), ® K1) = {u;uy1 :
1<i<n—1}U{upur} U{uv; : 1 <i<n} be the edge set of Cp, ® K.
For n # 3 (mod 6)
Define vertex labeling f: V(C,, ® K1) — {—1,+1} as
flw;) = { ji : z; é:; Eﬁgg jg ;1<i<2[%], n=0,4,5 (mod 6);
1<i<2[%], n=1,2 (mod 6),

| +1 sidsodd -, . _ )
f(uz)—{ 1 s even ;2[5 +1<i<n, n=0,4,5 (mod 6);
2[2]1+1<i<n, n=1,2 (mod 6),
fui) = flui) s1<i<n-—1,
floy) = —1.
The induced edge labeling f* : E(C,, ® K1) — {—2,0,+2} is given by
+2 ;i=1 (mod 4)
[F(uiuigr) = 0 ;¢=0,2 (n(;od 4) ;1<i<2[%], n=0,4,5 (mod 6);
2 =3 4
i=3 (mod 4) 1<i<2(2], n=1,2 (mod 6),
fFluuigr) = 0 ;2[3]+1<i<n—1,n=1,2 (mod 6);
2[2]+1<i<n-1,n=0,4,5 (mod 6),
N . 0 ;niseven
J* (unua) { +2 ;nis odd,
el [ +2 ;i=1,2 (mod 4) . n _ )
f*(uivy) —{ ~2 :i=0,3 (mod 4) ;1<i<2[%], n=0,4,5 (mod 6);
1<i<2[%], n=1,2 (mod 6),
o _J 42 siisodd  pp . B _ )
f*(uivy) —{ _9 i iiseven ;2[5 +1<i<n—1, n=0,4,5 (mod 6);
2[3]+1<i<n—-1,n=12 (mod 6),
« B -2 ;niseven
Frlunvn) = { 0 ;mnisodd.

We observe that,
vp(=1) = vs(+1) = n,

ep«(—2) = ep+(0) = e+ (+2) = 2 n =0 (mod 6),

ep(—2) =ep(0) +1=ep(+2) +1=2[5]; n=1 (mod 6),
ep(—2) = ep(0) + 1 =ep«(+2) = 2[ 5] + 1; n =2 (mod 6),
ep(—2) +1=ep(0) = ep«(+2) +1=2[5|; n =4 (mod 6),
ep(—2) =ep(0) = ep«(+2) + 1 =2[5| +1;n =5 (mod 6).
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Thus, we have |vg(+1) —vp(—1)] < 1 and |ep« (i) — ef«(5)] < 1 for 4,5 € {=2,0,+2}.

Hence, the sunlet graph C),, ® K7 admits signed sum cordial labeling if n # 3 (mod 6).

For n =3 (mod 6)

In order to satisfy the vertex condition for a signed sum corc21ial graph, we assign label
n

+1 to exactly n vertices out of 2n vertices, which results in 5* - 1 edges with label -2,

%” + 1 edges with label 0 and %” edges with label +2 out of 2n edges. Thus, we get
lef(—2) —ef«(0)] = 2 > 1. Therefore, the edge condition for a signed sum cordial graph is
not satisfied. Hence, the sunlet graph C,, ® K7 does not admit signed sum cordial labeling
if n =3 (mod 6).

O

Example 2.5. A signed sum cordial labeling of Cs ® K1 is shown in Figure 4.

Figure 5: Signed sum cordial labeling of Cs ® K3
Theorem 2.6. The bistar graph B, ,, is a signed sum cordial graph for alln > 1.

Proof. Let V(Byn) = {vi,u; : 1 < i < n}U{v,u} be the vertex set and E(B, ) =
{vvi,uu; - 1 <i < n}U{vu} be the edge set of By, .
Define vertex labeling f : V(B ) — {—1,+1} as

v _J 41 ;i=1,2 (mod 3)
f(vl)_{ -1 ;4=0 (mod 3),
fv) = +1,

—1 ;4=1,2 (mod 3
flus) = +1 ;i=0 (mod 3).
The induced edge labeling f* : E(B,, ) = {—2,0,+2} is given by
+2 ;i=1,2 (mod 3)

fr(ov;) = 0 ;i=0 (mod 3),

Fou) =0,

i} [ =2 ;i=1,2 (mod 3)
[ (uu;) = 0 ;i=0 (mod 3).

We observe that,
Uf(—l) = Uf(—i—l) =n+1,
ep(—2) = ep+(0) = e+ (+2) = 22 if n =1 (mod 3),
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ep(=2) +1=rep(0) = ep(+2) + 1= 221 if n = 2 (mod 3),

ep(—2) = ep(0)+1=ep(+2) = 2 if n =0 (mod 3).

Thus, we have |vp(+1) —vs(—1)] < 1 and |ep= (i) —ep=(j)| < 154,75 € {—2,0,+2}.
Hence, the bistar graph B, ,, admits signed sum cordial labeling. O

Example 2.6. A signed sum cordial labeling of Bs 5 is shown in Figure 6.
-1

+1

+1 @

+1
Figure 6: Signed sum cordial labeling of Bs 5

Theorem 2.7. The comb graph P, ® K1 is signed sum cordial graph for all n > 1.

Proof. Let V(P, ® K1) = {u;,v; : 1 <i < n} be the vertex set and E(P, ® K1) = {v;jvi4+1 :
1<i<n—1}U{vu;: 1 <1i<n} be the edge set of P, ® Kj.
Define vertex labeling f: V(P, ® K1) — {—1,+1} as
N ) A1 s 1<i< 5] ) —
f(uz){ 1 oimr1<i<on) ;n=0,1 (mod 3),
+1 ;1 <i<[g]

flu;) = “1 B +1<i< 2B ;n =2 (mod 3),

N +1 sidsodd o, . _
f(ul)_{ 1 s even ;5 +1<i<n, n=0 (mod 3),
B =1 ;iisodd , . — )
Flus) _{ +1 ;1 1s even 2[5/ +1<i<n, n=1(mod3);
2[5]+1<i<n, n=2 (mod 3),
foy={ TLoilsis<Ty]
T -1 el <i<ery,
N -1 siisodd o, , _
f(v,)—{ +1 ;s even i +lsisn, n=0(mod3),
flog =4 TLoitmsoedd oy i c o =1,2 (mod 3)
¢ -1 ;iiseven '3 - = ’ '

The induced edge labeling f* : E(P, ® K1) — {—2,0,+2} is given by

" 0 ;2=n—-2
f(vi'l)i—i-l):{ -2 si=n-—1 ;n = 3,4,
frloive) = +2 jn=4,
2 51<i<yol
[ (vivigr) = -2 § <i <3 ;n =0 (mod 3),
0 ;§+1§i§n—1
+2 ;1<i<|5]
[*(vivipr) = 0 ;i=[5]+1,2[5/+2<i<n-1 ;n=1,2 (mod 3),
-2 s lgl+2<i<2z)+1
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+2 ;1<i<|35]
o) = 0 ;i=[%]+1,2[5]+2<i<n ;n=1 (mod 3),
-2 ;5] +2<i<2[5]+1
+2 ;1<i<[3]
o) = -2 ;[5]+1<i<2[3] ;n=0,2 (mod 3).
0 ;2[2]+1<i<n

We observe that,

vp(=1) = vp(+1) = n,

e (=2)+1=rep(0)+1=ep(+2) =2 —1; n =0 (mod 3),

ep(—2) =ep(0) +1=ep(+2) = @; n =1 (mod 3),

ep(—=2) = ep(0) = e« (+2) = 221 n =2 (mod 3).

Thus, in each case, we have |vf(+1) — vp(—1)] < 1 and |ep= (i) —ep=(j)| < 15 4,5 €
{-2,0,+2}. Hence, the comb graph P, ® K; admits signed sum cordial labeling. ([l

Example 2.7. A signed sum cordial labeling of Ps ©® K1 is shown in Figure 7.
+1 +1 -1 -1 +1 -1

+2 0 -2 0 0

+2 +2 -2 -2 +2 -2

+1 +1 -1 -1 +1 -1
Figure 7: Signed sum cordial labeling of Py ® K3

3. CONCLUSION

The study on the labeling of different graph structures is one of the potential areas of
research. In this paper we introduce a new concept namely ’signed sum cordial labeling’
and prove that the graphs such as path, cycle, pan, triangular snake, sunlet, bistar and
comb admit signed sum cordial labeling. Examples are given at the end of each theorem
for better understanding of the labeling pattern defined in each theorem. To find new
results on signed sum cordial labeling for other graph families is an open area of research.
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